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A B S T R A C T

The convergence between the recent developments in sensing technologies, data science,
signal processing and advanced modelling has fostered a new paradigm to the Structural
Health Monitoring (SHM) of engineered structures, which is the one based on intelli-
gent sensors, i.e., embedded devices capable of stream processing data and/or performing
structural inference in a self–contained and near–sensor manner.

To efficiently exploit these intelligent sensor units for full–scale structural assessment,
a joint effort is required to deal with instrumental aspects related to signal acquisition,
conditioning and digitalization, and those pertaining to data management, data analytics
and information sharing.

In this framework, the main goal of this Thesis is to tackle the multi–faceted nature
of the monitoring process, via a full–scale optimization of the hardware and software re-
sources involved by the SHM system. The pursuit of this objective has required the investi-
gation of both: i) transversal aspects common to multiple application domains at different
abstraction levels (such as knowledge distillation, networking solutions, microsystem HW
architectures), and ii) the specificities of the monitoring methodologies (vibrations, guided
waves, acoustic emission monitoring). The key tools adopted in the proposed monitoring
frameworks belong to the embedded signal processing field: namely, graph signal pro-
cessing, compressed sensing, ARMA System Identification, digital data communication
and TinyML.
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S O M M A R I O

La convergenza tra i recenti avanzamenti tecnologici nell’ambito dei sistemi di misura,
dell’analisi dati e avanzate capacità di modellazione, ha promosso un nuovo paradigma
per la valutazione di integrità strutturale (SHM) di strutture ingegnerizzate: quello basato
su sensori intelligenti. Questi ultimi consistono in dispositivi embedded in grado sia di
processare i dati in streaming che di verificare le condizioni di integrità strutturale in
modo autonomo ed in stretta prossimità al punto in cui l’informazione strutturale viene
misurata.

Per poter sfruttare efficientemente tali nodi sensore e fornire una diagnosi strutturale
complessiva, è necessario uno sforzo implementativo congiunto in grado di far fronte
sia ad aspetti strumentali - legati all’acquisizione, condizionamento e digitalizzazione dei
segnali raccolti -, sia di garantire una opportuna gestione, elaborazione e condivisione dei
dati acquisiti.

In tale contesto, scopo primario del presente lavoro di Tesi è quello di affrontare le
diverse sfide aperte nel settore, mediante l’ottimizzazione complessiva delle risorse hard-
ware e software del sistema di monitoraggio. Il raggiungimento di tale obiettivo ha ri-
chiesto l’analisi di: i) aspetti trasversali, comuni ai diversi domini applicativi, definiti a
diversi livelli di astrazione (e.g., riduzione della complessità computazionale, definizio-
ne di nuove soluzioni di networking e comunicazione dati, microarchitetture di calcolo);
ii) prinicipi funzionali di diverse tecniche di ispezione (vibrazioni, onde guidate, emis-
sioni acustiche). Gli strumenti chiave adottati nelle soluzioni proposte appartengono al
campo dell’elaborazione del segnale con sistemi integrati: tra questi, la teoria del graph
signal processing, la tecnica del compressed sensing, l’identificazione di sistemi dinamici
basata su modelli ARMA, l’utilizzo di meccanismi di comunicazione digitale alternativi
e l’implementazione di algoritmi di intelligenza artificiale a minimo costo energetico e
computazionale (TinyML).
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1
I N T R O D U C T I O N

The fascinating thing about living organisms is that
they perceive their environment,

react to it and even
heal themselves when injured.

We want to instill these qualities in materials and infrastructures.

— Mark Tibbitt1

1.1 background and motivation

The conceptualization of structures as intelligent organisms has inspired many researchers
and it is fostered by the recent technological advancements which are making conceivable
the design of self–aware and autonomous structures capable of "perceiving their status
and the environment, reacting to changes and [possibly] even healing themselves when
damaged".

What made this progress possible is the vertical coalescence between the research contri-
butions in sensing technologies, data science, signal processing and advanced modelling.
As a result, a new paradigm to the integrity assessment of structures has emerged in re-
cent years, which is the one of smart structures. This definition comes from the fact that, in
the next generation, engineered structures will be equipped with intelligent sensors, which
are not merely in charge of passively capturing the structural response, but are uniquely
provided with on–board processing and decision making functionalities, emulating - to a
certain extent - the cognitive behavior of the human brain. It is, then, from the information
sharing between these near–sensor intelligent units that the full–scale structural status can
be inferred and continuously assessed during the whole life-cycle. The implementation of
such Structural Health Monitoring (SHM) systems requires perfect coordination among the
sensing, the communication and the decision subsystems to achieve a timely and reliable
diagnosis.

Therefore, the deployment of SHM systems is an intrinsically interdisciplinary task,
whose fulfillment requires innovative tools and approaches, constantly adapted to the
evolving structural design. As a first instance, resilient monitoring strategies are needed
to detect structural damages while filtering out environmental noise or instrumental non–
idealities, which most often represent a primary cause of uncertainty during structural
characterization. Possible solutions to tackle these topics are based on the exploitation of
highly customised sensing devices, such as shaped transducers equipped with spatial fil-
tering functionalities, or miniaturized system–in–package inertial modules, just to name
a few. In addition, effective data acquisition and storage techniques must be employed
in order to cope with the heterogeneity of the sensing devices and with the amount of
data produced by collecting raw signals. Finally, damage detection and characterization

1 Biodegradable bridges: Living structures that respond to the environment. Available at https://techxplore.com/
news/2020-01-biodegradable-bridges-environment.html

1

https://techxplore.com/news/2020-01-biodegradable-bridges-environment.html
https://techxplore.com/news/2020-01-biodegradable-bridges-environment.html
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Figure 1: General overview of a SHM system, from the hardware up to the software layers.

tasks may be computed via data–driven algorithms that can complement the model–based
alternatives conventionally leveraged in the diagnostic process.

Consistently, the effectiveness of the SHM architecture is based on the optimal combina-
tion between the required Hardware (HW) resources for signal acquisition, conditioning
and digitalization, and the associated Software (SW) infrastructure in charge of data man-
agement, data analytics and structural assessment. As schematically depicted in Fig. 1,
this is realized via implementation of multi–layered architectures exploiting the intrinsic
capability of the above–mentioned smart devices to measure, pre–elaborate and forward
physical data to virtual aggregating units [1]. From a HW standpoint, the selection of
the specific sensors to be deployed and their relative positioning strictly depend on the
characteristics of the structure to be inspected, the complexity of which may demand the
combination of different sensing technologies, as well as several diagnostic approaches.
At higher abstraction levels, considerable research efforts have been made to (i) enhance
the reliability in retrieving and sharing structural information collected at multiple loca-
tions, (ii) increase the quality of the extracted structural parameters while reducing the
computational latency and, in turn, the data–to–user transfer time, and (iii) bridge the gap
between human and computer-aided prognostics about the remaining useful life, possibly
combining them with dedicated interfaces [2].

1.1.1 Application perspectives and open issues

In this framework, the main challenge which is faced by the SHM community is to en-
sure long–lasting monitoring functionalities, while adapting to the constantly evolving
complexity of modern mesoscale structures [3], i.e., structures with very large geometries,
where deluge of data collected from increasingly denser sensor networks makes their
management a primary issue. Significant advancements have been achieved in recent
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years in the implementation of autonomous, reliable and cost–effective SHM systems [4]
[5], through the joint optimization of data sampling rates, on–board storage and computa-
tional resources, and communication data payloads. The advent of Internet of Things (IoT)
technologies [6] may ease the development of real–time and continuous monitoring sys-
tems, allowing for the seamless sharing of information between users, sensors and struc-
tures [7]. Nevertheless, a number of issues remain to be tackled in order to enhance
the responsiveness and the resilience of the designed monitoring architectures [8]. As
schematically depicted in Fig. 2, five main and mutually inter-related challenges can be
listed: (i) the big data volume implied by dense sensor networks deployed on large–scale
infrastructures, (ii) the consequent probability of network congestion due to limited and
shared communication channels between multiple devices, (iii) the growing latency in the
data–to–user transfer process, (iv) device constraints, i.e., limited memory space and com-
putational resources available on sensors in order to meet the requirements of (v) low–
power and low–cost hardware that can ensure a long–lasting monitoring action. These
aspects are even more crucial in case of wireless monitoring systems [9], where the usage
of battery–operated devices allow for higher versatility in the deployment process, while
posing more stringent limitations on the power consumption.

As a consequence of the above–mentioned challenges, which affect multiple layers of
the SHM system, sensor network improvement is mandatory for each step of the monitor-
ing process. In this context, the HW–SW co–design of embedded computing systems has
promoted a rapid shift from standard hierarchical approaches, relying on cloud–based
data analytics, performed on remote servers via time- and energy- onerous procedures, to
near–sensor data compression and/or inference, empowered to smart sensors in charge
of stream processing the raw data.

In the SHM field, data compression techniques have been investigated as a means to
address these issues by performing global network optimization. However, most of the
related works ([10]–[13]) are based on offline data processing, while the edge and extreme
edge computing perspective, i.e., investigating whether and how compression could be
practically implemented on resource–constrained sensor boards, has only recently gained
attention. Compression at the extreme edge is particularly attractive because, among the
different contributions to the energy budget, the one related to wireless data transmission
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is largely dominant due to the significant power consumption necessary to cover long
transmission distances with minimal payload degradation.

Another macro-trend in SHM concerns the possibility to integrate different sensing tech-
nologies to provide a deeper insight about various aging phenomena occurring in the
same structure [14], [15]. Indeed, heterogeneous monitoring platforms may overcome the
inherent shortcomings of individual sensing principles. Despite their beneficial impact on
the quality of the structural assessment process, such scenarios demand for dedicated
mixed–signal processing enabling for data merging and global feature reconstruction
from multi–source measurements. For these measurements, the role of smart sensors is
pivotal since they might perform data fusion without centralized data retrieval.

Finally, continuously growing attention is nowadays attracting the key concept of Value
of Information (VoI), i.e., quantifying how the information extracted from the SHM system
can actually provide optimal decision support [16]. In these terms, the VoI assumes a
crucial importance since it allows to evaluate, in a quantitative and no more qualitative
manner, the real benefit that the HW–SW improvement demanded by the next generation
of SHM systems can bring to the integrity assessment process and, by extension, it instructs
the SHM users about the most convenient maintenance action.

1.2 thesis objectives

The main goal of this Thesis is to tackle the multi–faceted and undoubtedly entangled
nature of the monitoring process, via a full–scale improvement of the HW and SW resources
involved by the SHM system.

As depicted in Fig. 3, the pursuit of this objective has required the investigation of both:
(i) transversal aspects common to multiple application domains at different abstraction
levels (such as knowledge distillation, networking solutions, microsystem HW architec-
tures), and (ii) the specificities of the monitoring methodologies (vibrations, guided waves,
acoustic emission monitoring).

1.3 thesis organization and contributions

The content of this dissertation is organized into three major parts (see Fig. 3), each
of them trying to offer tangible solutions to different issues related to as many non–
destructive structural evaluation methods. In Part i (Chapters 2 to Chapter 7), the focus
is on the HW/SW sensor network optimization for vibration–based monitoring. In Part ii
(Chapters 8 to Chapter 12), inspection strategies built on guided elastic waves are pre-
sented, investigating the opportunity to exploit piezoelectric transducers for probing the
inspected structures and, at the same time, for communicating data in a self–contained
manner. Finally, Part iii (Chapter 13) is entirely dedicated to the problem of onset time
estimation in acoustic signals, since it represents a pivotal parameter for the accurate
localization of the acoustic events caused by structural aging.

For each part, an introductory section is enclosed, in which the basic principles of the
driving monitoring technique, as well as a review of the most relevant signal processing
methodologies to cope with it, are discussed. The aim is to provide a detailed overview of
the state–of–the–art in the field, on which the novel solutions proposed in the manuscript
are grafted.

An executive summary of each chapter–related content is provided as follows:
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• Chapter 2 outlines the theory at the basis of vibration diagnostics under the cap
of Operational Modal Analysis (OMA), which serves the fundamental goal of fea-
ture extraction for the following structural assessment process. An overview of the
most–established signal processing techniques available for OMA is provided, with
specific emphasis on those strategies actually exploited in this work. Accordingly,
the damage assessment problem is finally discussed together with a general intro-
duction about the available algorithms to finalize it.

• Chapter 3 deals with a critical task in clustered architectures for modal analysis,
which is the reconstruction of global modal features from local estimates. In partic-
ular, a novel method inspired by the Graph Signal Processing theory is proposed
for the sake of full–scale mode shape retrieval in case of non–overlapped clusters
of sensors, thus overcoming the limitation of many state–of–the–art alternatives in
the field. In these terms, the Chapter introduces a first level of sensor network op-
timization: indeed, by removing the constraint of cluster interleaving, not only the
cumulative number of sensors might be reduced, but also the sensor deployment
can be better adapted to the geometry of the inspected structure.

• Chapter 4 investigates solutions for sensor life–cycle extension, especially for battery–
operated devices, where the need for real–time and over–time serviceability barely
copes with the limited memory and power budget available on edge devices per-
manently attached to the structure. To this end, an innovative technique for vi-
bration data compression at the extreme edge driven by the Compressed Sensing
(CS) paradigm is introduced. The method adapts the compression mechanism to
the structural characteristics, but it achieves this goal in a conservative manner, i.e.,
taking into account the possible changes in the structural signature, as required in
long–term monitoring. Alongside, the effectiveness of CS strategies in presence of
an operative framework are assessed. To this end, the compliance of CS–enabled
clustered architectures with global structural features reconstruction is firstly inves-
tigated. Then, its robustness against instrumental noise is thoroughly assessed.

• Chapter 5 approaches the task of data compression as a system identification (SysId)
problem. SysId is capable of encapsulating the meaningful vibration content in a
very reduced set of values, called model parameters, which are fully descriptive of
the underlying physical dynamics. To validate this concept with near–sensor imple-
mentations, an ad–hoc processing flow encompassing dense linear algebra opera-
tors is devised to shrink both the memory and computational complexity of the in-
volved algorithms. Relying on that, the actual embodiment of system identification
models on a low–power resource–constrained device is successfully achieved and
validated against structural deterioration. Finally, a cost–benefit analysis concludes
the Chapter: the objective is to provide a comprehensive measure of the energy sav-
ings brought by this technique, taking into consideration the power consumption
due to data transmission, as required by state–of–the–art communication protocols
for IoT scenarios.

• Chapter 6 fulfills the last step of the monitoring architecture, with specific emphasis
on the damage assessment process. Suitable artificial intelligence solutions are re-
viewed and adopted via the TinyML approach, yielding to the porting of the sought
inference models on a low–cost edge device. The aim is to move the artificial in-
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telligence in strict proximity where information is actually sensed, overtaking the
requirement of centralized integrity evaluation [17]. Moreover, in order to provide a
comprehensive framework for vibration–based inspection from acquisition to dam-
age characterization, the diagnostic performance of the designed models paired with
data compression procedures is tested.

• Chapter 7 discusses the importance of heterogeneous monitoring networks for vi-
bration analysis as a viable solution to counteract the intrinsic limitations of single
sensing principles and, thus, to enhance the depth and the quality of the structural
insight. Therefore, two data fusion techniques are presented to aggregate multi–type
measurements: the former is a methodology for on–board tilt angle estimation by
fusing linear acceleration and angular velocities; the latter consists of a purposely
designed strategy for the combination of cost–effective piezoelectric discs with iner-
tial sensors, with the ultimate objective of promoting the realization of up–scalable
and minimally invasive monitoring architectures.

• Chapter 8 delineates the working principles at the basis of Guided Waves (GWs)–
based monitoring, which serve as a starting point to discuss the inherent wireless
communication capabilities made available by smart transducers without the need
of external, bulky and costly, radio modules. Hence, this peculiar communication–
related property could be used in a next generation of autonomous and self–aware
sensor networks for GW inspection: the near–sensor processing and actuating func-
tionalities of the transducers can be exploited both for data acquisition and charac-
terization in a preliminary stage and, subsequently, to share the result of the inspec-
tion in form of damage indicators, by propagation through the mechanical medium
itself.

• Chapter 9 focuses on the extreme edge implementation of the Frequency Division
Multiplexing technique as a suitable strategy for multi–user communication scenar-
ios. Physics–informed strategies for the selection of the best set of carrier frequencies
are proposed to maximize the communication performance. The effects of structural
irregularities on the propagation channels and the achievable transmission rates are
explored.

• Chapter 10 exploits the standard Code Division Multiplexing technique in combi-
nation with a dispersion compensation procedure to be suitable for GWs–based
scenarios: this solution allows for the best comprise between channel availability
while transmitting with defect resolution while evaluating the structural integrity.

• Chapter 11 counteracts the intrinsic complexities of GW propagation, which might
be responsible for significant degradation in the quality of the delivered informa-
tion, via the concurrent transmission–compensation approach offered by the Time
Reversal–Pulse Position Modulation method by virtue of the channel reciprocity. In
particular, a novel low–depth variant of the same methodology is suggested in the
Chapter to meet the signal synthesis capabilities of low–cost actuators and, conse-
quently, to support its edge implementation.

• Chapter 12 combines the communication robustness of Quadrature Amplitude Mod-
ulation with the frequency steering efficiency of Frequency Steerable Acoustic Trans-
ducers to implement, in hardware, spatial multiplexing functionalities, as it is the
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case of modern 5G communications. The final objective of the work is to demon-
strate how the amalgam of an innovative sensor design and advanced signal pro-
cessing might allow to achieve important transmission rates while ensuring high
immunity to unfavorable propagation environments.

• Chapter 13 concentrates on a pivotal problem in Acoustic Emission monitoring, that
is the estimation of the Time of Arrival in acoustic signals, since it delivers a primary
tool both for damage identification and acoustic source localization. Notwithstand-
ing conventional statistical methods, three neural network models are purposely
proposed to tackle this task: two are based on a standard Convolutional Neural Net-
work, whereas the other is built on a CapsNet architecture, further combined with
a CNN–based logic for the retrieval of the sought onset time. The algorithms are
firstly tested on a labelled, synthetic dataset, and then evaluated on experimental
data for acoustic event localization, showing superior performances in both cases.

Finally, Chapter 14 concludes the manuscript, depicts the current status of the work,
briefly describes ongoing research directions and opens to future challenges.
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abstract

In this Chapter, the working principles of vibration–based structural assessment are reviewed.
Signal processing techniques necessary to extract the structural features of interest, which fall
under the cap of the so–called operational modal analysis field, will be discussed. Then, the most
relevant strategies typically employed for damage detection basing on either vibration features or
machine learning algorithms will be tackled, with the final objective to provide a comprehensive
overview of the current challenges in the field.

2.1 introduction

Vibration–based monitoring refers to the process of inferring the integrity status of a
structural system by the continuous and, possibly, automated monitoring of its dynamics.
For this reason, it is classically adopted for structures that operate in the dynamic regime,
such as bridges [18], [19], wind turbines [20], [21], mechanical rotors [22], etc.

The diagnostic procedure passes through the tracking, over time, of a representative set
of vibration features, which are taken as damage indicators since they can reflect even
subtle changes in the mechanical properties of the underlying physical structure. Most
typically, such features pertain to frequency–related quantities, the so–called modal param-
eters [23]. Accordingly, the structural characterization task is usually referred to as modal
identification, as it aims at extracting, for each vibration component of interest, namely a
mode of the structure, a representative set of quantities. The latter comprehend, but are
not limited to, the associated modal frequency value, the mode shape, i.e., the specific
spatial pattern of vibration exhibited by the structure at that modal frequency [24], and
the damping ratio, i.e., the rate at which the mode decays after excitation.

In structural analysis, three to five dominant modal components at relatively low spec-
tral bands are usually identified, since this is typically sufficient for an accurate detection
of global changes in the observed structure [25] (e.g. changing load path, loss in global
stiffness). An additional reason is that, despite being useful for integrity characterization
owed to their more pronounced sensitivity to structural anomalies, higher–order modes
are intrinsically more complicated to be identified with enough accuracy because of the
complex vibration behavior exhibited by the structure at these modal frequencies.

There are two different ways to perform modal analysis. The input–output approach
(known as experimental modal analysis) recovers modal parameters from the simultane-
ous collection of the actuating force and the output response. Conversely, identification
techniques that extract modal information from the measured vibration response, also re-
ferred to as output-only methods, fall within the class of Operational Modal Analysis (OMA)
solutions [24]. OMA aims to identify structural properties under the assumption that the
input signal can be described as a white Gaussian noise term e(t) ∼ N(0, σ2

e) with zero–
mean and prescribed variance σ2

e. In this case, which is though a crucial requirement
in practical scenarios and in–service inspection, no controlled input signal is artificially

11
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Figure 4: OMA–based processing flow for a toy structure: the quantities fp and Φp (p = 1, 2, 3)
indicate the natural frequencies of vibration and the associated mode shapes, respectively.
[©2021 IEEE]

applied to the structure, which is left to vibrate in its normal operative conditions. This
strategy strives to overcome the practical difficulties in measuring the exciting force, as
the latter most often derives from the combination of operational (e.g., vehicles) and envi-
ronmental (e.g., wind) stimuli and it is, therefore, challenging to be captured properly.

Since the modal components illustrate how the structural energy distributes over the
frequency spectrum, one of the most efficient way to identify these quantities is to look
at the Power Spectral Density (PSD) of the acquired vibration signals. Accordingly, in its
most basic form, a typical structural identification process works as schematically de-
picted in Fig. 4, where an illustrative case of Ns = 9 sensing positions and P = 3 modal
components is considered. Vibration signals (yi(t), i = 1 . . .Ns) acquired at individual
sampling positions (Si) are the only inputs required by the system. As can be noticed, the
set of frequencies f = [f1 . . . fP] ∈ R1×P is identified from the collection of the P dominant
peaks appearing in the spectral profile of the gathered vibration data. A global estima-
tion of the cumulative vibration frequencies can finally be obtained as a point–by–point
average of the peak frequency values estimated at each sensor of the network, namely
fp =

∑Ns

i=1 fp,i. On the other hand, the absolute value of the p-th mode shape vector
|Φp| ∈ RNs×1, corresponding to the equally–indexed modal frequency fp, can be triv-
ially reconstructed by interpolating in the spatial domain the previously computed peak
spectral values. Notably, it must be underlined that, from the pure spectral analysis, just
the absolute value of the mode shape can be extracted. Hence, in order to reconstruct the
actual envelope of the mode, more advanced techniques are demanded.
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Accordingly, from the knowledge of the frequency vector f and the mode shape matrix
|Φ| = [|Φ1| . . . |ΦP |] ∈ RNs×P, obtained by vertically stacking the individually computed
Φp mode shape vectors, the structural integrity status can be assessed. Alternatively, re-
cent structural characterization solutions stemming from the Artificial Intelligence (AI)
processing field are based on innovative strategies which do not rely on the extraction of
modal features and are purely data-driven [26].

2.2 review of oma–driven feature extraction algorithms

Many algorithms were proposed in the literature in the last decades for OMA. In general
terms, they can be classified into three main groups depending on the processing domain:
frequency-domain, time-domain, and time-frequency domain methods. The three categories
differ in terms of computational complexity, capability to handle noise levels hidden in
vibration data, and aptness to deal with intricate spectral signatures which are likely to
characterise the underlying structure. Thus, the selection of one method over the others
should balance between the maximum admitted latency in providing the sought struc-
tural information and the necessity to cope with possible non–stationary and non–linear
structural behaviors.

In the next subsections, the most–established techniques within the class of frequency-
based and time–based will be reviewed in a comprehensive and schematic manner by
discussing their main features and their compliance with either centralized or decentral-
ized monitoring networks. A more rigorous mathematical formulation will be enclosed
only for those techniques actually employed in this work. The aim is to provide to the
reader the theoretical background and introduce the criticality in state–of–the–art signal
processing solutions for OMA–based SHM.

2.2.1 Frequency–based methods

Algorithms built on the representation of vibration signals directly in the frequency do-
main found great success in OMA applications due to their frequency–driven nature. A
list of frequency–based methods and their main peculiarities have been summarized in
Table 1.

2.2.1.1 Peak Picking

The simple working principle combined with the apparently low computational complex-
ity made Peak Picking (PP) [32] one of the most widely applied algorithms for vibration
analysis. In essence, PP identifies the location–magnitude pair of the dominant modes
appearing in the frequency representation of the signal [27], the latter being either the
spectral profile of the measured vibration data or, in the most basic case, simple Fourier–
transformed signals. Nevertheless, some factors might limit the effectiveness of this tech-
nique for modal identification. A primary reason is due to the practical difficulties in
capturing very faint and poorly energetic structural modes, which easily blend into the
surrounding noise floor even for a relatively highly Signal–to–Noise Ratio (SNR). Secondly,
multiple modes of different entity and nature (e.g., torsional, bending, etc.) contribute to
the overall vibration response of a structure. This condition might lead the number of local
maxima in the spectrum to increase rapidly; thus, the approach becomes more suscepti-
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Table 1: Summary of commonly adopted frequency domain–based algorithms for OMA, with high-
lighted characteristics and limitations. Algorithms are compared in terms of computa-
tional complexity (➘, ➙, ➚ indicate low, medium and high cost, respectively), mechanical
properties of the target structure, architectural topology (Loc and Glob indicate edge–
compliant and centralized solutions, respectively) and tolerated input noise levels (L, M
and H indicate low, medium and high SNR, respectively).

Method
Characteristics

Limitations Ref
Cost SNR Top. Target Structure

Peak Picking ➘ H Loc
weakly damped
with well–separated
modes

– Fixed frequency resolu-
tion

– Only stationary signals
– Supervised approach
– Bad damping ratio esti-

mation

[27]

Frequency Domain Decomposi-
tion

➙
L M
H

Glob
from well–separated
to relatively–spaced
modes

– Fixed frequency
resolution

– Only broadband input
excitation

– Supervised approach

[28]

Complex Mode Indication Func-
tion

[29]

Least Squares Complex
Frequency-Domain

[30]

Multiple Signal Classification ➚
L M
H

Loc
from well–separated
to closely–spaced
modes

– Processing time
– Only natural frequencies

are identifiable
– Calibration is required

[31]

ble to false identification in case artifact peaks, in the surrounding of the most energetic
values, remain significantly above the other physical, yet less energetic, modes.

As previously introduced, another key point to be considered is that, in its elementary
spectral conceptualization, PP only applies to real quantities: such limitation hampers the
possibility to recover complex values, first among all the phase and, thus, the sign of
the mode shapes, even though this quantity might represent a pivotal damage indicator.
Hence, a desirable condition for the successful application of PP–based strategies is the
one characterized by clearly smooth frequency trends with high spectral resolution, the
latter requirement being barely guaranteed by standard frequency estimators. Another
important aspect is that, owing to its decentralized nature which may be advantageous
from an edge–computing perspective, PP requires the implementation of specific policies
capable to merge local estimates into global modal parameters.

2.2.1.2 Frequency Domain Decomposition

The Frequency Domain Decomposition (FDD) technique has been firstly proposed by
Brincker et al. in [28] to provide a more accurate and exhaustive spectral characteriza-
tion with respect to the one offered by PP alone. Noteworthy, the advantages of FDD are
not merely circumscribed to the gain in the quality of the computed spectra, but they
extend to its centralized processing. Indeed, FDD returns global modal parameters and,
consequently, does not require additional local–to–global procedures necessary for the
full–scale assessment of the structure.
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Figure 5: Schematic representation of the FDD processing flow, from data collection up to modal
parameter extraction.

This peculiar characteristic has been highlighted in Fig. 5, in which the basic steps
implied by the FDD processing flow are sketched. As can be observed, the starting point
of the procedure encompasses the aggregation of vibration signals collected at various
points of the structure. Let’s call with Y ∈ RN×Ns the matrix obtained by the vertical
concatenation of the different responses yi, . . . , yNs

. Thereafter, the Cross–Power Spectral
Density (CPSD) function Syiyj

(f) = Yi(f)Yj(f) expresses the complex product1 between the
frequency spectra Yi(f) = F{yi} and Yj(f) = F{yi} of any pair of signals yi and yj. Most
commonly, Syiyj

(f) is computed directly in the time domain as the Fourier transform of
the cross–correlation function between the two signals.

The CPSD is computed for all the possible sensor combinations (i− j), and then stored
in the three–dimensional CPSD matrix SY(f) = {Syiyj

(f)} ∈ RNs×Ns×N. SY(f) is then
processed via Singular Value Decomposition (SVD), repeatedly for each of the N fre-
quency points in the spectrum (i.e., f = fk, k = 1, . . . ,N), corresponding to as many
Ns ×Ns horizontal slices of the complete CPSD matrix. Every single decomposition reads
as SY(fk) = US,kΛS,kV

H
S,k

2, yielding the square matrix of Ns left (US,k) and right (VS,k)
singular vectors and the diagonal matrix of Ns singular values ΛS,k (singular values ap-
pearing in descending order).

Supposing that a large fraction of the signal energy is captured by the first singular com-
ponent, only the vector US,1 = US,k[1] ∈ RNs×1 and the scalar ΛS,1 = ΛS,k(1), are pre-
served at each iteration. At the end of the process, the cumulative matrix US,1 ∈ RNs×N

of first singular vectors and the N–dimensional vector of singular values ΛS,1 ∈ R1×N

are created and used in the following modal parameter extraction phase. The final step
involves the application of the PP algorithm to ΛS,1, returning modal frequencies as the
frequency points associated with the P most energetic peaks; the mode shape matrix Φ

is, instead, recovered by taking the column entries in US,1 at the mutual frequency point
locations.

The weak point of FDD lies in its dependence from PP, such that it could be some-
how difficult to identify closely–spaced modal components in a fully automatic manner.

1 Overline stands for the complex conjugate operator.
2 Superscript H stands for the transpose conjugate of a matrix.
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Table 2: Summary of commonly adopted time domain–based algorithms for OMA, with high-
lighted characteristics and limitations. Algorithms are compared in terms of computa-
tional complexity (➘, ➙, ➚ indicate low, medium and high cost, respectively), mechanical
properties of the target structure behavior and tolerated input noise levels (L, M and H
indicate low, medium and high SNR, respectively).

Method
Characteristics

Limitations Ref
Cost SNR Top. Target Structure

Statistical Time Series Models

– AR
– ARMA
– ARX3

– AR+Noise

➙ L M H Loc
from well–separated
to closely–spaced
modes

– Local–to–global merging
is required

– Strict dependence on se-
lected model order

– Absolute value of mode
shape

[33],
[34]

Stochastic Subspace Identifica-
tion

– SSI-COV
– SSI-DATA

➚ L M H Glob

from well–separated
to closely–spaced
modes, with slightly
non-stationary re-
sponse

– Processing time
– Calibration is required
– Generation of artifact

modal components
[35]

Free-decay Response

– Natural Excitation Technique
(NExT)

– Eigensystem Realiza-
tion (ERA)

– Random Decrement Tech-
nique (RDT)

– Ibrahim-Time Domain

➙ M H Loc
moderately damped
with well–spaced
modes

– Processing time
– Only stationary or

slightly non–stationary
signals

– High sensitivity to input
noise

[36]

Blind Source Separation

– SOBI
– ICA
– PCA

➙ L M H Glob
moderately damped
with well–spaced
modes

– Processing time
– Number of identifiable

modes limited to the
number of available sen-
sors

[37]

TDD ➚ M H Glob
from well–separated
to relatively–spaced
modes

– Supervised approach [38]

To overcome this limitation, supervised or semi–supervised approaches are followed, in
which a preliminary guess about the frequency bands of interest is provided as additional
input of the PP algorithm to favor better peak selection.

Alternative techniques are available to address OMA–based identification in the fre-
quency domain, such as those listed in the last lines of Table 1. However, they are not
popular within the SHM community, mainly because of their higher computational cost,
and their poor capability to retrieve the modal parameters of interests in a consistent
manner.

2.2.2 Time–based methods

Methods labeled as time–domain make use of time–dependent operators to identify modal
parameters. A comprehensive collection of such techniques is provided in Table 2. As
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a general comment, these strategies are based on more computationally–involved and
time–consuming procedures than their frequency counterparts. This is one of the primary
obstacle limiting their implementation in a near–sensor manner.

2.2.2.1 System Identification based on Statistical Time Series Models

Structural analysis built on System Identification (SysId) relies on the idea that the me-
chanical and physical laws governing the equations of motion admit an abstract, but still
completely equivalent, mathematical representation as causal linear time–invariant filters
[39]. In line with this formulation, the objective of parametric system identification is to
estimate that set of filter coefficients, or model parameters, which can exactly reproduce the
measured input–output relationship. SysId based on Statistical Time Series Models (STSM)
resorts to regression techniques to identify the sought model parameters, by minimiz-
ing the error between the predicted and actually measured system response according to
certain heuristics.

In analytical terms, denoting x[k] and y[k] the generic input–output pair4 gathered at
time stamp kTs (with Ts indicating the sampling period), a basic and most general variant
of a univariate discrete–time parametric model at a generic sample k ∈ {0, . . . ,N − 1}

reads:

y[k] +

q1∑
t=1

θty[k− tTs] =

q2∑
s=0

γsx[k− sTs] (1)

in which q1 and q2 specifically determine the number of parameters preserving memory
of the past q2 input and q1 output instances, while θt and γs are the feedback and feed-
forward taps of the corresponding filter. q2 and q1 are also known as the orders of the
filter numerator and denominator polynomials, while their summation Np = q2 + q1 + 1

equals the total amount of model coefficients to be determined.
It is, therefore, from the algebraic manipulation of Eq. (1) that all the structural features

of interest can be obtained, either in the time or frequency domain, by virtue of the dual
relationship between the filter impulse response function and its associated Frequency
Response Function (FRF):

Hy(f) =

∑q2

s=0 γse
−i2πfsTs

1−
∑q1

t=1 θte
−i2πftTs

(2)

Finally, an estimate of the system’s PSD Sy(f) can be delivered via the square of the
magnitude of the FRF as:

Sy(f) = |Hy[f]|
2 (3)

from which the modal frequency features are retrieved.
Different identification strategies have been defined depending on the nature of the

processed signals and the features of interest. In the following, four STSM will be reviewed,
which are classically applied in the context of modal analysis. For the sake of clarity, Table
3 summarizes the mathematical expressions of the PSDs involved in Eq. (2) and (3).

Here, a concise description of their working principle is delivered:

4 The subscript i in y is dropped to simplify notation.
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Figure 6: Formulation of input–output (ARX) and output–only (AR, ARMA, AR+Noise) paramet-
ric models.

• Autoregressive with eXogenous Input (ARX). ARX models are applicable for experimen-
tal modal analysis. Their block diagram representation, depicted in the first box of
Fig. 6, stems from the filter definition and clearly shows the feedback-feedforward
nature of these system models, whose characteristic equations coincide with those
offered in (1) and (2). Despite being an extremely accurate tool, two main factors
limit broad applicability of the ARX scheme. Firstly, the practical difficulty in mea-
suring, with sufficient precision, the input signal (excitation) of the structure under
operational conditions, due to unmeasured, arbitrary and/or very weak excitation
sources. Secondly, a decentralized processing requires that the input signal is made
available to all the sensing nodes during a pre–processing step, thus increasing the
amount of data to be transmitted in case of decentralized sensor networks.

• Autoregressive (AR). An AR model essentially comprises an all–pole Infinite Impulsive
Response (IIR) filter obtained by zeroing the contribution of the external input x[k]
in Eq. (1), which turns into:

y[k] +

q1∑
t=1

θiy[k− tTs] = e[k] (4)

The drawback of this model is that a high number of parameters is typically required
in order to produce accurate results, or at least comparable to the ones yielded by
ARX.

• Autoregressive with Noise (AR+Noise). The AR+Noise method was firstly proposed in [34]
to tackle the inherent noise levels in real data, which are relevant in some applica-
tion contexts. This can be considered as an error-in-variables identification problem,
meaning that the locus of allowable solutions should be strictly compatible with
the second–order characteristics of the acquired signals. Furthermore, beside shar-
ing the same filter representation, it outperforms similar AR strategies thanks to the
combined feedback–feedforward prediction model employed during the parameter
estimation process. Thus, it ensures the congruence of the obtained solution with the
second–order statistics of the noisy data with a negligible increase in the algorithmic
complexity.

• Autoregressive Moving Average (ARMA). ARMA models are superior to the basic AR

ones in that they introduce a moving average term in the output equation, with the
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Table 3: PSD functions corresponding to the ARX, AR/AR+Noise and ARMA parametric models.
ARX AR/AR+Noise ARMA

Sy(f) =

∣∣∣∣∣
∑q2

s=0 γse
−i2πfsTs

1−
∑q1

t=0 θte
−i2πftTs

∣∣∣∣∣
2

Sy(f) =
σ2e∣∣1−∑q1

t=0 θte
−i2πftTs

∣∣2 Sy(f) =

∣∣∣∣∣1+
∑q2

s=0 γse
−i2πfsTs

1−
∑q1

t=0 θte
−i2πftTs

∣∣∣∣∣
2

benefit to provide smoother and clearly defined spectral curves. The regression form
is given by:

y[k] +

q1∑
t=1

θty[k− tTs] = e[k] +

q2∑
s=0

γse[k− sTs] (5)

Since no other information apart from the one encoded in the model parameters is
available, which is then converted in a more convenient frequency–driven form, the ob-
tained PSD profiles can be passed as input to the PP algorithm allowing for the retrieval
of the sought modal features. In this regard, STSM are used as an equivalent means for
power spectrum estimation. Until that point, SysId based on STSM has been treated as a
sensor–wise process, in compliance with its original formulation and to better stress its
suitability for edge and extreme edge implementations. Nevertheless, all–signal–inclusive
variants have also been formulated to tackle those scenarios in which the shortcomings of
PP are too detrimental for an accurate estimate. They can be found in the literature with
prefix vector (e.g., vector ARMA) and their governing equations can be constructed from
the multi–variate form of the previously presented time series models.

2.2.2.2 Stochastic Subspace Identification

Approaching the problem of SysId from a slightly different perspective, Stochastic Sub-
space Identification (SSI) strategies leverage a state–space representation of the model
parameters provided by STSM to identify modal parameters in a centralized manner.

State–space models in stochastic form, where the adjective comes from the stochastic
nature of the white noise term supposed as input of the structural system, exploit the con-
cept of state variables z[k] for casting the driving structural equations into a mathematical
system of first–order differential equations:

z[k+ 1] = Az[k] +Be[k] (6a)

y[k] = Cz[k] (6b)

This formulation follows the dynamics of the underlying physical system as generally
described in Eq. 1, with a q2–dimensional set of input–dependent quantities transferring
the effect of the input driving source e[k] to the output observed instance y[k]. The quan-
tities A ∈ Rq2×q2 , B ∈ Rq2×1 and C ∈ Rq1×q1 represent, in order, the square state
companion matrix of the filter numerator polynomial, the input matrix and the output
matrix. Among the various SSI implementations, the Covariance–driven Stochastic Sub-
space Identification (SSI-COV) method in Fig. 7 deserves particular attention owing to its
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Figure 7: Schematic representation of the SSI-COV processing flow, from data collection up to
modal parameter extraction.

robust recovery without affecting the processing time. SSI-COV takes its name from the cal-
culation of the covariance function of the measured data, that represents the core function
of the entire algorithm.

The approach involves the following steps:

1. Compute, for fixed time lag l and time shift s, the block Toeplitz matrix of dimension
Nsl×Nsl

Rs|l =


Rl Rl+1 . . . Rs

Rl+1 Rl . . . Rs+1
...

...
. . .

...
R2l−1 R2l . . . Rl

 (7)

in which the internal Ns ×Ns blocks:

Rl =
1

N− l
[Y[1:N−l] − E[Y[1:N−l]]][Y[l:N] − E[Y[l:N]]]

T ∈ RNs×Nz (8)

are nothing but the covariance matrix between the aggregated output signals Y ac-
quired in the interval [1 : N− l] and [l : N], respectively.

2. Perform the SVD decomposition of R1|l (s = 1), returning R1|l = URΛRV
H
R , with

UR ∈ RNsl×Np the rectangular matrix of left singular vectors and ΛR ∈ RNp×Np

the diagonal matrix of singular values.

3. Apply the state–space factorization of the covariance matrix. Starting from the pure
algebraic manipulation of the SVD, one may write R1|l = URΛRV

H
R = OC. This

means that R1|l can be decomposed into the product of two matrices: the so–
called observability matrix O = UΛ1/2 and controllability matrix C = Λ1/2VT .
The advantage in pursuing such factorization is that the two latter quantities ad-
mit an alternative state-space formulation as OT =

[
C CA . . . CAl−1

]
and

C =
[
Al−1G . . . AG G

]
uniquely determined by the state–space matrices A, C



2.2 review of oma–driven feature extraction algorithms 21

and the next state–output matrix G ∈ RNp×Np . While C and G can be easily ex-
tracted from the first Np rows (columns) of the controllability and observability
matrix, respectively, the computation of A is less straightforward and requires the
additional computation of the time–lagged covariance matrix R2|l+1; it can be esti-
mated as A = O†R2|l+1C

† († being the Moore–Penrose pseudoinverse operator).

4. Execute the eigenvalue decomposition of the above computed state matrix. This is
decomposed as A = ΞAΩAΞT

A, corresponding to the product of the eigenvector
matrix ΞA ∈ RNp×Np and the diagonal matrix of Np eigenvalues ωp, namely
ΩA = diag[ω1, . . . ,ωNp

].

The described procedure draws foundations in the point–wise correspondence exist-
ing between the mathematical state–space matrices in (6) and their physical counterparts
prescribed by the classical modal analysis theory. Indeed, once the state–space transfor-
mation driven by the solution of the eigenvalue problem of the state matrix A at step 4
of the procedure is applied, the mathematical system can be transformed into the "true"
physical system, namely the one dictated by modal parameters, as:

z[k+ 1] = Ωz[k] +ΠTe[k] (9a)

y[k] = Φz[k] (9b)

in which Ω is the diagonal matrix of the eigenvalues of eATs , ΠT the modal participation
vector5 and Φ the mode shape matrix.

In compliance with this akin transformation, natural frequencies of vibration f and
mode shapes Φ are finally given by:

f =
| log(diag(ΩA))|

2πTs
(10a)

Φ = CΞA (10b)

As a competitive variant to SSI-COV, in Data–driven Stochastic Subspace Identification
(SSI-DATA) the computation of the covariance matrix is replaced by the projection of the
row space of future outputs into the row space of past outputs. The problem with this
method is that it involves the factorization of a very large matrix and, hence, becomes
very computationally onerous. For this reason, SSI-COV inherently provides a much faster
and efficient algorithmic solution, since the derivation of Rs|l can easily be obtained via
the Fast Fourier Transform (FFT) algorithm. This is the reason why SSI-COV is preferred
over SSI-DATA in an edge–computing perspective.

2.2.2.3 Blind Source Separation

The objective of Blind Source Separation (BSS) techniques is to identify the unknown signal
sources Ss = [s1(t), . . . , sP(t)] from their observed mixtures Y, assuming that they are
independent and identically distributed variables. Under this condition, each individual
time series can be seen as the linear superposition of P distinct components combined via
the mixing terms κpi:

5 The modal participation vector is defined as the percentage of the system mass that participate in a particular
mode.
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yi(t) =

P∑
p=1

κpisp(t) (11)

Transformed in matrix notation, Eq. (11) becomes Y = KSs, with K connoting the mixing
matrix to be estimated. The peculiar statistical distribution of sp(t) implies that the zero–
lag covariance matrices of Ss and Y coincide with RS(0) =

1
N [Ss − E[Ss]][Ss − E[Ss]]

T = I

and RY(0) = KKT , respectively.
There are two reasons for leveraging BSS–driven methods in the context of OMA. Firstly,

a clear advantage of BSS lies in its almost agnostic (in this sense, blind) nature, that is,
very limited knowledge is required about the characteristics of the structure to be anal-
ysed. Secondly, assuming that the structure behaves as a linear system, its multi–modal
response can be seen as the linear superposition of P independent components individu-
ally contributing to the overall energy. If this condition applies, it is immediate to observe
that Eq. (11) has an equivalent counterpart in terms of modal parameters:

yi(t) =

P∑
p=1

Φpisp(t) (12)

where Φpi indicate the modal coordinate for the p–th vibration mode sp(t) at sensing
location i. The importance of Eq. (12) is that, if the vibration behavior of the structure
under analysis is linear and the superposition principle valid, "the modal coordinates
may act as a virtual sources regardless of the number and type of the physical excitation
forces" [37]. Therefore, a point–to–point correspondence exists between the mixing matrix
K returned as output of the BSS–based processing and the mode shape matrix, i.e., K = Φ.

Among the different BSS solutions, Second Order Blind Identification (SOBI) deserves
particular interest for vibration analysis, thanks to its capability to extract sources with a
very different spectral content. This working principle perfectly matches the way in which
structural energy distributes over the frequency spectrum, especially for underdamped
systems undergoing free response. Indeed, in such cases, the signal sources, namely, the
vibration modes, can be represented as harmonic decaying functions, each of them having
a different amplitude. In these terms, what makes SOBI more effective is the exploitation
of the temporal structure of the sources for facilitating their separation, a goal which is
achieved by manipulating the acquired vibrations via second–order statistics [37].

A detailed description of the SOBI strategy is illustrated in Fig. 8 and mainly constitutes
of two macro–phases. In the first step, the eigenvalue decomposition of RY(0) = ΞRΩRΞ

T
R

is performed and the eigenvectors/eigenvalues are employed to compute the so–called
whitening matrix W = Ω

1/2
R ΞT

R. Once applied to the original time series matrix, the latter
quantity has the effect of producing a new set of observed signals YW = WY, whose
covariance matrix RYw

(0) = WKKTWT at time lag zero now equals the identity matrix,
whereas its τ–lagged companion reads as RYw

(τ) = WKRS(τ)K
TWT .

At this point, let’s introduce the unitary matrix Ui = WK, which simplifies
RYw

(τ) = UiRS(τ)U
T
i . On the other hand, the eigenvalue decomposition of the whitened

time–lagged covariance matrix reads as RYw
(τ) = ΞRw

ΩRw
ΞT
Rw

. The identity principle ap-
plied to these quantities states that, being RS(τ) a diagonal matrix, the selected unitary
matrix is nothing but the eigenvector matrix of RYw

(τ), i.e., Ui = ΞRw
= WK. The latter

can be uniquely determined via an appropriate choice of the time–lag value.
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Figure 8: Schematic representation of the SOBI processing flow, from data collection up to modal
parameter extraction.

Finally, the sought mode shape matrix can be easily retrieved as K = W−1Ui, while fur-
ther computation is necessary to estimate natural frequencies. To solve this task, consider-
ing a scenario characterised by free decay approximation as anticipated before, strategies
based on time series fitting represent a valid solution. Some powerful methods address-
ing this specific problem are listed in Table 2 in the "Free–Decay Response" group: they
can be used either standalone or, more often, in cascade to compensate from possible
inaccuracies.

Another time–domain method is also worthy of mention: the Time Domain Decom-
position (TDD) approach. It can be considered as the time variant of the FDD, with the
substantial difference of being based on a recursive band–pass filtering of the input data,
directly performed in the time domain and centered at the spectral bands of interest. Fil-
tered signals are then used for the computation of the cross-correlation matrix, eventually
replacing the CPSD matrix in the standard FDD workflow. TDD could be particularly prof-
itable when very dense sensor networks are employed, since the initial filtering stage pro-
motes the better isolation of the expected structural modes. On the other side, it requires
a precise knowledge of the structure under inspection and this could limit its extensive
applicability.

2.3 review of oma–based damage detection algorithms

Once modal features have been extracted, the structural assessment process encompasses
the following five steps: (i) detection, (ii) localization, (iii) classification and (iv) quantifi-
cation of potential damages that may have been occurred, with the ultimate objective
of (v) forecasting the remaining useful time in a predictive manner [40], [41]. Two alter-
native approaches are typically leveraged to reveal the presence of damages in vibrating
structures: the former depends on the computation of modal–related metrics, whereas the
latter tackles the problem from an agnostic perspective and, therefore, it relies on purely
data–driven tools.
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Conventionally applied for their inherent simplicity, modal–based methods can be sub-
divided into three main groups on the basis of the driving structural parameter [42]:

1. frequency–based solutions: these strategies look for local variations in the frequency
values recovered at the monitoring time with respect to the ones collected in a refer-
ence structural status. In particular, when the difference between fref and f (i.e., the
vectors of modal frequencies estimated in pristine and current in-operation condi-
tions, respectively) is more than 5%, this is considered a remarkable deviation in the
expected modes of vibration and a possible indication that the investigated structure
is damaged [43].

2. mode shape–based methods: they exploit the spatial insight provided by mode shapes
to provide a full–scale assessment of the structure. This is most commonly achieved
via the computation of the Modal Assurance Criterion (MAC) [44] value, which quan-
tifies in a global manner the level of superposition between the p–th experimental
(Φp) and baseline (Φref

p ) mode shape vectors. MAC for mode p is defined as the
normalized point–wise scalar product:

MACp =

∣∣∣∑Ns

i=1Φ
(i)
p Φ

(i,ref)
p

∣∣∣2∑Ns

i=1Φ
(i),2
p

∑Ns

i=1Φ
(i,ref),2
p

(13)

while its all–embracing definition is usually expressed in form of a MAC matrix,
presenting in the main diagonal the modal correlation between equally indexed
components and, in the remaining entries, the cross level of similarity between dis-
tinct modes, which should be zero in the ideal case. For this reason, only the values
in the main diagonal are considered, one scalar for each modal component. If vari-
ations in environmental conditions and/or structural defects are absent, the MAC

factor returns a value of 100%; therefore, mode shape–driven damage identification
strategies track reductions in modal fitting. More precisely, when MAC falls below
90%, the structural integrity may be significantly compromised. Equivalently, MAC
values can be expressed as decimal quantities. Hereinafter, both formats will be used
interchangeably.

3. modal strain energy–based methods, which sense for local variations in the energy
sampled at local structural elements.

These modal–dependent procedures suffer from the fact they cannot handle in a robust
manner the important effects induced by Enrivonmental and Operational (EOP) agents
hidden in vibration data, whose influence may mask the consequences of true structural
degrade. It follows that such kinds of approaches have become inaccurate in multiple
circumstances.

Fortunately, the fast development of AI technologies opens new perspectives for fully
automated structural assessment. In OMA scenarios, it is appropriate to distinguish be-
tween modal parameter–dependent strategies, in which AI is used only at the end of the
diagnostic process, and purely data–driven, in which no intermediate feature extraction
step is encompassed and the structural status is inferred directly from time series via
black–box models returning the integrity condition.
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As the human brain understands patterns and hidden relationships amid variables, the
task of inferring information from data by means of intelligent algorithms is commonly
referred to as Machine Learning (ML). The abstract representation of an AI–network con-
sists of the following three main elements: an input layer, several hidden layers where the
actual processing part is executed, and a final output layer where the mined information
can be retrieved. In more detail, each layer consists of a certain number of neurons which
produce an output depending on a specific activation (transfer) function (a compelling
selection of activation functions is provided in [45]). In compliance with this general ar-
chitecture, the term Deep Learning (DL) is used to indicate all the ML implementations in
which many layers and/or very dense neuron size are stacked to solve the goal; in this
sense, they are considered deep variant of the standard ML architectures.

The AI procedures are differentiated on the basis of their learning approach, which can
be either supervised (i.e., data are labelled), unsupervised, when no prior information is
available about the distribution of data in the feature space, or semi–supervised, when
only partial training is classified. Supervised learning tackles the problems of classification
and regression from data, as it is aimed at forecasting which class the current instance
belongs to on the basis of a ML model trained on labelled input. Indeed, regression is used
to retrieve the mutual dependency between different variables, such as the correlation
between structural features and environmental parameters. Conversely, clustering, i.e., the
capability to group features according with their distribution in the feature space, and
association analysis, i.e., the capability to retrieve valuable relationships from data, are
byproducts of unsupervised ML. Finally, novelty detection is the task of identifying outliers
in a given data distribution and it can be considered as a semi–supervised method owing
to its dependency on a baseline model.

In Table 4, the most commonly applied algorithms fulfilling the above discussed AI task
are schematized; a detailed description of these procedures can be found in [46].
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Table 4: Summary of commonly adopted techniques for structural assessment: from conventional
modal–related methods to AI–driven approaches.

Type Approach Task Method Ref

Modal
Methods

frequency–based
methods

Local Detection Frequency shift [43]

mode
shapes–based
methods

Global Detection Modal Assurance Criterion
[47]

Localization Modal Shape Curvature

Machine
Learning

Supervised – Classification
– Regression

Autoassociative Neural Network [48]

Support Vector Machine [49]

Bayesian Network [50]

Decision Tree [51]

k-nearest [52]

Random Forest [53]

Unsupervised – Clustering
– Association

Analysis

k-clustering [54]

Density–based Clustering

Fuzzy clustering [55]

Semi–supervised
– Novelty

detection
– Outlier removal

Mahalanobis Squared Distance [56]

Gaussian Mixture Model [48]

Control Chart [57]

Reconstruction–based methods

Density–based methods [58]

Regression–based methods [59]

Deep
Learning

Supervised
Unsupervised
Semi–supervised

– Detection
– Classification
– Novelty

detection

Convolutional Neural Network [60]

Recurrent Neural Network [61]

Deep Autoencoder [62]

Restricted Boltzmann Machine [63]
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M O D E S H A P E A S S E M B LY F O R C L U S T E R E D A R C H I T E C T U R E S : A
G R A P H S I G N A L P R O C E S S I N G P E R S P E C T I V E

abstract

In this Chapter, novel signal processing techniques for inter and intra–cluster data assembly are
introduced to solve the critical task of full–scale structural assessment in presence of clustered
monitoring architectures. In particular, a dedicated method based on the emerging Graph Signal
Processing theory is specifically proposed to favor the deployment of non–overlapped sensor clus-
ters. Such approach eases the sensorization process of complex structures despite the electrical
and geometrical constraints which are still affecting state–of–the–art alternatives. The strategy is
unique in that it maps the intrinsic smoothness characteristic of vibration signals to the smoothness
assumption inherent in graph signals.

The content of this Chapter is based upon the research work [P1]:

"Cluster-based vibration analysis of structures with graph signal processing"
by Zonzini F., Girolami A., De Marchi L., Marzani A. and Brunelli, D. In IEEE
Transactions on Industrial Electronics, vol. 68, no. 4, pp. 3465-3474, April 2021.
©2020 IEEE

from which part of the text is drawn.

3.1 introduction

A fundamental condition for the applicability of modal identification techniques is the
synchronization of the acquired data. Such a requirement is particularly crucial for the re-
construction of mode shapes, since they convey a global structural understanding via the
aggregation of different estimates taken at multiple sensing positions. Noteworthy, a lack
of synchronicity generates unacceptable phase shifts which strongly impinge on the accu-
racy of the reconstructed modal features. To cite an example, authors in [64] pointed out
that the maximum tolerable delay to not alter the accuracy of signal processing outcomes
should be inferior to dozens of µs. Correspondingly, Krishnamurthy et al. [65] found that
the detrimental effect of synchronicity faults can even exceed the sensor noise or intrinsic
oscillations in internal clocks. In particular, it was demonstrated that the major conse-
quences of these uncertainties are associated to higher modes of vibration [66], which
are extremely sensitive to time synchronization errors independently from the sensors’
positions.

Besides synchronization, the extraction of modal parameters is complicated in large
scale or hazardous scenarios, where the high amount of data and sensing devices, com-
bined with the inherent structural complexity and the possible difficulties in powering
the sensor network, requires advanced and versatile hardware solutions. Moreover, high
spatial resolution of sensors is beneficial for a precise damage assessment. In such context,
thanks to their capability to easily adapt to the geometric characteristics of the inspected

27
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structure, clustered sensor networks have been gradually developed to reduce the com-
putational and energy budget associated to the gathering of sensor data and their trans-
mission to a central processing unit. Therefore, the optimization of computational and
communication resources is of the utmost importance for the design of a resilient and
long–lasting monitoring system.

The aim of this Chapter is to alleviate the main drawbacks of state–of–the–art clustered
architectures by means of advanced signal processing techniques, inspired by the emerg-
ing and more versatile graph signal representation, to be used in a post–processing phase
to compensate for physical constraints. In these terms, it allows for a first level of sensor
network optimization.

3.2 network topology for oma

A compelling description of the architectural topologies commonly applied for OMA-
based SHM scenarios is provided in [64], in which three main strategies are discussed:

1. centralized data processing (Fig. 9a): vibration data acquired at different sensing posi-
tions by extreme edge Peripheral Sensor Node (PSN)s are transferred with the proper
timestamp to a central sink unit (SN). Either wired sensor networks or complex wire-
less synchronization protocols are required. This strategy, often adopted in the past
for its architectural simplicity, may become unfeasible in current scenarios, where
an increasing number of devices are simultaneously connected [67], [68].

2. stand-alone schemes (Fig. 9b): each sensor acts both as a sensing and a processing unit,
hence minimizing the effects of limited bandwidth and communication constraints.
Nevertheless, this solution hampers the possibility to perform data cross–correlation
(e.g., extract mode shapes) between surrounding nodes since no synchronization
command is usually broadcasted to the sensors [69].

3. "divide-and-conquer" strategies (Fig. 9c): taking advantage of a hierarchical design,
data collection is performed by leaf devices at the extreme edge, subsequently for-
warding locally elaborated features to a corresponding Cluster Head (CH) unit [70],
[71]. These edge devices execute preliminary processing steps on data pertaining
to their controlled area and finally transmit structural parameters to a common ag-
gregating unit (SN), which is used to combine cluster–dependent information and
to globally evaluate the structural integrity. Data fusion techniques, feature com-
pression and communication protocols, if effectively combined and customized in
such a distributed paradigm, may achieve the best possible compromise between
inspection performances and bandwidth [54], [72].

It is worth noting that the last strategy perfectly handles the mode shapes reconstruc-
tion process. Specifically, although the processing is performed by multiple sub-networks
referred to correspondent physical sub-structures, the presence of an additional assembly
step is crucial to extract the global features of the monitored structure [73]. A plurality
of schemes, which differ in terms of topology and task assignment, were implemented
obeying to this hierarchical logic. In the following, some of the most noticeable solutions
are reviewed, whereas additional examples are extensively described in [74]–[76].
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Figure 9: System topology for OMA–based SHM architectures: (a) centralized, (b) stand–alone and
(c) divide–and–conquer scheme.

The multilevel cyber–physical system proposed in [77] is based on three main com-
ponents: (i) edge nodes collect raw vibration samples and, after carrying out power spec-
trum analysis, transmit local modal features to their (ii) CH, which aggregates information
concerning its controlled area; finally, (ii) a unique SN calculates all-embracing modal pa-
rameters. A similar, decentralized data aggregation procedure was implemented using a
cluster–based wireless sensor network deployed on a truss structure [78]. Analogously, a
study of a 14–bay girder was conducted with a two-layered cluster network [72], evidenc-
ing a favorable trade–off between the energy requirements and the quality of modal infor-
mation. Alongside, a multi–channel monitoring architecture was exploited in [79] for the
localization of impacts in aircraft composite structures. The hierarchical interoperability
of several leaf nodes, few CH nodes and one multi–radio SN enabled the resulting architec-
ture to achieve a reliable global assessment of the structural integrity. A different variant
of akin configurations is reported in [80], in which the authors implemented a parallel
processing architecture based on clusters of sensors that collaborate to compute structural
dynamics under the orchestration of a central node. Their solution is characterized by a
voting step, necessary to prevent local drifts that may contribute to the misestimation of
vibrating frequencies. Conversely, the system in [81] exploits a different distribution of
the computational tasks between the CHs and the central SN. In detail, CHs alone are in
charge of feature extraction and decision making about structural health, whereas the SN

coordinates them to ensure highly synchronized samples.
In this context, designing a network of partially overlapped clusters is a widely adopted

strategy [72], [73] because it leads to two main benefits: (i) the possibility to make the
monitoring system fault tolerant and resilient; (ii) the exploitation of native correlation
between sampling points, which simplifies the task of concatenating modal data for the
extraction of the global structural signature with minimal data transfer among CHs.

Mode shape concatenation in case of overlapped clusters rely on reference measure-
ment positions shared by multiple clusters, a requirement which represents their main
limitation. In fact, the presence of overlapping sampling positions unavoidably implies an
increase in the number of devices to be installed. More importantly, in practical applica-
tion scenarios, it might be impossible to deploy geometrically overlapped clusters due to
the presence of geometrical obstacles and other building complexities [82].

The development of alternative and more effective solutions should cope with spatially–
disjoint sub–networks conformable to the structural characteristics at hands and capable



30 gsp for mode shape assembly in clustered sensor networks

of minimizing both the architectural costs and the electrical and communication con-
straints. In order to tackle these limitations affecting state–of–the–art clustered strategies,
the purpose of this Chapter is to introduce a novel approach, which leverages the intrin-
sic capability of GSP techniques to model the inherent geometrical connectivity between
different, non-overlapped clusters, despite the physical distance.

Several application fields have recently benefited from this emerging signal represen-
tation domain, including smart cities, traffic networks and environmental processes [83].
However, its application in SHM, and more precisely to vibration–based SHM contexts, still
represents a pioneering field of research [83]–[85].

3.3 gsp–driven cluster–based modal analysis

The cluster–based and GSP–driven monitoring solution, which has firstly been proposed
in [P2], is schematically depicted in Fig. 10. The primary step (clustered sampling) consists
in defining the most suitable cluster topology and the associated sensor–to–cluster as-
signment (usually depending on sensor proximity), while neglecting the requirement of
reference sensing positions. From the chosen sensing positions, vibration signals yi(t) are
gathered at the CH level ready to be used for the following feature extraction phase. In-
deed, according to the divide–and–conquer paradigm, an initial step is required in which
the identification of modal parameters pertaining to each cluster (local evaluation) is ful-
filled. To this purpose, any of the methodologies mentioned in Section 2.2 can be applied.

If NC is the number of clusters, which has to be defined depending on the number of
available sensors, their proximity on the structure and the minimum number of frequen-
cies to be extracted, NC sets of P natural frequencies (fci

p ) and mode shapes (Φci
p ) are

obtained in the local identification step; then, a merging procedure has to be executed in
order to characterize the whole monitored structure (global evaluation) in terms of global
natural frequencies (f) and global mode shapes (Φ). It is worth stressing that, even if
the local feature estimation process can provide a first–order indication about the macro-
area inside which a damage could have occurred, it is, however, usually not possible to
estimate with sufficient precision its location. The main reason is that, in order to keep
the power consumption as low as possible, the sensor density inside each sub–cluster is
preferably limited to the number of modes of interests P, a quantity which hardly exceeds
five to ten devices. Regrettably, this operative constraint barely meets the requirement of
dense sensor deployment which is at the basis of the majority of the damage localiza-
tion technique discussed in Section 2.3. Consequently, full–scale parameters have to be
preferred.

Two different procedures are performed in parallel to compute f and Φ:

1. The computation of the cumulative P-tuple of natural frequencies is simply obtained
by averaging cluster–related frequency values per p–th modal component.

2. The estimation of Φ is performed by concatenating the mode shape portions ex-
tracted within adjacent clusters and by properly setting a scaling factor αci

p for each
cluster ci and mode p, namely Φ̃p = [αc1

p Φc1
p , . . . , α

cNc
p Φ

cNc
p ].
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Figure 10: Schematic representation of the proposed cluster-based and GSP–driven monitoring ar-
chitecture for vibration analysis. [©2020 IEEE]
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After the computation of global parameters, the presence of damage can be assessed
(damage detection phase) by comparing the extracted modal parameters, and in particular
the mode shapes that are more robust damage indicators, with reference values; the latter
can be derived either from the structural response in healthy (baseline) conditions [86] or
as a result of numerical simulations for the designed (undamaged) structure.

Therefore, the problem of mode shape concatenation from multiple clusters converts
in the estimation of the corresponding scaling factors αci

p : the GSP–driven algorithm is
specifically designed to deal with this task. In the following, one state–of–the–art method
used in case of partially overlapped clusters is reviewed since it represents a benchmark
in the field and, then, the details of the novel GSP–driven method for non-overlapping
clustered schemes are presented.

3.3.1 Mode shape assembly for overlapped clusters: the PoSER approach

The Post Separate Estimation Re–scaling (PoSER) algorithm [87] is a noteworthy procedure
for mode shape concatenation based on partially overlapped clusters. According to this
approach, two consecutive mode shape branches are re–scaled by minimizing in a least-
squares sense the discrepancies between mode shape estimations at common reference
positions [88]. Other covariance–driven methods draw their fundamentals on the second-
order statistical properties of measured data, such as [89]. However, all these strategies
rely on reference measurement positions.

With this assumption in mind, each set of real mode shape vectors inside a single cluster
is decomposed via PoSER into overlapped and roving entries, indicated with subscripts ov

and rov respectively. Equation (14) is provided in [90] to compute scaling factors αci
p in the

ci-cluster with respect to the same modal coordinates estimated in a predefined reference
cluster cR:

αci
p =

Φci
ov,p

T
ΦcR

ov,p

Φci
ov,p

T
Φci

ov,p

(14)

where T indicates the transpose operator. Once the scaling factors are computed, the
global mode shape vector is assembled as: Φ̃p = [αc1

p Φc1
rov,p, . . . , α

cNc
p Φ

cNc
rov,p].

3.3.2 Mode shape assembly for non–overlapped clusters: the GSP–driven approach

The devised GSP–driven monitoring solution overcomes already existing architectures in
terms of energy efficiency and flexibility in the deployment of sensor networks on complex
structures. In fact, owing to its reference–free sensing topology, the achieved reduction of
sensing positions lessens the energy demand, supporting more efficient power manage-
ment strategies. In the sensor network deployment, the advantage is twofold. First of
all, since it is based on non–overlapped clusters, the difficulties in wiring sensor nodes
on complicated or hazardous scenarios can be easily bypassed. Secondly, as an immedi-
ate byproduct, the minimal cluster size that can be selected is uniquely dictated by the
level of structural detail necessary to ensure a reliable inspection process, and not by the
divide–and–conquer strategy itself.

Furthermore, the proposed approach is not influenced by operational uncertainties,
such as temperature fluctuation and asynchronicity among clusters. Combining the versa-
tility of the circuitry with the advantages of graph signal processing, the resulting system
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Figure 11: Mapping between modal–related quantities and graph domain. Graph signal properties
depend on the Adjacency and Degree matrices, whose entries are uniquely determined
by the chosen edge weights wnanb

.

is suitable for different and complex application–fields, revealing to be a competitive al-
ternative to traditional monitoring frameworks.

3.3.2.1 Mapping modal features in the graph domain

The analysis of signals defined on graphs has been gaining increasing attention due to
its capability of modeling inherent patterns coded in the acquired data as similarities
between adjacent vertices [84], [91]. A graph is a mathematical entity described by a set
of vertices connected by edges, whose algebraic representation is expressed through the
Adjacency and Degree matrices [91]. The weighted Adjacency matrix W expresses the vertex
connectivity between two generic nodes vna and vnb

by means of a correspondent edge
weight wnanb

. Conversely, each entry of the Degree matrix D is given by the sum of all
the weights incident on a specific vertex.

In this framework, the selection of the proper graph topology represents the foremost
step. To this end, since the sensor network topology not only exploits strategic structural
positions, but it is also known in advance, it offers a powerful means to define a graph
structure: mode shape values corresponding to the different sensor node locations are
mapped as graph signals associated to graph vertices and edge weights are defined as the
inverse of the sensor nodes’ spatial distances. This modal–to–graph mapping is clarified
in Fig. 11, in which the similarities between the two domains, i.e., the modal and the
graph one, are underlined with point–to–point correspondences. The utmost advantage
of such transformation is that the physical disjunction between non–overlapped clusters
of sensors can be compensated by the logical connection of adjacent vertexes via a proper
estimation of the corresponding arches.

The focal point of the modal–to–graph transformation is inspired by the idea to move
the smooth modal pattern (given by the quasi sinusoidal vibration behaviour) of mode
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shapes into the smoothness assumption (i.e., smooth changes between connected vertices)
[92] intrinsic in graph signals. This similarity led to the formalization of the mode shape
smoothness λp, defined as:

λp =
1

2

Ns∑
na=1

Ns∑
nb=1

wnanb
(Φ̃p(na) − Φ̃p(nb))

2 = Φ̃T
pLΦ̃p (15)

where Φ̃p is the p–th mode shape vector, and L = D −W is the so called graph Laplacian
operator.

Indeed, considering the quasi-sinusoidal dynamic regime typical of vibrating structures,
mode shapes inherently exhibit a smooth profile. However, when they are assembled
from the pure concatenation of the values collected from different clusters (i.e., when the
scaling factors are all equal to 1), discontinuities or abrupt jumps may result. To this end,
it is worth considering that, even if this jagged effect is particular prominent for higher–
order modes, especially when a very sparse instrumentation is available, the nature of the
underlying mode shapes to be reconstructed is still characterized by a sinusoidal pattern,
which is the main assumption to be satisfied for the applicability of the method. Indeed,
the conceived GSP–driven algorithm aims at compensating these discontinuities and to
maximize the mode shape smoothness.

Given a generic mode shape p, such algorithm involves the following steps:

1. During the initialization phase, scaling factors α
(0)
p = [αc1

p , . . . , α
cNc
p ] are set to 1.

2. Then, mode shapes are assembled and the smoothness function λp is computed
according to (15).

3. A prediction phase updates the scaling coefficients: the values α
(k)
p at iteration k are

computed as:

α
(k)
p = α

(k−1)
p − r

(k)
p ∇λp(α(k−1)

p ) (16)

in which r
(k)
p = r

(k−1)
p

(
1+

λk
p−λk−1

p

max{λk
p,λ

k−1
p }

)
and ∇λp(·) are the updating ratio and the

smoothness gradient, respectively.

4. Steps 2) and 3) are repeated until the smoothness variation between subsequent
iterations is smaller than a predefined tolerance ϵ. Apart from setting ϵ, the process
is fully automated.

The same procedure has to be executed for every mode shape, finally yielding the
sought matrix of assembled mode shape Φ = [Φ̃1 . . . Φ̃P].

3.4 experimental validation

The effectiveness of the GSP–driven methodology has been validated with experimental
data from a simply–supported steel beam. First of all, a description of the monitoring
architecture in terms of network topology and developed electronics is enclosed. Then, the
actual algorithmic analysis is entered, in which the novel mode shape assembly technique
is tested.
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Figure 12: Topology of the monitoring network deployed for the validation of the GSP–based mode
shape assembly algorithm. [©2020 IEEE]

3.4.1 SHM network description

3.4.1.1 Network topology

The monitoring architecture includes linked chains of connected sensors organized in dif-
ferent clusters, each of them coordinated by a gateway unit which acts as a corresponding
CH (Fig. 12). The signal acquisition chain is organized as follows. Each PSN, shown in the
bottom left corner of Fig. 12, uses a 32–bit ARM Cortex M4 microcontroller to digitally
filter the samples coming from the accelerometer, precisely employing a Finite Impulse
Response (FIR) filter implemented with the Floating Point Unit (FPU). Consequently, the
gateway collects filtered signals provided by the sensors and forwards data to a cloud
server by means of a wireless channel. At this common data–aggregation level, a corre-
sponding virtual SN is in charge of feature extraction and data merging.

As already mentioned, the sensor network design depends on three major factors: en-
ergy efficiency, computational complexity and structural properties. From an electronic
point of view, two quantities mainly contribute to the total energy budget, namely the
power adsorbed by active nodes for sampling and transmitting data, and the gateway com-
munication costs. The computational effort is a function of the total volume of samples
to be collected within a specific time-frame (which is an application-dependent quantity)
and of the cluster size. More specifically, the sensor network can be described through
the following set of parameters: the total amount of available devices Ns and the number
of clusters Nc. The corresponding cluster size NCs and the overlapping factor No need
to be optimized taking into account the practical difficulties which can be associated to
the installation of sensors, the maximum admitted distance between the devices and the
presence of nodal points of mode shapes. In particular, the lower bound for NCs is given
by the number P of modes which is sufficient to characterize the dynamic behaviour of
the structure under test [72], i.e. NCs ⩾ P. For the overlapping factor, the cases of No = 0

and No = 1 are the ones that correspond to the minimal sensor redundancy and, for this
reason, these cases have been evaluated in the experimental campaign.
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3.4.1.2 Electronic equipment

At its core, each PSN (whose architecture has firstly been disseminated in [P3]) integrates a
three–axes accelerometer, the LIS344ALH MEMS device manufactured by ST Microeletron-
ics and characterized by the lowest noise density in its class (50µg/

√
Hz). This device

enables a maximum operative band of 1.8 kHz in a dynamic range of ±2 g. In case of civil
structures, where principal modal frequencies are typically below 30Hz, using a data rate
of Fs = 100Hz is reasonable for elaborating all the fundamental modes of vibration and,
thus, this sampling rate was selected.

Moreover, in order to optimize the performances of the circuitry and to meet the same
features of expensive piezoelectric accelerometers characterized by a high full–scale to
noise–floor ratios, an oversampling strategy with multiplication factor of 256 was im-
plemented. In this way, the 12-bit Analog–to–Digital (ADC) conversion resolution of the
Microcontroller Unit (MCU) inside the PSN was improved up to 16–bit, correspondingly
incrementing the signal to quantization noise ratio. The procedure was practically real-
ized by setting an ADC sampling frequency of 25.6 kHz in conjunction with an internal
DMA data management, configured to move 12-bit conversion from the ADC to a circu-
lar buffer in the memory. Finally, a digital low–pass multistage decimation FIR filter was
developed to generate, at the desired sampling frequency, the final stream of three–axes
16–bit acceleration data. According to the capacity of the transmission channel at the se-
lected sampling frequency, a maximum number of 19 sensors can be connected to each
Controller Area Network (CAN) port provided by the gateway. In terms of power con-
sumption, when powered at 5V in normal operating mode, the current drawn by each
node and the gateway device amounts to 32.5mA and 340mA, respectively.

Moving to the gateway device, its most relevant functionality is the synchronization
of the set of peripheral sensors, which are connected through a CAN bus. This protocol is
used for the communication from the PSNs to the CH, allowing for a native synchronization
between clocks and compliant with the simultaneous acquisition from various PSNs at a
regular and high data rate of 250 000 baud over 40m cable. These transmission properties
are enough for instrumenting most of the residential and industrial buildings in case of
vibration analysis. As such, each cluster automatically embeds its own timestamp, to be
used in a post processing phase for data cross–correlation, and no-coordination between
different groups of sensors is yet necessary.

3.4.2 The use case: a simply supported steel beam

3.4.2.1 Material

The performance of the developed GSP–driven cluster–based monitoring system was eval-
uated on a 2142x10x60 mm pinned-pinned steel beam, with an effective distance of
2052mm between the supports. Such a setup represents a widely adopted vibration anal-
ysis test–bed, because it permits the use of a simple numerical model for the analytical
prediction of modal parameters. At the same time, numerical models are readily imple-
mentable for this structure even in damaged conditions, without needing to practically
impair it. It is also worth considering that, regardless of its structural simplicity, the dy-
namics of a simply supported beam can also be representative of that exhibited by many
larger structures, including precast concrete beams and small bridges [72].
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The sampling frequency imposed a Nyquist bandwidth of 50Hz, that was sufficient to
retain the first three modes; accordingly, the parameter P was set equal to 3. Assuming
the nominal mechanical properties already described in [P3], [P4], the first three flexural
frequencies of vibrations, f1 = 5.32Hz, f2 = 21.32Hz, f3 = 47.92Hz, and the first three
mode shapes (Φ1, Φ2, Φ3) were analytically predicted by using closed form formulae. Ex-
perimentally, the structure was excited with impact hammer and free vibration responses
were acquired in a time window of 100 s.

3.4.2.2 Methods

Faulty conditions were mimicked by hanging a dead mass on the beam at different po-
sitions, thus simulating the formation of localized damages. Changes in the dynamic
response of the structure were consequently induced, primarily due to the non symmet-
ric mass distribution. This extra weight, in fact, causes variations in the mode shapes
that scatter across the mass placement. Correspondingly, spectral shifts with respect to
mass–free modal frequencies occur, proportionally to the induced perturbation. Notably,
the adopted damaging method might produce variations which are remarkably more
pronounced to the ones which can occur in real scenarios; however, it serves as an ef-
ficient means to investigate the actual anomaly detection capability of the method in a
non–destructive manner.

The effects of the mass position xa and the mass values ma were evaluated. In detail,
three different positions xa,1 = 200mm, xa,2 = 400mm and xa,3 = 600mm were con-
sidered. Besides, the following mass values were hanged step by step at location xa,2:
ma,1 = 1.078kg, ma,2 = 1.847kg, ma,3 = 2.591kg. The deviations induced in natural
frequencies and mode shapes were a priori estimated through an ad–hoc finite element
numerical model, taking into account the effect of the added mass on the stiffness and
rigidity of the beam. To accomplish this task, the numerical model discussed in [93] was
revised including the extra impingement of the electronic equipment (e.g., the mass of
the sensor). Accordingly, experimental modal parameters were extracted and compared
to simulation results in order to validate the suitability of the proposed scheme under
potential defective conditions.

3.4.2.3 Clustering scheme

In the considered experiments, a sensor network consisting of two clusters (specifically
labelled by red and blue markers) was designed, whose grouping schemes are depicted in
Fig. 13. In particular, case Ov sketches a network with overlapped clusters, each consisting
of 5 sensor nodes (S1,...,5 and S5,...,9, respectively) installed at nine different positions
uniformly distributed along the entire length of the beam. In this case, modal parameters
were extracted with the PoSER procedure, and accelerometer A5 was used as the reference
point for re-scaling. Conversely, cases A-D are related to non-overlapped clusters with
different (and irregular) sensor spacing to examine the influence of sensor placement in
modal parameter estimation. In detail, case D is a particularly unfavourable arrangement
with minimal clusters’ size and significant inter-cluster distance, while case A is the most
redundant and denser configuration.
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Figure 13: Experimental setup with two clusters of sensors (red and blue-labelled chains): overlap-
ping networks in correspondence of node A5 (case Ov) and non-overlapping (case A, B,
C, D) configurations. Unhealthy conditions were induced by means of a concentrated
roving mass laterally hanged at positions xa,1, xa,2, xa,3. [©2020 IEEE]

Resilience against thermal fluctuations, excitation uncertainty and cluster asynchronic-
ity were additionally investigated1. For this purpose, the experiments were designed to
acquire acceleration signals separately with the two clusters in two different moments:
sensors at positions S1,...,5 (cluster C1) were activated at operating conditions character-
ized by high temperatures (29 °C) and low input force, whereas sensors S5,...,9 (cluster C2)
worked at relatively low temperatures (17 °C) and stronger excitation energy.

3.4.3 Results

3.4.3.1 Frequency estimation

A frequency–based assessment was firstly conducted. The spectral profiles depicted in
Fig. 14 were generated with the FDD algorithm and demonstrate the capability of the
system to identify variations in natural frequencies due to the presence of added masses.
In fact, the results reveal good vertical alignment between experimental spectral peaks
and numerically predicted modal components. The relative differences with respect to
theoretical simulations in the same operating conditions are reported in Table 5. For all
the tested configurations, an average discrepancy of 1.183% is observed considering all
the three modes.

3.4.3.2 Mode shape reconstruction

The analysis was then extended to the reconstruction of mode shapes. The signal pro-
cessing techniques FDD and SOBI mentioned in Section 2.2 were applied to extract the
modal parameters related to each cluster. The mode shapes were thereafter concatenated
according to the algorithmic procedures detailed in Section 3.3. For each inspected config-
uration, MAC percentages computed between numerically expected and experimentally
estimated mode shapes were employed to quantify the correspondent degree of structural
coherence.

1 Supposing the behavior of the beam is stationary, asynchronicity is tested at a cluster level, meaning that,
according to what has been discussed in Section 3.1, sensors within each cluster are perfectly synchronized
via the CAN bus; in absence of this condition, the retrieval of cluster–dependent mode shapes is not viable.
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Figure 14: Spectra of signals acquired with sensor cluster C1 (top graph) and C2 (bottom graph).
The damaged configuration (continuous line) corresponding to operating conditions
perturbed with additive mass ma = 2.591kg at xa = 400mm is superimposed to
the nominal case (dotted line). Numerical predictions in both situations are also in-
cluded.[©2020 IEEE]

3.4.3.3 Overlapped configuration

The performance of the PoSER approach [87] in case of overlapped clusters is reported in
Table 6 (case Ov). Noticeably, an almost perfect superimposition to theoretical predictions
is achieved, attested by modal correlation indexes which are always above 98% even in the
worst case, associated with strongly perturbed tests performed with the heaviest mass. It
is worth highlighting that the estimated SOBI–based mode shapes also fit the model nearly
perfectly in all the scenarios, showing its robustness for modal analysis purposes in spite
of its fully unsupervised approach.

3.4.3.4 Non-overlapped configurations

Moving to non-overlapped network configurations (case A, B, C and D), the very same
damaged conditions were tested. In these cases, modal coordinates were extracted by
means of the already discussed graph smoothness maximization method. A tolerance
error ϵ = 10−4, an initial updating ratio r(0) = 0.5 and a starting smoothness gradient
∇λp = 1 were empirically estimated to achieve the best trade-off between the resulting
modal accuracy and the algorithmic convergence velocity.

The potential of GSP tools elicits from their intrinsic capability to derive the proper
graph topology compliant to the best graph signal smoothness in all the considered sen-
sor arrangements. An example of graph-combined mode shapes (black dots) is drawn in
Fig.15, where raw modal coordinates (black stars) are extracted through the FDD technique
for case C. The numerical values drawn above arches connecting adjacent vertices repre-
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Table 5: Relative error in FDD-driven natural frequencies estimation between experimental data
and theoretical prediction for different scenarios.

Fixed mass ma,1 Fixed position xa,1

xa,1 xa,2 xa,3 ma,2 ma,3

Mode [%] [%] [%] [%] [%]

f1 2.003 1.525 1.235 1.109 1.186

f2 0.957 0.687 0.938 0.006 1.436

f3 0.710 1.279 1.436 1.222 1.348

sent the corresponding edge weights. Going deeper into the analysis, an evident greater
level of superimposition is achieved after GSP operators are applied for the reconstruction
of the complete mode shapes. In order to perform a quantitative evaluation, cases A-D in
Table 6 synthetically report computed MAC values between numerical expectations and
graph-assembled modal branches, the highly accurate fitting among them being proved
by modal correlation indexes averagely above 95%.

Another aspect should further be underlined: despite isolated cases related to the recon-
struction of the third vibration mode when the heaviest masses are hanged, the effective-
ness of the proposed GSP algorithm attains very high scores both starting with supervised
(FDD) and unsupervised (SOBI) modal inspection methods. In particular, the maximum
deviation between these two categories amounts to less than 7 point percentages, without
exceeding the tolerance interval of 90% considered as a damage threshold. Furthermore,
conducting a comparative analysis with respect to already existing methodologies, albeit
a slight decrease in modal fitting occurs among traditional overlapped solutions and un-
conventional disjoint configurations, the coherence of the GSP method averagely worsens
for less than 1.1% compared to covariance–based alternatives. As a matter of fact, it is
reasonable that the worst performance is associated to sparser sampling configurations,
longer intra–cluster distances, and minimal cluster sizes (i.e. NCs = P). Nevertheless, the
proposed processing achieved a maximum deviation of approximately 7% (related to the
reconstruction of the third mode for sensing case D, again in the tolerance range), hence
showing its suitability for damage monitoring tasks.

3.5 conclusions

In this Chapter, a novel cluster–based vibration monitoring system, suitable for structural
integrity assessment, is described. The system stands out for its modularity, level of inte-
gration and versatility, supporting the design of divide–and–conquer strategy for modal
analysis. In particular, a dedicated GSP–driven method for the combination of modal pa-
rameters in case of non-overlapped sensor clusters was proposed as a means for joint -
electrical and structural - improvement of the monitoring network.

The accuracy of the monitoring system was evaluated through an experimental cam-
paign designed to take into account non–stationary phenomena, such as the effect of
thermal excursions, blind excitation, and lack of synchronization between clusters. In ad-
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Figure 15: Assembled mode shapes for the altered beam with additive mass ma = 2.591kg at xa,2
under non-overlapped configuration of case C. Raw modal coordinates are extracted by
means of the FDD reconstruction method. Theoretical predictions in nominal (NP) and
damaged status (DP) are also provided. [©2020 IEEE]

dition, the nominal properties of the structure were altered by simulating the presence
of a defect through the insertion of concentrated masses. The properties of the devel-
oped hardware and software solutions used in the experimental setting proved to output
reliable results. In fact, the spectral and modal signatures estimated at the end of the
GSP–driven and cluster–based monitoring architecture showed a significant concordance
to theoretical predictions. For this reason, the presented mode shape assembly procedure
candidates as a promising strategy to overtake the current limitations of state–of–the–art,
overlapped and decentralized platforms for vibration diagnostics.
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Table 6: MAC values comparing numerical prediction and assembled mode shapes in presence
of altered conditions with overlapped clusters (case Ov-PoSER approach) and spatially
independent clusters (case A, B, C, and D-GSP approach).

Fixed mass ma,1 Fixed position xa,2

Case Mode xa,1 xa,2 xa,3 ma,2 ma,3

Ov

FDD
f1 99.93 99.92 99.82 99.94 99.94

f2 99.15 99.25 99.46 99.13 98.21

f3 99.49 99.72 98.44 99.27 99.11

SOBI
f1 99.96 99.93 99.91 99.95 99.95

f2 99.25 99.16 99.21 94.15 98.85

f3 99.75 99.41 98.84 99.00 97.40

A

FDD
f1 99.83 99.63 99.58 99.54 99.58

f2 99.17 97.31 96.62 97.01 98.55

f3 98.56 98.54 99.16 97.20 97.49

SOBI
f1 99.95 99.92 99.89 99.85 99.90

f2 99.18 98.18 97.31 97.83 96.87

f3 98.86 98.66 98.89 97.21 96.04

B

FDD
f1 99.90 99.82 99.66 99.54 99.81

f2 99.61 99.41 98.13 98.53 97.36

f3 99.13 98.73 98.27 96.71 97.00

SOBI
f1 99.92 99.88 99.85 99.83 99.88

f2 99.78 99.43 98.80 98.64 97.46

f3 99.57 98.74 98.68 97.09 96.25

C

FDD
f1 99.95 99.92 99.76 95.77 95.84

f2 99.33 99.49 98.29 98.48 97.40

f3 99.30 99.51 95.42 99.11 99.39

SOBI
f1 99.97 99.95 99.92 96.07 99.97

f2 99.40 99.43 98.48 98.64 97.35

f3 98.65 99.44 95.61 98.69 93.06

D

FDD
f1 97.13 97.54 96.79 96.64 97.72

f2 99.15 99.06 97.68 98.18 96.90

f3 99.33 98.96 98.74 96.38 94.87

SOBI
f1 97.00 97.39 97.35 97.33 97.63

f2 99.11 99.18 98.48 98.29 97.02

f3 99.29 98.58 98.72 95.86 90.13
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introduction

This Chapter deals with the problem of network load reduction for vibration–based SHM systems.
Accordingly, advanced data compression techniques driven by the Compressed Sensing paradigm
are presented and a novel model–assisted method for the design of the best adapted compression
schemes is coherently proposed. The effectiveness of the strategy for structural assessment is val-
idated in different experimental campaigns. A hardware–oriented perspective is endorsed, thus
investigating the embodiment of the analysed method in resource–constrained devices.

The content of this Chapter is based upon the research work [P5]:

"Model-Assisted Compressed Sensing for Vibration-Based Structural Health
Monitoring" by Zonzini F., Zauli M., Mangia M., Testoni N. and De Marchi L.
in IEEE Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7338-7347, Nov.
2021. ©2021 IEEE

from which part of the text is drawn.

4.1 introduction

Data compression is particularly promising in the field of vibration–based assessment
because structural responses exhibit peculiar spectral profiles characterized by a sparse
frequency content and, therefore, the total structural energy is concentrated in a few and
highly localized harmonics which can provide quite an accurate snapshot of the current
health status. Accordingly, it is possible to envision a monitoring system capable of com-
pressing in real–time vibration signals by preserving only the information associated with
these most energetic modes. This might reduce to a large extent the amount of data to be
transmitted along the network, without hampering the quality of the monitoring process.

Moreover, it is worth noticing that data compression strategies can be fruitfully em-
ployed both for wired and wireless architectures. In the former case, in particular for
multiplex wiring systems, the reduction of data packets to be transmitted paves the way
to an increase in the number of sensors simultaneously connected to the same central
unit via daisy-chaining. In wireless communication systems, instead, exploiting a data
reduction approach may be beneficial to extend battery life, and to inherently tackle the
problem of data loss due to transmission fails [94].

On another note, it is worth to emphasize that, to be applicable, data compression
techniques must be suitable for implementation on the extreme edge sensor nodes, such
that it is possible to compensate at a software level hardware constraints. Therefore, data
compression may be combined with the enhancement undertaken at a global level by
the GSP-driven mode shape assembly algorithm for clustered monitoring architectures
presented in Chapter 3.3.

43
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This new Chapter starts with a brief review of the most common solutions available
for vibration data compression. From this prospective solutions, the method built on the
Compressed Sensing (CS) paradigm will be selected for the following analyses, owing to
its favorable compatibility with near–sensor implementations and the promising results
already achieved in the field. Coherently, a physics–based and highly optimized strategy
inspired by the adapted CS theory will be proposed and tested with real–field data.

4.2 comparative analysis of data compression techniques for oma

A consistent deal of research has been spent in the last two decades, seeking to design
the most effective compression scheme for vibration monitoring [99], [101]. However, the
investigation of how these solutions could be practically implemented on self-contained
sensor boards has only recently gained attention [95]. In the current Section, a general
overview about some of the most established techniques for data compression in OMA

applications is depicted, whilst a consistent comparison is summarised in Table 7 and
further commented in Section 4.4.2.2. Hereinafter, the acronym CR will be used to quantify
the compression ratio, i.e., the ratio between the considered signal length (N) and the
actual amount of transmitted data.

4.2.1 Spectral–based decomposition

Spectral–based decomposition refers to the ensemble of methodologies built on the se-
lection of a small batch of parameters out of the spectral representation of the input
signal. This procedure can be performed by applying PP algorithms directly on Fourier–
transformed data and, then, by extracting the topmost peak spectral values. A seminal
work in this field is provided in [80] and further validated with a near–sensor implemen-
tation on prototyping boards. However, these methods present a crucial limitation since
they assume that the vibration components to be analysed are well–spaced, highly en-
ergetic and significantly decoupled, a condition which barely holds when dealing with
the majority of real SHM scenarios under operative conditions. In this sense, their effect
is to ’decompose’ a multi–degree–of-freedom system into the linear summation of single
structural components, which can be treated independently.

4.2.2 Compressed Sensing

Approaches based on the CS theory define the problem on a pure mathematical basis
by resorting to linear algebra transformations as a means for data reduction [102], [103].
The underpinning principle behind CS is that, under the premise that the processed class
of signals is sparse (or, at least, compressible) in a given domain, only a few coefficients
suffice to capture the signal content. If this condition applies, a shrunk version of a long
time series can be obtained by projecting it onto a lower–dimensional subspace through
a suitable compression matrix [104]. Since the spectral representation of vibration data is
inherently sparse in the frequency domain, the CS paradigm appears to be particularly
suited for vibration data manipulation.

The operative principles of CS are schematized in Fig. 16. The sparsity hypothesis as-
sumes that a basis Ψ ∈ RN×N exists in which a signal instance y ∈ RN×1 can be accurately
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Table 7: Comparison between different methods for OMA–oriented data compression: ✓and ✗

indicate whether the corresponding strategy is implemented in an unsupervised or super-
vised manner, respectively.

Method Advantages Drawbacks Type Ref.

PP
– Naive logic, usually computation-

ally efficien
– Massive CR

– Prior structural knowledge is re-
quired to instruct PP

– Loss of mode shapes sign
✗ [80]

STCS

– Well–balanced resource distribu-
tion

– Sparsity adapted at acquisition
time

– Additional payload due to the
transmission of coordination vari-
ables

– High computational complexity of
the data recovery algorithm

✓ [95]

RND–
CS

– Straightforward implementation of
the decoder

– Suitable for data loss recovery

– High sensitivity to input noise level
✓ [96]

BSS–
CS

– Mode shapes recovered from low–
rate measurements

– High computational complexity
– Number of observable modes infe-

rior to the cluster size
✓ [97]

MRak–
CS

– Soft adaptation process to the input
signal energy profile

– Robustness with respect to struc-
tural variations

– Low computational cost for the en-
coder

– Structural models are required to
design the sensing matrix ✗ [P5]

PCA,
history
PCA

– Adaptation to the input signal en-
ergy profile

– Straightforward decoding process
– Low computational cost for the en-

coder

– Large and sufficiently representa-
tive training set is required

– Spectral deviations hardly captured ✗
[98],
[99]

PSBS

– Modal parameters extracted di-
rectly from compressed data

– Low computational complexity of
the encoder

– High computational complexity
and memory requirements for the
decoder

✓ [100]

RD

– Low computational cost of the en-
coder

– Low memory requirements
– Data loss inherently handled

– Poor performance in the recovery of
noisy acquisitions

– Short frame length is required
✓ [13]

WT
– Low computational cost
– Readily implementable through fil-

ter banks

– Threshold selection
– Wavelet basis selection ✓ [13]

approximated by at most kk ≪ N non-negligible components belonging to the signal sup-
port, i.e., y = Ψc (c being the N-dimensional coefficient vector and kk the sparsity level).
Hence, by harnessing this signal prior, the information hidden within raw acquired data
can be condensed into a measurement vector ycs ∈ Rm×1,m ⩾ 2k, resulting from the
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Figure 16: Schematic representation of the CS encoding (green) and decoding (blue) operations.

linear combination of m ≪ N samples by means of a sensing matrix S ∈ Rm×N, namely
ycs = SΨc. The recovery can be accomplished with an inverse CS solver, either based on
convex optimization problems or gradient–based alternatives, the solution of which con-
sists of the set of sparsest coefficient vector ĉ guaranteeing the highest accuracy between
the sensed and the currently predicted measurement vector ŷcs = SΨĉ. The original signal
is finally reconstructed as ŷ = Ψĉ.

From such formulation, it is worth saying that CS performs a lossy compression and
its effectiveness is conditional upon the selection of two fundamental ingredients, namely
the optimal compression matrix (Ψ) and the sparsity basis (S). Notably, since the signal
sparsity may vary due to structural and environmental factors, methods capable to adapt
these defining features over time should be preferred. Even if these two operators are
conventionally supposed constant, this is not applicable for SHM scenarios, where the non–
stationary and usually non–predictable behaviour of the underlying dynamics demand
for their adaptation. Methods exist which try to adapt them in a streaming fashion to
better track the actual sparsity condition of the input instances [105]. However, since this
adaptation is difficult to be accomplished on the fly, the compression–accuracy trade–off
is commonly solved by relaxing the Compression Ratio (CR) to favour a higher signal to
reconstruction noise ratio. As a consequence, typical CRs for vibration–based SHM hardly
exceed one fifth of the total amount of samples [99].

The potential usefulness of CS in vibration monitoring is demonstrated by the high
number of published papers in the field. Indeed, in the last few years, many researchers
investigated the suitability of different CS techniques and tried to cast them under the
framework of clustered SHM architectures. Among the most representative examples, au-
thors in [95] explored the advantages of a combined spectro-temporal compression ap-
proach (ST–CS) leveraging a bidirectional feature transmission scheme. A distributed CS

paradigm was proposed, which involves several peripheral nodes under the orchestration
of a master aggregating unit. Alongside, it has recently been demonstrated that the data
recovery problem can be formalized into a standard supervised-learning task [106], there-
fore featuring a tight interweaving between standard CS operations and subspace learning
techniques driven by the artificial intelligence [107].

Alternatively, a CS–based sparse coding strategy was efficiently complemented with a
non–convex shrinkage algorithm to reconstruct the original data from incomplete mea-
surements in the field of large–span structures [108]. Furthermore, researchers explored
the possibility to extract modal parameters, and in particular mode shapes, directly from
low–rate random measurements by tackling the modal identification task with a CS–
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driven and BSS–oriented approach (an example is the work by Yang and Nagarajaiah
[97]).

Beside their technicality and the additional improvements brought by each specific im-
plementation, all the mentioned solutions exploit standard compression matrices, whose
entries can be taken either from Gaussian or Bernoulli distributions [109], or obey to
random sampling (RND–CS), namely the selection of an arbitrarily–indexed subset of
samples [110]: the latter sensing strategies (RND–CS–based) are inherently suitable to
counteract the additional loss of packets affecting the communication channel. Indeed,
assuming that data loss can be modeled as a random stochastic process, its effect can be
seen as the output of a random sampler that arbitrarily selects few packets from the whole
payload.

4.2.3 Principal Component Analysis

The compression of vibration signals can also be tackled as a pure eigenvalue problem by
applying Principal Component Analysis (PCA) [98]. Eigenvalue strategies compress data
by projecting them onto the signal subspace spanned by those directions related to the
most energetic components. For example, authors in [111] stressed the potential of PCA

for feature compression and reconstruction in the context of predictive maintenance and
anomaly detection. These methods show good recovery performances even under signif-
icant compression ratios. Noteworthy, both the PCA encoding and decoding side can be
easily implemented through a simple matrix–vector multiplication, a procedural charac-
teristic which fostered its success for simple on–sensor deployment. However, their main
limitation is in the huge amount of data they require for the statistical characterization of
the input signal energy profile, which implies exhaustive and accurate baseline measure-
ment campaigns necessary to characterize the structure in pristine conditions [105].

Addressing this issue, the so called history PCA has very recently been proposed for
network load reduction. Such method exploits the eigenvalue decomposition of the cor-
relation matrix between signal components to extract the primary information to be pre-
served. Outstanding results were obtained in [99] via adoption of history PCA in the con-
text of bridge inspection, where a 10x compression factor was achieved with satisfying
reconstruction accuracy while embedding the algorithm on network end nodes.

4.2.4 Additional methods

Other noticeable solutions for data compression in OMA scenarios are the power spec-
trum blind sampling (PSBS) and the random demodulator (RD) approach, which are sub-
Nyquist techniques specifically suited for hardware implementations. PSBS [100] extracts
second order statistics (i.e., modal information) directly from multi–coset sampled data
without any additional hypothesis on the nature of the involved phenomenon. Conversely,
in RD [13], random alternation of samples’ sign is combined with low–pass filtering and
low–rate sampling. Such technique was proposed to account for data loss, and it is based
on accumulate and dump operations that can readily be implemented in smart sensor plat-
forms. The main drawback of RD strategies is that they assume stationary or piece-wise
stationary vibration signals; more importantly, the sampling pattern is not only difficult
to be analytically computed in advance, but it also scales poorly when the CR decreases.
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Furthermore, the seminal work in [112] approaches the problem from a filter bank
perspective by resorting to Wavelet Transform (WT). In more detail, WT operates in the
time–frequency domain and provides a means for multi–resolution analysis, namely WT

is used to describe mathematically the increment in information needed to move from a
coarser to a higher signal approximation [113].

In essence, WT constitutes of the cascade of filtering steps acting on subsequently thin-
ner spectral bands such that the frequency resolution is finer in the higher parts of the
spectrum and coarser in the lower ones. The values retrieved at the output of each WT step
are called wavelet coefficients: these coefficients capture different energy content depend-
ing on the spreading of the structural modes across the spectrum. Following this rule, WT

paired with thresholding algorithms offers a powerful tool for data compression. The rea-
son is that, at each decomposition step, those coefficients whose magnitude is significantly
lower a prescribed threshold can be disregarded since they do not convey meaningful in-
sight about the analysed signal. WT has been successfully applied in the context of gear
box monitoring [112] and, as underlined by the authors, one of the most critical part of
this method is the selection of the most appropriate threshold, which is typically very
hazardous to predict in advance and it is very application–dependent. This task is most
often achieved only via experimental demonstrations that, in turn, might suffer from the
variability of the measured structural responses in terms of content and magnitude and,
thus, not very stable.

4.3 physics–based cs for vibration–based shm

The CS–based method proposed in this work draws foundation on the Rakeness–based
CS (Rak-CS) approach [114], which is an adapted CS method offering the peculiar capability
to adapt the statistical distribution of the sensing mechanism in a way that maximizes the
total energy which may be "raked" from the different components of the input signal. As
a matter of fact, a close analogy exists between the sparse–and–localized signal assumption
unique to Rak-CS and the energy distribution of vibration data in the frequency domain,
where modal peaks are not only sparse, but highly localized in the spectrum. Analysed
from a structural perspective, the latter observation means that Rak-CS provides the ideal
tool to encode modal information by leveraging the inherent vibration signature of the
structure.

There is an additional reason for preferring Rak-CS over alternative CS methods. Indeed,
a distinctive advantage of Rak-CS consists of its relatively soft exploration–localization
trade–off [115], such that the compression scheme is prevented from overspecializing data
against potential spectral variations, which are very likely to occur in real scenarios.

In line with the above observations, a novel variant of Rak-CS, named after as MRak-CS ap-
proach, is advanced. The name derives from the fact that it exploits numerical estimations
of the structural dynamics to design the compression matrix. In parallel, the design of a
physics–based sparsity basis is also encompassed, to favor the sparsification of vibration
data in the direction of the expected topmost frequency components of the structure. This
solution overcomes the necessity to collect large training datasets for the same task. In
this sense, and in line with the so–called theory–guided data science paradigm [116], the
knowledge derived by numerical simulations or by semi–analytical methods is seamlessly
blended with the signal statistics characterization process.
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Finally, it is important to underline that the proposed method works on the optimiza-
tion of the encoding stage not only for the primary - and declared - aim to alleviate data
load transmission, but to precisely meet the limited memory space available on resource–
constrained and battery–operated sensors and, as a third byproduct, better tolerate the
inherent noise levels affecting real vibration data.

4.3.1 Designing the optimal sensing matrix: From Rak–CS to MRak–CS

Compared to the standard CS theory [109], that adopts a measurement matrix S whose
entries are instances of independent zero-mean Gaussian random variables, the Rak-CS

approach [115] generates each row s of the measurement matrix S as a zero-mean random
vector, but with a correlation profile Cs = E[ssT ] tightly matched to the second–order
statistic Cy = E[yyT ] of the raw input vector y. The method relies on the maximization of
the rakeness quantity

ρ(s, y) = tr(CsCx) (17)

which measures the average energy of the projections of instances of y over independently
drawn rows of S (tr(·) stands for the matrix trace operator) [114]. The analytical solution
of the Rak-CS problem discussed in [114] yields the correlation profile of the sensing matrix
to coincide with

Cs =
N

2

(
Cy

tr(Cy)
+

IN
N

)
(18)

where IN indicates an N×N identity matrix.
In the rakeness approach, whose processing flow is sketched in the last column of

Fig. 17, a fundamental step is the computation of the correlation matrix Cy of the vectors
to be acquired. This matrix is typically estimated from a sufficiently large number of signal
instances which are expected to be representative of the different measured realizations
[115]. Alternatively, the proposed MRak-CS method numerically derives Cy by hinging on
a priori considerations. If an approximate model of the dynamic response of the structure
is available, a condition that usually holds for the majority of industrial and civil plants,
a simplified correlation profile can be analytically designed, as detailed in the following
(see first column block of Fig. 17).

Let’s assume P modes are expected to identify the spectral signature of the structure.
Coherently, P rectangular frequency bins are designed, whose spectral width Wp is related
to the modal frequency fp so that the quality factor Q = fp/Wp is constant. Then, since Cy

should be, approximately, a positive semi–definite Toeplitz (i.e., block diagonal) matrix,
the value on its i-th diagonal is computed as:

Cy[i] =

P∑
p=1

∫fp+(1−Γ)Wp

fp−ΓWp

cos(2πfi)df (19)

where Γ is a parameter which can be used to offset the central frequency of the bin with
respect to the modal frequency. Such parameter is introduced to adapt the sensing matrix
to the typical evolution of the spectral content in vibration signals.
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Figure 17: General processing flow at the basis of the MRak-CS approach. The computation starts
with the selection of the frequency regions of interest, as they can be predicted by a
numerical model or zero–time structural campaigns, on the basis of which a band—
pass–like correlation profile of the structure (Cy) is synthetically designed. Then, the
CS–based problem is entered by firstly extracting the sensing matrix correlation profile
(CS). Hence, the latter value is used to sample each row of the sensing matrix S from a
multivariate Gaussian distribution with zero mean and correlation profile equal to CS.

Once the input matrix correlation profile is defined, the eigenvalues and eigenvectors
of Cs are computed as illustrated in [114]. In Fig. 18, the PSD of the Rak-CS (red line) and
MRak-CS (blue line) compression matrices for a simple problem are enclosed, to show how
the two design procedures may adapt to the second–order statistics of the input signal
(black dotted curve).

4.3.1.1 Frequency binning and MRak–CS parameter selection

The frequency binning of the MRak-CS adaptation procedure, namely the selection of the
location and width of the frequency bands Bp to be preserved, behaves in the following
manner. If a rough expectation about the possible vibration content of the monitored
structure suggests that the two closest modal peaks should lie in the frequency band
Bp = [fL; fH], a minimum frequency distance ∆fmin = fH − fL has to be preserved,

imposing Wp ⩾
∆fmin

2
. Consequently, the design process of the input signal correlation

profile simply takes the average value fp =
fH − fL

2
as reference spectral peak to shape

the corresponding frequency bin as stated in Eq. (19). Given Bp and fp, the quality factor
can be retrieved and kept constant for all the remaining modes.

On the other hand, the quantity Γ assumes a paramount importance for practical SHM

applications since it favors better adaptation to possible spectral changes induced by
degrading phenomena. This is the case of civil structures that can be modeled as one–
dimensional elements, for which the structural dynamics theory dictates that damages
tend to produce downshifts in the modal frequencies as a consequence of stiffness re-
duction [117]. One may argue that this assumption is too simplistic; however, mono–
dimensional representations are rather common even for more complex real scenarios, es-
pecially for long–span bridges [72], whose vibration response can be well approximated
to that of 1D beam elements. In these cases, it is suggested to select this parameter in
the interval 0.5 < Γ < 1, so that the down shifting of the frequency peaks can be tracked.
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Figure 18: Spectral profiles of the Rak–CS (red) and MRak–CS (blue) compression matrices super-
imposed to the energy distribution of the input signal (black curve). [©2021 IEEE]

Conversely, when it is impossible to make an educated guess about the future trend of the
modal frequencies, the best option is to select Γ = 0.5, so that the right and left side of the
central frequency band are equally spaced from fL to fH. To summarize, the input signal
correlation matrix in Eq. (19) can be constructed by selecting fp as the central frequency of
the band Bp in which the modal frequencies are expected to be located, while Γ and Wp

are selected so that the spectrum of the sensing matrix is flat in Bp. The latter property
allows the MRak-CS process to be inherently adapted to all the spectral components in that
band.

It is important to stress the fact that MRak-CS is a considerably conservative approach,
which is not affected by the actual number of vibration peaks appearing in a specific
spectral region. Such robustness makes the method suitable for real–field implementa-
tions, where it is commonly rather complicated to predict in advance and in a precise
manner how the energy content of the structure might evolve over time. For the same
reason, the proposed MRak-CS strategy performs reliably even in presence of structural
variations, avoiding the overfitting to the originally estimated spectral content, as could
be the case for purely data–driven alternatives. This means that the described strategy can
be extended to the case of multiple, closely spaced modal frequencies.

As an example, let’s consider the toy case in Fig. 19, where fL = 3Hz and fH = 4Hz
are supposed in compliance with possible real scenarios, leading to a maximum frequency
distance of ∆fmin = 1Hz. If f1 = 3.1Hz and f2 = 3.7Hz are the true vibration modes to be
identified, we have an actual frequency distance of 0.6Hz. Coherently, fp = 3.5Hz, Γ = 0.5
and Wp = 2∆fmin = 2Hz are selected so that, even in case of wrong estimation in the
original prediction, or strong deviations in the nominal structural behavior, the frequency
content can be accurately tracked. The band–pass profile of the input signal correlation
matrix Cy (grey line in Fig. 19) is the one defined by Eq. (19) and the analytical solution of



52 data compression for vibration–based shm

�� ��

��

� �

��

�

Figure 19: MRak-CS correlation matrices in case closely spaced modes (green diamond markers)
falling in the same frequency bin need to be identified.

the MRak-CS problem statement is solved via Eq. (18), which provides the corresponding
sensing matrix correlation profile Cs

MRak−CS (red curve). It follows that all the structural
modes that will fall inside the frequency band [fp − 0.5Wp; fp + 0.5Wp] are likely to be
reconstructed with high accuracy, independently from their proximity and/or quantity.

The pros and cons of standard data compression methods with respect to the MRak-CS

strategy are summarized in Table 7, taking into consideration the procedures discussed in
Section 4.2. In essence, MRak-CS is a hybrid approach between the purely random sampling
which characterizes the conventional CS and the data compression methods requiring an
extensive preliminary characterization of the structural response, as in PCA. There is a
trade-off involved in the MRak-CS implementation, that is related to the definition of the
frequency bin span: the larger the span, the closer the compression performance will be to
the (relatively poor) one achieved with standard CS strategies. Conversely, by narrowing
the span, the attainable compression level can be improved, but the risk is to loose the
capability to track the changes in the structural dynamics. Noteworthy, the same risk
characterizes PCA-based compression procedures.Nonetheless, as it will be shown in the
results section, the MRak-CS approach has great potentialities for SHM implementations
thanks to its adaptability, at least when the numerical model of the structure can be
derived with sufficient accuracy.

4.3.1.2 Proving the robustness of MRak-CS against structural variations

To validate the effectiveness of the the MRak-CS method even in presence of closely–spaced
modes or in view of changes in the spectral profile of the structure, real–field data taken
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Figure 20: MRak-CS reconstructed PSD for two different working conditions of the Z24 bridge
(subplots (a) and (b)). Diamond markers are used to highlight the location of the esti-
mated structural peaks on the basis of a properly tuned FEM analysis: yellow, magenta
and green colors indicate lateral, bending and torsion/bending modes, respectively. In
both subplots, the blue dotted line depicts the sensing matrix correlation profile used
in the MRak-CS method. Finally, the red dotted and blue continues lines represent the
raw signal (i.e. compression–free) and CS–recovered spectrum for CR = 4, respectively.

from the Z24 benchmark use case were exploited. The Z24 bridge is well known in the
SHM community, since a dataset related to the long–term monitoring of this structure
with vibration sensors was made openly available. A complete description of the bridge
as well as a thorough report about the conducted experimental campaign can be found
in [118], while major details will be provided in Section 6.3 of this manuscript, where a
dedicated processing will be presented. At this stage, only the information necessary for
the methodological validation of the MRak-CS approach against practical complexities will
be introduced.

Modal analysis studies applied to this dataset proved that the majority of the modal
components are located below 20Hz. In particular, at a reference temperature value of
25°C and in nominal working conditions, the three dominant bending modes (magenta
markers in Fig. 20) are located at 3.87Hz, 12.42Hz and 13.21Hz, while the most ener-
getic lateral mode arises at 4.82Hz (yellow marker in Fig. 20). Two closely spaced mixed
torsion/bending modes (green markers in Fig. 20) are found at 9.77Hz and 10.50Hz,
respectively. By taking into consideration these modal frequencies, two main spectral
bands can be identified: the former one spans the interval 3.5–5 Hz, while the latter has
wider dimensions and includes all the components from 9.5Hz to 13.5Hz. Therefrom,
the sensing matrix is designed as illustrated in Section 4.3.2: two central frequencies are
defined, i.e. f1 = 4.25Hz and f1 = 11.5Hz, with related bandwidths of W1 = 2.70Hz and
W2 = 7.31Hz, respectively, imposed by Q = 1.5. The choice on Q is ruled by the necessity
to be compatible with the minimum spectral insight at the two sides of the leading peaks
(W1 ⩾ 1.5Hz and W2 ⩾ 4Hz), simultaneously guaranteeing a proper tracking of fre-
quency deviations which were intentionally provoked during the monitoring campaign.
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The acquired waveforms, which are too long to be processed in a single shot, are di-
vided into 512–sample segments (sampling frequency equal to 50Hz) with a compression
ratio equal to 4. The reason for selecting these values is that the goal, at this stage, is to
determine the effect of the sensing design procedure itself with respect to conventional
methods, rather than probing for the attainable compression levels. From the piece–wise
reconstruction of the original time series, the CPSDs reported in Fig. 20 are obtained for
two rather distinct working conditions. As can be observed, the spectral content of the
MRak-CS–reconstructed signal is remarkably accurate if compared to the spectrum of the
original (uncompressed) signal, and even low energy peaks can be satisfactorily identi-
fied. The recovery is very effective also when, as a consequence of the induced structural
damage, the peak localization of the reference modes significantly changes (subplot 20b).

4.3.2 Designing the optimal sparsity basis: a structurally–shaped approach

The selection of the optimal sparsity basis plays a crucial role in boosting the compres-
sion performance as much as possible. Vibration signals with low damping factors are
sparse in the Fourier domain [119], a condition which led to the conventional selection of
the Discrete Cosine Transform (DCT) or the Discrete Fourier Transform (DFT) matrices as
sparsifying basis [106], [120].

In compliance with the time–frequency localization trade–off stated by Heisenberg’s
inequality, the main drawback inherent to the adoption of the aforementioned Fourier-
driven sparsity domains is given by their poor time resolution, namely their incapability
to recover time–localized discontinuities associated with important non–stationary phe-
nomena. For this reason, assuming that side effects typically manifest at the highest fre-
quencies, wavelet–dependent alternatives have been proposed [121], [122]. They permit
a more versatile tiling of the time–frequency plane, as the spectral resolution increases
the lower the frequency bands, and better track non-stationary phenomena. Nevertheless,
the dyadic frequency split at the basis of the discrete wavelet transform is still incapable
of adapting to the specific frequency peak distribution which characterizes the spectral
profile of vibrating structures. This means that no possibility persists to recover with
enough precision vibration modes above half of the Nyquist frequency (Fs/2), since the
corresponding frequency resolution is fixed at the first decomposition level j and, thus, it
cannot be greater than Fs/2j+1, j = 1. For modal identification purposes, this constraint
could prevent the identification of high–order coupled components, which usually char-
acterize the majority of industrial and civil infrastructures.

More recently, several approaches started to be explored to overcome this limitation
and design a best–adapted signal representation in favor of a better sparsification. They
include sparse coding [123] and dictionary learning [124]. Wavelet Packet Transform (WPT)
is another suitable tool, particularly apt at performing this adaptation to the signal char-
acteristics in a very flexible way [125].

As schematically illustrated in Fig. 21, WPT is conceived as a nested filtering opera-
tor applied to both the detail yH (i.e., high-frequency) and approximation yG (i.e., low-
frequency) components of a signal. Filters h and g are usually given in pair since they
belong to the class of quadrature mirror filters, providing a sufficient condition for the
perfect signal reconstruction, and are uniquely determined upon the selection of an ap-
propriate wavelet basis, also called mother wavelet. The sequence (tree) of filtering stages
can be purposely pruned to match the intrinsic multi–scale nature of the signal; in these
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Figure 21: Depiction of the filtering procedure at the basis of WPT.

terms, the WPT operator splits the signal in multiple packets (frequency bands), which can
deliver an efficient representation for signals specifically localized at distinct sub–bands
distributed over the entire spectrum.

One question may arise at this point, which is: what is it the enabling reason supporting
WPT as candidate tool for the creation of the optimal sparsity basis?

Let’s answer to this pivotal question.

Firstly, the optimization steps entailed by WPT can be performed by learning the most
suited representation from uncompressed [126] or compressed data [127]. Even if these
methods proved to be robust and promising for an effective signal recovery process in the
context of data compression, they require a consistent amount of data to be used during
the training phase.

Hence, as sparsifying basis for CS, adopting a WPT–based method has several advan-
tages in terms of computational cost, theoretical capability to reconstruct the signal per-
fectly (except for the math processor finite word length approximations) and capability to
adapt the frequency resolution in a very flexible way driven by the very same structural
knowledge at the basis of the MRak-CS encoding mechanism. In this case, the WPT operator
allows to zoom the frequency resolution in the sub–bands where the structural informa-
tion has been estimated to lie (i.e., the frequency regions of interest), while imposing a
coarser frequency detail in the remaining portions where none but noise is expected to
appear. As a consequence, the final signal representation can be considered maximally
sparse in the sense that just a very few signal coefficients, i.e., those pertaining to pre–
selected frequency bands with maximum resolution, are sufficient to retrieve almost all
of the structural energy. Thereby, it can be effectively combined with the Rak-CS method
which leverages the signal localization property to design the sensing matrix.

4.3.2.1 The WPT adaptation algorithm

In the proposed strategy, structural numerical models are exploited to shape
the WPT decomposition process according with the PSD of vibration signals. The
WPT adaptation procedure is listed in Algorithm 1. The following quantities
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are required as inputs: the vector ensemble of the frequency bands of interest

WT =
P⋃

p=1

Bp =
P⋃

p=1

[fp − ΓWp, fp + (1− Γ)Wp], the sampling frequency Fs and the frame

size N. The sought decomposition level j and the frequency interval of each wavelet packet
are returned as outputs according with the following three–stage procedure:

1. Centre: select the decomposition level j as the maximum value allowing one wavelet
packet to capture the first modal frequency while keeping the corresponding fre-
quency bin ∆f = Fs/2j+1 below the distance ∆min

f between the closest modal fre-
quencies. The minimum span of the WPT frequency bin has an inferior bound given

by the length of the frame size: ∆min
f =

Fs

2log2 N+1
. In turn, N is limited by the mem-

ory space available in embedded sensors; thus, attainable values for ∆min
f range

from one to few tenths of Hertz, depending on the adopted sampling rate. In typ-
ical OMA applications, such values are usually sufficient to locate strongly coupled
modal frequencies in separated WPT bins.

2. Divide: create the overcomplete wavelet tree up to depth j, yielding to 2j succes-
sive wavelet packets, each of them being identified by a corresponding frequency
interval and width. Define with B∗ the ensemble of packet bands falling outside the
frequency region of interests, i.e., B∗ ∩WT = ∅.

3. Merge: climb back the full tree level–by–level. At each filtering stage, merge those
children packets associated with a father node whose frequency band belongs to
B∗. Repeat this procedure until the dyadic grouping is permitted. This pruning step
is encompassed for two main reasons: (i) relax the frequency resolution constraint
in expected low-energy intervals, and (ii) minimize the frequency overlap between
side lobes of adjacent filter masks, which might be responsible of artifact alias com-
ponents in the reconstructed signal.

4.3.2.2 Proving the robustness of WPT–driven sparsity against complex vibration patterns

It is worth highlighting that the design of the WPT sparsity basis could be effective even in
presence of closely–spaced modal frequencies. In this case, the selection of the appropriate
decomposition depth j is very important, because such parameter dictates the minimum
reachable frequency resolution. Whenever the peak proximity is expected to be extremely
narrow and no precise prediction is available for the target structure, the selection of
j = log2N ensures the greatest attainable frequency resolution equal to ∆min

f . Under this
assumption, the detection capability of the WPT basis coincides with that attainable with
standard Fourier basis.

Just to make an example, for 512–long signals acquired at a sampling frequency equal
to 200Hz (that correspond to very common parameters for OMA applications), this leads

to a frequency resolution ∆f =
200

2log2 512+1
= 0.20Hz, which is largely compliant with the

above discussed frequency distances for strongly coupled modes in vibrating structures.
Furthermore, even in case the frequency resolution of the WPT filter–bank is not suf-

ficient to discriminate closely spaced modal frequencies, this fact does not hamper the
possibility to perform mode discrimination after the signal recovery. Indeed, the modal
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Algorithm 1 Adapted WPT decomposition process
Input: WT , Fs, N
1. Centre:

1: p = 1, j = ⌊log2 n⌋
2: ∆f = Fs/2

j, ∆min
f = min

j∈[1,...,P−1]

(
fj+1 − fj

)
3: while ∆f < ∆min

f do

4: if ∃k ∈ [1 . . . 2j+1] :

(
f1
∆f

−
k

2

)
< ε then

5: j← j− 1

6: ∆f = ∆f/2

7: end if
8: end while
9: return j

10: L = 2j+1, ∆f = Fs/2
j+1

2. Divide:
11: for all i ∈ [1, . . . , L] do
12: bi = {f ∈ [0, Fs/2] : f ∈ [∆f(i− 1), ∆f]}

13: fbi
= i∆f/2

14: Wbi
= bi/∆f

15: end for
3. Merge:
16: B∗ = {bi : bi ∩W = ∅}
17: n← j

18: while n > 0 do
19: for all (bi, bi+1) ∈ B∗ : Wbi

= Wbi+1
do

20: fc = (fbi
+ fbi

)/2

21: if ∃ k ∈N+ : fc =
Fs

2n+1

(
1+

k

2

)
then

22: bi ← bi ∪ bi+1

23: fbi
= fc

24: Wbi
← 2Wbi

25: L← L− 1

26: end if
27: end for
28: n← n− 1

29: end while
Output: bi, ∀i ∈ [1, . . . , L]

identification algorithms discussed in Section 2.2 extract the modal parameters by process-
ing multiple signal instances, thus mitigating possible inaccuracies in isolated windows.

This behavior is proven in Fig. 23, where the CPSD profile for finer (blue line) and coarser
(cyan line) frequency resolution of the WPT basis (see Fig. 22b and 22b, respectively) are
depicted and superimposed to the original spectrum (red dotted line) of the Z24 bridge
in nominal condition (i.e., the same condition used in Fig. 20a). In Fig.23, the case with
j = 4 is an example in which the frequency resolution is coarser than the minimum
distance between the closest modal components, namely ∆min

f = 1.56Hz ⩾ max{fp,i+1 −
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Figure 22: WPT sparsity basis for the Z24 bridge with different frequency resolution: coarser reso-
lution (left) with j = 4 corresponding to ∆f = 1.56Hz and finer resolution (right) with
j = 6 corresponding to ∆f = 0.39Hz. Reference frequency components are also enclosed
to identify how the frequency bins are distributed with respect to the predicted struc-
tural modes.

fp,i} ≈ 0.8Hz. This is evident in the time–frequency plane of Fig. 22a, where it can
be observed how the two peaks around 10Hz fall within the same frequency bin for
j = 4, whereas a thinner frequency resolution is achieved with j = 6 in Fig. 22b. The
power spectrum confirms that modal peaks can still be correctly identified even when the
spectral resolution is coarser, at the expenses of a slight reduction in the preserved signal
energy.

4.4 mrak–cs and wpt sparsity basis : experimental validation

In this Section, the practical effectiveness of the novel CS–based methodology is validated
with experimental data, proving how the combination of the optimal sensing matrix de-
sign and the WPT–driven structurally–shaped sparsity basis could be beneficial for net-
work load reduction while attaining an accurate level of structural characterization.

Four main objectives were pursued within the validation phase:

(i) proving the superiority of the devised WPT sparsifying basis with respect to the
classical DCT operator;

(ii) assessing the validity of both the Rak-CS and MRak-CS scheme in the framework of
vibration–based structural inspection;

(iii) comparing the performance of the proposed sampling schemes against basic
eigenvalue–based methodologies and alternative CS–based solutions for OMA, in
terms of compression ratio and quality of the reconstructed structural information;

(iv) verifying the actual capability of the MRak-CS–based and WPT–driven compression
approach against both structural changes (due to damage and/or environmental
agents) and very complicated vibration patterns.
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Figure 23: CPSD profile of CS–reconstructed signals in nominal structural condition for the Z24
bechmark use–case: a coarser (cyan color line) and finer (blue colorline) WPT sparsity
basis depicted in Fig. 22 are considered and superimposed to the raw spectrum profile
(red dotted line).

To address task (iii), the classical PCA [105] was considered as the main competitor
among the standard eigenvalue approaches because of its fully–symmetric and low–
complexity approach. In this case, the compression factor CR should be intended as the
ratio between the total frame size and the number of preserved principal components. A
direct comparison with the sensing matrix design criterion prescribed by RND–CS is also
included, since it represents a benchmark methodology for CS–based OMA.

4.4.1 The use case: a simply supported steel beam

4.4.1.1 Materials and methods

Mastered by one CH unit, a chain of six ISSLab inertial sensor nodes, extensively detailed
in Appendix A and here configured as tri–axial accelerometers, was used to experimen-
tally validate the effectiveness of the conceived algorithmic strategies. As schematically
depicted in Fig. 24, a pinned–pinned steel beam, whose mechanical and geometrical char-
acteristics have already been presented in 3.4.2.1, was instrumented and exploited as rep-
resentative test–bed. In this case, the useful beam span led the three fundamental modes
to be localised at the following frequencies: f1 = 5.52Hz, f2 = 22.08Hz and f3 = 49.68Hz,
as predicted by a closed analytic formula [128].

Each time series was acquired at a data rate of Fs = 200Hz over a sampling period of
75 s (i.e., 15 000 samples in each iteration). The beam was left to oscillate under pure envi-
ronmental noise (i.e., ground motion excitation), therefore mimicking the classical exciting
mechanism required by output–only modal analysis. Moreover, since the bounding condi-
tions force the structure to vibrate along the vertical direction, devices were programmed
to collect accelerations only on the z axis.
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Figure 24: Experimental setup for MRak-CS testing purposes: sensor installation plan (all dimen-
sions in millimeters) inclusive of the damaging mechanism and positions. [©2021 IEEE]

The frame size was fixed to N = 512 samples, a quantity that corresponds to the best
compromise between the necessary spectral resolution and the sensor node memory ca-
pability. The number of measurements m sets the compression ratio. In particular, the
results achieved by varying from CR = 4 to CR = 10 are reported. To further shrink
the memory requirements and ease the computational complexity of the entailed vector–
matrix operations in view of near–sensor implementations, a sensing matrix populated
with highly digitized Rak-CS antipodal entries (i.e. Si,j ∈ {−1, 1}) [115] was preferred. The
SPGL1 algorithm1 was conversely employed during the recovery stage for its superior
performances.

Two datasets were acquired, in nominal and altered structural configurations. The for-
mer, associated to the healthy status, was used to estimate off–line the correlation matrix
corresponding to the given structure, as required by the Rak-CS sampling mechanism. Con-
versely, the latter was employed during the real testing phase. For this reason, acceleration
data deriving from intact vibration behavior were collected along with those pertaining
to structural anomalies, which were induced by laterally hanging a progressively heavier
dead mass (mA = 1.042kg, mB = 1.808kg) to the beam at different positions (x1 = 1.8m,
x2 = 1.6m, x3 = 1.4m). Thereafter, the caption md@tg will be used to indicate a generic
damage configuration resulting from mass md hinged at position xg, with d ∈ {A,B} and
g ∈ {1, 2, 3}.

The effects due to aging for the category of structures involved in the experimental cam-
paign are such that vibration frequencies tend to decrease at the occurrence of damages
[129]. For this reason, considering the MRak-CS approach, the parameter Γ was assumed
equal to 0.75 to better track possible frequency downshifts. Accordingly, a band ratio
Q = 5 was chosen to ensure a significant frequency inspection in the neighborhood of
the estimated peaks. For the pure modal estimation task, the FDD technique [130] was
adopted to extract the set of natural frequencies f and the associated mode shapes Φp.

1 https://www.cs.ubc.ca/~mpf/spgl1/index.html

https://www.cs.ubc.ca/~mpf/spgl1/index.html
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4.4.2 Results

4.4.2.1 Sparsity basis: DCT vs WPT

Exploiting the structural priors detailed in Section 4.4.1.1 as inputs for the adapted WPT

decomposition process discussed in Section 4.3.2, the sparsity basis Ψ was derived. In par-
ticular, the Fejér–Korovkin mother wavelet with 22 taps was chosen because of its highly
vanishing high–order lobes [117] (i.e., minimal filter overlap between adjacent packets)
with respect to smoother alternatives (e.g., Daubechies, Symlet). The decomposition level
was set equal to 6, consequently the minimum packet bandwidth is 200/27 = 1.57Hz,
which allows for a good discrimination of the modal components.

To quantify the sparsifying effect of the signal representation domain [131], the Gini
index for an N–dimensional vector a was selected:

Gi = 1− 2

N∑
n=1

an

||a||1

(
N−n+ 0.5

N

)
(20)

The Gini index was preferred over energy–dependent alternatives because of its higher
statistical relevance in presence of noisy measurements (|| · ||p stands for the ℓp norm of
the vector). This is the case of the considered scenario, where recorded acceleration data
are characterized by weak amplitudes as a direct consequence of the considered beam
loading conditions.

For the sake of clarity, vector a consists in the projection coefficients of the acceleration
data calculated as a = Ψ−1y. In particular, the Gini term was computed both for the DCT

and WPT representations, considering multiple time frames and sampling locations. Such
a multi–sensor assessment procedure was necessary to prevent the analysis from being
influenced by sensing positions proximal to the nodal points of the investigated mode
shapes, in which the energy of the modal components is vanishing.

The outcomes of the sparsity analysis are depicted in Fig. 25, in which each of the three
panels represents the actual trends in the Gi index for the adapted WPT (red line - GiWPT )
and DCT (blue line - GiDCT ) basis over subsequent signal frames - sensor locations S1,
S3, S6 are considered. As Gi approximates the unit value, the sparsity ratio is more pro-
nounced. The global frame energy Eg (black curve) is also illustrated, so that the obtained
sparsity indicators can be compared to the magnitude of the measured acceleration data
in the original time domain.2 Apart from low energy segments, in which the blue and red
curves are almost overlapped, the sparsifying effect of the WPT basis is clearly superior
for all the considered sensor positions, with GiWPT larger than GiDCT of more than 0.1
points on average.

The sparsifying effect of the WPT basis is meant to enhance the performance of the CS–
recovery in a structurally–oriented manner. To verify this statement, the quality of the
results was judged in structural terms by computing MAC values, either using the DCT

or the WPT sparsifying basis, as input for the MRak-CS approach in nominal conditions
(compression–free signals are taken as reference). The results are reported in Table 8 and
prove that DCT–based recovery is much less accurate in capturing the signal characteristics,
especially as far as the third mode is concerned, which is instead a more sensitive damage
indicator.

2 For pure visualization purposes, this parameter has been rescaled to be comparable with Gini index values.
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Figure 25: Trends in Gini index for WPT (red) and DCT (blue) transformed acceleration coefficients
over different signal instances, superimposed to the normalised and rescaled signal
energy (black curve) in the original time domain. Results are presented for sensing
positions S1, S2, S3. [©2021 IEEE]

4.4.2.2 Compression approach: Rakness-based vs benchmark solutions

Rather than focusing on the classical Average Reconstruction Signal–to–Noise–Ratio
(ARSNR), which assesses the consistency of the reconstructed data in the original time
domain, a more robust mode shape–related metric was computed to measure the quality
of the proposed solution as a function of the compression ratio. The rationale behind this
choice is that structural assessment based on mode shapes is widely understood to be
more robust against environmental uncertainties, which may unavoidably alter the mere
frequency peak localization. The quality of the signal recovery was assessed by taking
MAC as main metric, with a safety threshold raised to 0.95 since it is necessary to ensure
the highest possible congruence to compression–free monitoring approaches.

The performance was evaluated in all the tested configurations (nominal and altered).
Exemplary spectra in nominal conditions for one data record are reported in the upper
charts of Fig. 26, in which each of the three charts relates, from left to right, to the Rak-CS,
MRak-CS and PCA reconstructed acceleration data. The curves in each panel indicate the
frequency distribution of the CPSD matrix among the six sampling positions, stepping
from lower (blue) to higher (red) CR values, overlapped to the raw measurements’ profile
(black).

One fundamental result needs to be underlined, which is the filtering effect inherent
to the PCA strategy. Noticeably, the structural information which is retained after the
PCA compression–decompression process is limited to the acceleration content appearing
in the estimated input correlation profile used during the training phase. Consequently,
spurious components, which can be induced either by frequency shifts from pristine vi-
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Table 8: MAC values between compression free and MRak-CS reconstructed mode shapes with
DCT and WPT sparsity basis (left and right column, respectively).

DCT WPT

CR f1 f2 f3 f1 f2 f3

4.00 0.99 1.00 0.94 0.98 1.00 1.00

5.00 0.99 1.00 0.94 0.97 1.00 0.99

6.00 0.97 0.99 0.48 1.00 0.98 0.98

7.00 0.98 1.00 0.95 0.98 0.98 0.97

8.00 0.95 0.97 0.82 0.96 0.99 0.93

9.00 0.94 0.98 0.45 0.96 0.96 0.92

10.00 0.93 1.00 0.92 0.92 0.92 0.90

bration conditions or by outbreaks of unexpected modal components due to possible
structural deterioration, are canceled out by the signal compression/decompression. Con-
versely, Rak-CS and MRak-CS can capture these unpredictable but highly probable vibration
anomalies.

It is also important to refresh that more pronounced variations in the modal frequen-
cies imply a greater sensitivity in defect detection. Therefore, recalling the importance
of reconstructing with significant accuracy the highest modal components, and despite
the extremely accurate results appearing in Table 9 under the columns associated with
modal components f1 and f2, the remaining poor performance in correspondence of the
third mode hampers the robust applicability of PCA as suitable candidate for OMA–based
vibration diagnostics.

Indeed, PCA–based compression schemes provide a strict signal adaptation process,
where the term strict means that the only spectral components that can be retrieved in
the decompression stage are those captured by the first m most energetic eigenvalues
identified in the training phase. In this context, as long as the variations in the structural
modes are modest and effectively represented by the eigenvalues belonging to the subset
of preserved components, the PCA compression is compatible with an effective reconstruc-
tion of the corresponding spectral information. On the contrary, as soon as this condition
is no more satisfied, because of strong system perturbation, the decoded information loses
any consistency with respect to the original signal content. In the tested use case, it can
be observed that the first two vibration modes experience rather limited downshifts. In
more detail, the maximum reduction in f1 and f2 was estimated equal to 0.72Hz (mA@x3)
and 1.94Hz (mB@x2), respectively. On the other hand, a consistently higher contraction
of 5.29Hz (mB@x2) was observed for the third mode, a quantity which justifies the poor
reconstruction performance of PCA in the bottom panel of Fig. 26, as well as the low MAC
values associated to the third modal component. This is also coherent with the fact that
the MAC values between experimental mode shapes reconstructed from the original sig-
nals (without compression) in nominal and defective configuration are very high for the
first two modal components: 0.978 and 0.965, respectively, whereas a significant reduction
is observed for the third mode with MAC degrading down to 0.879.

It is worth noting that the input signal correlation matrix used for altered conditions is
the same that was adopted for the nominal ones. In this way, it was possible to evaluate
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Figure 26: Correlation profile of the CPSD matrix for the considered compression methodologies
as a function of increasing CR values in nominal (top line) and altered (bottom line)
conditions. Yellow markers are also included in order to better track identify the fre-
quency shift experienced by the third vibration mode. [©2021 IEEE]

how the distinct encoding/decoding mechanisms may cope with spectral changes which
may occur in long–term monitoring tasks. For instance, the third vibration mode appear-
ing in the panels altered with the mass mB hanged at position x2 (highlighted in the
bottom subplots of Fig. 26 with yellow diamond markers) is downshifted from 49.68Hz
in nominal conditions to 44.39Hz, corresponding to a frequency reduction above 10%.
Notably, such a significant change cannot be tracked by the PCA strategy, while Rak-CS

and MRak-CS are capable to detect such mode even for high CRs.
MAC factors computed by correlating mode shapes coming from uncompressed vs re-

covered measurements for the three dominant vibration modes are reported in Table 9.
As can be seen, a poor reconstruction performance characterizes the RND–CS method:
very low MAC values (often below 0.9) are achieved in all the considered structural con-
figurations if CR is higher than 5. This is coherent with the compression levels reported in
previous studies conducted on long–span structures [96].

In the comparison among the rakeness–driven solutions, it is possible to observe a
more pronounced denoising effect of the MRak-CS method, while the noise floor of Rak-CS

is slightly higher. This effect is more evident for higher CRs. The improvement brought
by the adoption of the MRak-CS design is also evident in the results reported in Table 9. In
detail, MAC values achieved with MRak-CS are larger than those attained with Rak-CS in
almost all the altered cases. In particular, it might be shown that MRak-CS provides suffi-
cient MAC factors (i.e. MAC ⩾ 0.9) when CR is increased up to CR = 7, which guarantees
a sufficient modal consistency for all the inspected modes. This result compares favorably
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with alternative solutions presented in the literature, where the estimated CR values were
consistently below CR = 5 [95].

Table 9: MAC values between raw and reconstructed mode shapes for different structural config-
urations. From top to down group lines, RND–CS, PCA, Rak-CS and MRak-CS results.
[©2021 IEEE]

Nom mA@x1 mA@x2 mA@x3 mB@x1 mB@x2

CR f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3

4.00 0.96 0.93 0.96 0.99 0.99 0.98 0.96 0.96 0.94 0.98 0.98 0.97 0.97 0.91 0.98 0.98 0.99 0.83

R
N

D
–C

S

5.00 0.95 0.94 0.92 0.99 0.97 0.96 0.96 0.78 0.26 0.98 0.91 0.87 0.97 0.84 0.63 0.98 0.97 0.58

6.00 0.94 0.94 0.97 0.99 0.91 0.63 0.88 0.95 0.73 0.95 0.99 0.36 0.95 0.70 0.42 0.94 0.95 0.92

7.00 0.83 0.89 0.80 0.98 0.89 0.77 0.98 0.66 0.99 0.99 0.90 0.49 0.92 0.73 0.44 0.93 0.93 0.94

8.00 0.73 0.97 0.98 0.96 0.91 0.50 0.96 0.85 0.81 0.92 0.94 0.37 0.98 0.76 0.35 0.96 0.91 0.44

9.00 0.61 0.95 0.97 0.99 0.73 0.87 0.90 0.20 0.49 0.99 0.49 0.96 0.95 0.25 0.20 0.95 0.92 0.86

10.00 0.58 0.94 0.81 0.96 0.86 0.78 0.93 0.72 0.30 0.87 0.77 0.54 0.91 0.76 0.41 0.91 0.96 0.75

4.00 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.36 1.00 1.00 0.96

PC
A

5.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 1.00 0.78 1.00 1.00 0.98 1.00 1.00 0.47 1.00 1.00 0.37

6.00 1.00 1.00 1.00 1.00 1.00 0.66 1.00 1.00 0.73 1.00 1.00 1.00 1.00 1.00 0.48 1.00 1.00 0.34

7.00 1.00 1.00 1.00 1.00 1.00 0.70 1.00 1.00 0.84 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 0.34

8.00 1.00 1.00 1.00 1.00 1.00 0.71 1.00 1.00 0.83 1.00 1.00 1.00 1.00 1.00 0.79 1.00 1.00 0.51

9.00 1.00 1.00 1.00 1.00 1.00 0.72 1.00 1.00 0.83 1.00 1.00 1.00 1.00 1.00 0.68 1.00 0.98 0.50

10.00 1.00 1.00 1.00 1.00 1.00 0.71 1.00 1.00 0.81 1.00 1.00 0.91 1.00 1.00 0.73 1.00 0.48 0.49

4.00 1.00 1.00 0.99 1.00 1.00 0.98 1.00 0.98 0.97 0.99 0.98 0.97 0.99 0.98 0.95 0.97 0.98 0.96

R
ak

–C
S

5.00 1.00 1.00 0.99 1.00 1.00 0.95 1.00 0.96 0.37 0.99 0.95 0.99 0.98 0.99 0.93 0.97 0.98 0.94

6.00 1.00 1.00 0.99 1.00 1.00 0.88 1.00 0.96 0.93 0.99 0.98 0.87 0.99 0.93 0.92 0.98 0.99 0.93

7.00 1.00 1.00 0.99 1.00 1.00 0.89 0.99 0.91 0.46 0.99 0.79 0.86 0.99 0.99 0.94 0.99 0.88 0.88

8.00 1.00 1.00 0.99 1.00 0.87 0.94 0.99 0.96 0.36 0.98 0.96 0.39 0.99 0.98 0.83 0.97 0.97 0.97

9.00 0.99 1.00 0.97 1.00 1.00 0.83 1.00 0.96 0.45 0.96 0.78 0.92 0.95 0.92 0.91 0.99 0.86 0.47

10.00 1.00 1.00 0.97 1.00 0.91 0.31 1.00 0.89 0.46 0.99 0.31 0.71 0.96 0.91 0.51 0.97 0.97 0.53

4.00 0.98 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.97 1.00 0.98 0.96 1.00 0.99 0.99 1.00 0.98 0.99

M
R

ak
–C

S

5.00 0.97 1.00 0.99 0.99 1.00 0.97 0.99 0.98 0.98 0.99 0.98 0.96 0.99 0.99 0.99 1.00 0.99 0.98

6.00 1.00 0.98 0.98 0.97 0.97 0.98 0.99 0.97 0.99 0.98 0.99 0.96 0.94 0.98 0.81 0.99 0.97 0.97

7.00 0.98 0.98 0.97 0.98 0.99 0.98 0.97 0.97 0.97 0.94 0.98 0.92 0.98 1.00 0.95 0.99 0.99 0.97

8.00 0.96 0.99 0.93 0.99 0.98 0.95 0.98 0.98 0.99 0.99 0.96 0.95 0.93 0.99 0.99 0.99 0.99 0.97

9.00 0.96 0.96 0.92 0.97 0.81 0.96 0.86 0.96 0.95 0.98 0.97 0.96 0.95 0.97 0.67 0.99 1.00 0.95

10.00 0.92 0.92 0.90 0.96 0.85 0.92 0.97 0.95 0.66 0.99 0.89 0.83 0.96 0.99 0.40 0.99 0.99 0.92

Additionally, the matching between the theoretical modal frequencies and those ex-
tracted via FDD was assessed with experimental data coming from compression–free nom-
inal tests. The extracted frequencies were f̂1 = 5.47Hz, f̂2 = 22.07Hz and f̂3 = 49.37Hz,
showing a maximum relative percentage error with respect to the theoretical values equal

to ε1 = 100

(
1−

f̂1
f1

)
= 0.843% in correspondence of the first mode (see Table 10).
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Table 10: εCS
p between CS–reconstructed fCS

p and compression free fRawp modal frequencies for
increasing CR values and various structural configurations.

Nom mA@x1 mA@x2 mA@x3 mB@x1 mB@x2

CR f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3

4.00 0.84 0.04 0.73 0.65 0.08 0.98 2.58 0.90 0.65 1.56 0.41 1.89 0.81 0.25 0.38 1.52 0.21 0.36

5.00 0.84 0.04 0.73 0.65 0.10 0.98 2.58 0.90 0.65 1.56 0.41 1.89 0.81 0.25 0.59 1.52 0.21 0.94

6.00 2.61 0.04 0.73 0.65 0.10 0.98 2.58 0.90 0.65 1.56 0.41 1.89 0.81 0.25 0.59 1.52 0.21 0.94

10.00 2.61 0.04 0.53 1.42 0.11 0.98 1.52 0.21 0.94 1.56 2.94 0.69 0.81 0.25 0.38 0.81 0.25 0.59

4.5 from cs to cs–enabled shm : an edge computing perspective

In this Section, some major challenges implied by the practical embodiment of the CS en-
coding/decoding mechanisms in edge devices within the framework of clustered sensor
networks are tackled. The first issue relates to the proper orchestration of the computing
resources of the network, since the computational complexity and the memory require-
ment of the compression and decompression operations are remarkably different. Sec-
ondly, the algorithmic effectiveness of the CS strategy may be impaired by the detrimental
effects due to noise sources characterizing the electronic equipment. Hence, coping with
this instrumental limitations is crucial to define the proper locus of admissible application
contexts.

The content of this Section is based upon the research works [P6], [P7]:

"Hardware–Oriented Data Recovery Algorithms for Compressed Sens-
ing–Based Vibration Diagnostics" by Zonzini F., Carbone, A., Romano, F., Za-
uli M. and De Marchi L. (2021). In Saponara S., De Gloria A. (eds) Applications in
Electronics Pervading Industry, Environment and Society. ApplePies 2020. Lecture
Notes in Electrical Engineering, vol 738. Springer, Cham.3

"Compressive Sensing and On-Board Data Recovery for Vibration–Based
SHM" by Zauli, M., Zonzini F., Testoni, N., Marzani, A. and De Marchi L.
(2021). In Rizzo P., Milazzo A. (eds) European Workshop on Structural Health Mon-
itoring. EWSHM 2020. Lecture Notes in Civil Engineering, vol 127. Springer,
Cham.4

As a matter of fact, CS is a two–step procedure consisting of (i) an initial encoding step,
in which the actual compression operation takes place, followed by a (ii) second signal
recovery phase in which the original time series is retrieved for further elaboration. In cas-
cade, the usual modal assessment process finally takes place. Given this well–defined task
assignment, CS inherently embraces the design of a decentralized sensor network topol-
ogy, in which multiple PSNs, directly deployed on the structure, are arranged in multiple
clusters, each of them being coordinated by a corresponding CH unit. Such monitoring ar-
chitecture is thoroughly schematized in Fig. 27, in which Cz expresses the generic cluster.

3 Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer, Lecture Notes
in Electrical Engineering, Hardware–Oriented Data Recovery Algorithms for Compressed Sensing–Based
Vibration Diagnostics, ©2021

4 Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer, Lecture Notes in
Electrical Engineering, Compressive Sensing and On-Board Data Recovery for Vibration–Based SHM, ©2021
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Figure 27: Typical CS–enabled clustered architecture for vibration–based SHM. From left to right,
the compression/decompression stages are allocated to the PSNs and the CHs, respec-
tively. Then, the pure modal analysis is performed, firstly identifying cluster–related
mode shapes ΦCz

and then merging the local estimates into a full–scale mode shape
matrix Φ. Finally, the current health status can be inferred by monitoring trends in
MAC values over time. [Adapted from ©2021]

The advantages of such a hierarchical approach are the following: (i) the computational
complexity is minimized, a condition which is ensured by the inherent cluster parallelism,
i.e., the capability to retrieve local information prior than returning the full–scale struc-
tural parameters; (ii) communication congestion is avoided while the local channel avail-
ability is increased, i.e., the sensor density NCs

per cluster is significantly lower than
the cumulative one; (iii) the available HW and SW resources of the network are optimally
allocated, subdividing the computational task between the PSNs and their master CH.

As a main result, it is possible to reduce the latency in providing a final structural
bulletin and the power budget of the whole system, thanks to the combination of the
streaming data processing and the limited amount of data which is exchanged through
the network (namely, only sensors’ pre–processed modal features assembled by the CH

nodes are transmitted to the SN rather than the entire signal waveform).
As far as the algorithmic part is concerned, the proposed workflow involves the cascade

of the compression/decompression stages, on top of which the pure modal identification
process is stacked. Once the sensor–to–cluster assignment has been defined, i.e., sensor
node i has been assigned to cluster unit Cz, the following tasks need to be accomplished:

1. Compression: each PSN acquires and on–board compresses vibration data, eventually
returning yCz

csi = SyCz

i ;

2. Decompression: upon receiving the compressed signals, one for each of its Ncs mas-
tered sensor nodes, every CHCz

recovers the original time series ŷCz

i , and arranges
them in a form which is suitable for the following modal identification task. Let’s
suppose a suitable choice is the column matrix ŶCz

= [ŷCz

i , . . . , ŷCz

Ncs
];
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3. Local Modal Analysis: given ŶCz
, the matrix ΦCz

= [ΦCz

1 , . . . , ΦCz

P ] of cluster–
dependent mode shape vectors is extracted by resorting to one of the available
modal identification method (without loss of generality, a similar consideration
could be done for modal frequencies);

4. Global Modal Analysis: the full–scale mode shape matrix Φ = [Φ1 . . . ΦP] is computed
at the SN side by merging together local mode shape estimations ΦCz

as prescribed
by the mode shape assembly algorithms presented in Section 3.3;

5. Diagnosis: the health status of the structure can be finally quantified, e.g., by com-
puting the MAC between the currently estimated Φ and the reference mode shape
matrix Φref in case modal–based methods are worthy of application.

Note that the described processing framework corresponds to the conventional CS ap-
proach, whereas more advanced solutions could also be envisioned in which the latter
steps are skipped and the integrity status directly derived from compressed data. Solu-
tions capable of providing such an alternative only recently started to be investigated,
thanks to the significant advancements brought by the AI field. For this reason, the classic
scenario beforehand described is taken as operative groundwork in this work.

4.5.1 Design criteria for the CS coder/encoder block

4.5.1.1 Porting CS encoder on extreme edge devices

Analog implementations of the CS encoder have barely been investigated in the literature:
a primary reason for this lack is the requirement of had–hoc hardware which renders
the sensor design and its deployment process time consuming, more complicated and
less versatile in massive sensor networks. A seminal work in this direction is the one in
[13], in which the authors proposed a customized version of the Imote2 sensor platform
reaching good performance for the on–line assessment of long–span structures. Similarly,
in [96], the Narada wireless sensor was employed as a prototyping board for acceleration
compression in the framework of bridge assessment.

Conversely, implementing CS in a digital manner is the most efficient strategy for port-
ing on edge devices, owing to the multiply–and–add nature of the involved operations,
ensured by the fact that the computation of ycs is the result of a pure matrix–vector mul-
tiplication. The advantage is that, in this case, the sensing matrix can be statically loaded
into the non volatile memory of the MCU at the network start–up phase and accessed at
run–time to execute compression operations as new signal instances are available. Thus,
the favorable algorithmic complexity of the software implementation makes the encoding
mechanism readily portable on PSNs. On the other hand, the memory footprint entailed by
this solution imposes the frame size and the compression level to be properly evaluated
in advance, since extreme edge devices are usually equipped with very limited memory
slots which can, in turn, be rapidly saturated. To make a practical example, the selection
of N = 512 and a reasonable compression ratio equal to 4 may require more than 250kB
of memory for 32 bit data, which is poorly compatible with most of cut–off–the–shelf
devices.

What enables the off–line estimation of the sensing matrix is the long inertia with which
the effects of aging manifest on the structural signature. Indeed, despite being subject to
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variability over–time, the major causes of changes in the modal characteristics of the struc-
ture can be categorized into two main groups: i) structural–dependent factors, i.e., dam-
ages which reflect real structural degradation, and ii) EOP agents. The vast majority of the
phenomena generating damages (such as corrosion, bolt loosening, cracks) have a slow
genesis and progression; therefore, structural failure usually occurs at the end of a long–
degrading process. Hence, such processes are associated to relatively long time–constants.
Similarly, environmental factors undergo slow variations over time when compared to
the structural dynamics itself [132]. For this reason, and from a signal processing perspec-
tive, vibration analysis is usually approached as a quasi–stationary system identification
problem, exhaustively described by modal parameters associated with the peak spectral
values. This is particularly true when the structural analysis task is conducted under nor-
mal operating conditions, namely when wind, traffic loading, etc., are used as natural or
environmental excitation to the structure (as it is the assumption of output–only modal
analysis).

4.5.1.2 Porting CS decoder on edge devices

Differently from the encoder, the decoding task is more computationally–onerous. For this
reason, it cannot be assigned to extreme edge devices but, rather, its deployment appears
more adequate on CH edge boards, where both the processing power and the memory
resources are superior.

However, for edge–oriented implementations, the best trade–off between the algorith-
mic complexity, the memory storage and the retrieved signal accuracy, has to be pursued.
Among the many possible solutions (a compelling review of CS–solving algorithms is
provided in [133]), iterative algorithms could be particularly suitable due to their faster
convergence: this property is essential in real–time inspection scenarios where the latency
due to the mere processing should be kept to the minimum. In particular, three main
approaches deserve particular interest:

(i) Orthogonal Matching Pursuit (OMP): considered as one of the most effective serial
greedy strategies, the rationale behind this procedure is to update step–by–step the
values and positions of the non–zero signal coefficients by exploiting a least–square
method.

(ii) Compressive Sampling Matching Pursuit (CoSaMP): overcoming the main limitations
given by the sequential approach at the basis of OMP, CoSaMP jointly refreshes all
the non–null entries by refining, at each iteration, their value in the direction of the
minimum residual error.

(iii) Iterative Hard Thresholding (IHT): in essence, IHT is similar to CoSaMP, the main
difference being related to the exploitation of a thresholding operator for the simul-
taneous update of the estimated set of signal coefficients.

4.5.2 CS at the extreme edge: an experimental validation

In the following, different experimental tests aimed at corroborating the suitability of CS

operations into clustered sensor networks are presented [P6]. Two main goals will be pur-
sued: (i) prove the structural consistency of CS–operated data while combined with mode
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shape merging procedures; (ii) comprehensively validate iterative CS–solver algorithm
when coded in an hardware–oriented manner. In both cases, the steel beam presented in
Section 4.4.1.1 is exploited and the MRak-CS approach employed at the encoding side.

4.5.2.1 HW–oriented implementation of iterative recovery algorithms

For validation purposes, the code implementing the decompression techniques mentioned
in Section 4.5.1.2 was programmed in the C++ language to be compatible with the digital
signal processing functionalities embedded in edge devices. To this end, all the mathe-
matical procedures and functions were purposely written in order to customise the signal
processing framework to the embedded resources of the network.

The three main metrics chosen to quantify the performance of each data recovery
method are: (i) the memory footprint Mem, namely the total number of initialised data
and temporary variables required for the complete reconstruction of a single set of coef-
ficients ĉ, (ii) the running time T , i.e., the time needed to restore one single frame, and
(iii) the ARSNR, which is computed off–line in a post–processing phase. The latter is con-
ventionally used to quantify the noise levels introduced by the CS processing operations
according with:

ARSNR = 20 log
(

||y||2
||y− ŷ||2

)
(21)

in which || · ||2 stands for the ℓ2 norm of the vector. Finally, the Memory–per–Time–over–
Accuracy (MTA) factor

MTA =
Mem · T
eARSNR/20 (22)

was introduced with the primary goal of providing an overall evaluation: the lower the
MTA, the higher the recovery performance of the sought algorithms are. For the sake of
clarity, ARSNR values were computed back in the linear scale to account for the singular
values implied by the logarithmic operator, i.e., ARNSR = 0 or ARSNR < 0.

The same dataset used for the validation of the MRak-CS/WPT approach (Section 4.4.1.1)
is employed for testing. The obtained results are depicted in Fig. 28, where the panels in
the left–hand side refer, from top to bottom, to the memory occupancy, the mean execution
time and the ARSNR computed by averaging among the six accelerometers, respectively.
The memory occupancy here reported only accounts for the variables involved in the data
recovery algorithms themselves. Thus, assuming that the CS operators are pre–loaded, it
has been estimated that, in the worst cases associated to limited compression scenarios
(e.g. CR = 3), the IHT, CoSaMP and OMP solutions may require a buffer size up to 1MB due
to the huge dimensions of the sensing matrix and the sparsity basis.

The MTA quantity is displayed in the right chart and provides an overall cost analysis.
As can be seen, the OMP implementation largely outperforms the other alternatives at
all the levels of evaluation; its MTA is at least half of the total burden associated to IHT

and CoSaMP for all the considered CRs. It is also worthy mentioning that, despite the
characteristics of IHT appear to be competitive in terms of memory size, its associated
reconstruction accuracy is lower and it requires a larger execution time.
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Figure 28: Cost analysis for the considered recovery algorithm. In the left-hand side, memory
occupancy, execution time and ARSNR are displayed from top to the bottom. The MTA
product between the three curves per CR is conversely displayed in the right panel.
[©2021 Springer]

4.5.2.2 Combining CS with mode shape assembly

A double chain of six PSNs was used to instrument the structure, each of them being
orchestrated by a purposely devoted CH (Fig. 29). Worthy to be noticed, the two clusters
are overlapped in correspondence of their terminal position (position ’PA’), and, for this
reason, the PoSER approach was applied for convenience.

Concerning the entailed CS operations, both the sensing matrix S and the DCT sparsity
basis Ψ were thought to be pre–charged into the nodes memory at the network startup, as
justified above. The OMP solver algorithm was used instead during the recovery process
for the superior performances shown in Section 4.5.2.1

Acceleration data along the z axis were acquired, repeatedly, over time windows of 75 s
(i.e., each time series consisted of 15 000 samples), and then framed into data segment of
N = 512 samples. The compression factor was varied in the interval [2;10].

Experiments were designed to leave the beam vibrating under ground borne vibration,
so as to mimic the typical vibration conditions imposed by the operative environment.
Results in terms of MAC values are reported in the left panel of Fig. 30, superimposed to
the benchmark level of 90% in order to better track the quality of the identified structural
information. Besides, the three vertical charts in the right side of Fig. 30 refer to the
different modal components, each of them including exemplary full–scale reconstructed
mode shapes for a selection of compression factors.

It is worth noting that an abrupt reduction in modal fitting occurs for compression
factors exceeding CR = 4. It is also evident that the performance is heavily dependent on
the selected mode shape. In fact, if the MAC trend affecting the second mode shape (green-
rounded line) is just slowly decreasing with increasing CRs, the behaviour associated with
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Figure 29: Experimental testbed and related sensor installation plan, comprising two clusters (C1
and C2, respectively) of six accelerometers. An inset depicting the practical connection
of three PSNs is also enclosed. [©2021 Springer]
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the first mode shape (red-rumbled curve) shows a more pronounced decreasing trend. A
more peculiar pattern characterises the MAC curve associated to the third mode shape
(blue–squared line). This phenomenon can be attributed to the fact that the energy of the
third mode is very weak with respect to the other two components. Indeed, in this case,
the random effects due to sampling uncertainties and the instrumental noise generate the
oscillations in the estimated modal coordinates.

On the contrary, MAC percentages for low CRs (i.e. CR ∈ [2; 4]) are always above 90%
for all the inspected mode shapes, apart from the limit case CR = 4 were the modal
fitting of the first and third mode slightly falls nearby 87%. An additional proof of the
obtained outcomes is provided by the good level of superposition in the corresponding
mode shapes depicted in the left–hand side of Fig. 30.

4.5.3 CS vs Noise in MEMS sensors

The content of this sub–Section is based upon the research work [P8]:

"HW-Oriented Compressed Sensing for Operational Modal Analysis: The Im-
pact of Noise in MEMS Accelerometer Networks" by Zonzini, F., Zauli, M.,
Mangia, M., Testoni, N., and De Marchi, L. (2021, August). 2021 IEEE Sensors
Applications Symposium (SAS), 2021, pp. 1-5. ©2021 IEEE

from which part of the text is drawn.

Real–world signals are inherently affected by structural non–idealities and ambient–
related disturbances, which may hamper the applicability of CS strategies, in the sense
that they undermine the sparsity assumption. A major cause for this can be due to the im-
portant noise floors and undesired operative interference which might frequently corrupt
the environment in the surrounding of the monitored structure.

On the other side, this environmental limitation, that holds regardless of the adopted
monitoring solution, often combines with an additional source of noise, the one affecting
electronic devices. This is exactly the case of accelerometer - or, more generally, inertial
sensors - realized in MEMS technology: the latter has become, in recent years, the domi-
nating sensing technology for vibration–based applications enabling for the widespread
development of low-cost, dense and miniaturized sensor networks. Indeed, MEMS devices
are characterized by high–sensitivity, low–power consumption and very high integration
levels: all these properties made this sensing technology a cost–effective yet reliable and
extremely advantageous alternative to the piezolectric counterpart for the design of ac-
celerometer sensors [134]. The problem with MEMS is that, notwithstanding their suc-
cessful adoption, signals acquired by these accelerometers are affected by comparatively
higher intrinsic noise density values, which thus need to be properly coped with in the
CS signal processing chain.

Furthermore, it is worth mentioning that works trying to explore the effects of such
instrumental noise in OMA–oriented architectures are very scarce in the literature. In line
with this, the same concepts have already been emphasized and validated against the re-
construction accuracy of controlled mechanical and industrial sites [135] [136]. Nonethe-
less, the results discussed in the above–referenced manuscripts have not tangibly related
the instrumental noise to the specificity of the exciting sources. Aiming at bridging this
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gap, the analysis presented in [P8] is one of the few works discussing the importance of
noise levels in CS–based approaches for OMA scenarios, moreover extending the analysis
to the actual sensing capabilities of cut–of–the–shelves MEMS accelerometer devices.

4.5.4 CS vs noise: an experimental validation

The experimental campaign conducted in [P8] was aimed at establishing a practical bound
to the effectiveness of the Rak-CS technique in presence of practical noise levels deriving
from both instrumentation specifications and structural vibration conditions. Consistently,
numerical simulations and experiments were performed for the structure described in
4.4.1.1 in nominal working conditions.

For the sake of clarity, the selection of the Rak-CS solution over the MRak-CS draws foun-
dation in two main aspects. From one side, since the objective, at his stage, is to evaluate
the effect of noise levels themselves on CS, results obtained in Section 4.4.2.2 demonstrate
that designing the sensing matrix as prescribed by the Rak-CS approach provides a more
severe test to be passed. Secondly, and in line with the above consideration, working in
nominal conditions allows the effects of structural degradation to be disregarded such
that it is possible to restrict the attention on the mere impact of instrumental noise: in this
case, the two methods perform similarly.

4.5.4.1 Materials

Resorting to a simplistic test–bed has the one exploited in this experimental campaign
yielded two main benefits: the relatively simple shape of the beam enables for the fast de-
sign of a corresponding Finite Element Model (FEM) and, secondly, this kind of structure
shows a localized and identifiable vibration behavior, a condition which permits to as-
sess the Rak-CS performances when corrupted by different electronic/exciting noise levels
whilst neglecting the additional complexities inherent to the structure itself.

The mechanical and geometrical properties of the beam were presented in [137] and the
synthetic acceleration responses at sampling positions S1,...,6 were then predicted through
an ad–hoc FEM analysis tool. Being capable to create such a model was advantageous from
a signal processing perspective, too. Remarkably, Rak-CS is an adapted CS method which
requires the availability of a prior batch of signals for the derivation of the correlation
profile of the sensing matrix. However, this procedure could be quite time–consuming
while performed only via experimental data. Hence, using a numerical tool could be
effective to expedite the deployment phase.

4.5.4.2 Methods

The compression mechanism has been configured as follows. Striving to reduce the com-
putational burden associated to the compression stage, an antipodal derivation of the
sensing matrix [138] was preferred (as in Section 4.4.2.2). As a sparsifying basis, the one
drawn from DCT was conversely selected. Signal instances were subdivided into N = 512

sample-long segments, whereas the compression ratio was varied in {4, 6, 10}.
To simulate the presence of noise sources, the simulated vibration responses were cor-

rupted with white Gaussian noise. The SNR was imposed in the [-25;30] dB range. The
selected noise values were meant to simulate practical and typical working conditions
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when the structure is excited by operational/environmental forces. A thorough descrip-
tion of the typical acceleration ranges can be found in many technical recommendations
(see, for example, the American National Standard ISO 4866:20105). Thus, since the entity
of this excitation is most frequently very low, even the corresponding structural responses
are usually poorly energetic and might easily overlap to the residual noise density hidden
in electronic devices. For these reasons, severe SNR levels were taken into consideration.

A total number of 1000 noise–free signal instances were numerically generated for the
computation of the correlation matrix Cs by varying along the beam span the point at
which the external stimulus was applied. The noise power σ2

e was estimated, too. In
the simulated case, it was simply derived as the noise power ensuring a prescribed SNR.
Conversely, for in–field data, it was computed as the median absolute value of a time
series acquired during a zero–time measuring phase in which no vibrations were induced.

MAC values among compression–free (Φp,raw) and compressed/reconstructed mode
shapes (Φp,CS)6 were quantified. An additional metric has been introduced to measure
the quality of the decompressed structural parameters as a function of the prescribed
SNR and CR: the Peak Signal–to–Noise Ratio (PSNR). Borrowed from the image processing
field, the conventional definition of PSNR [139] has been purposely specialised for each
p-th structural frequency to deal with the multi–modal nature of vibration data. Here, the
quantity:

PSNRp = 10 log(Sy(fp)) − 10 log(σ2
e) (23)

is used to express to what extent the power spectral density Sy(fp) occurring at the peak
of the structural mode fp is distinguishable with respect to the noise power σ2

e.

4.5.4.3 Results

Trends in MAC index are reported in Fig. 31 as a function of the different PSNR values,
moving from lower to higher compression factors (CR = 4, CR = 6 and CR = 10 in first,
second and third line, respectively). Each column refers to the Rak-CS reconstructed mode
shapes, namely Φ1,CS, Φ2,CS, Φ3,CS, corresponding to vibration frequencies f1, f2, f3.

It can be noticed that, independently from the adopted CR value, the PSNR varies in a
broader interval the higher the order of the structural component. As prescribed by the
structural dynamics theory [130], this outcome proves that high–order vibration frequen-
cies are more sensitive to noise levels due to the intrinsic lower energy they may carry.

Apart from the pure noise level comparison, a significant structural coherence, namely
MAC values above 0.95 (black dotted line in Fig.31), occurs between uncompressed and
reconstructed mode shapes both for synthetic and real data, and for increasing compres-
sion factors. Despite one isolated case corresponding to CR = 6 at relatively low PNSR,
the fittings in the simulated/experimental MAC are acceptable in the remaining configu-
rations.

To summarize, the noise–to–structure cross–analysis reveals that the Rak-CS approach
can be useful for data compression in vibration–based SHM implementations even for
relatively deep compression levels. This statement holds if a PNSR∗ of at least 20dB

5 https://www.iso.org/standard/38967.html.
6 A minimum accuracy threshold of 0.95 has been considered here to ensure a modal fitting as close as possible

to compression–free scenarios

https://www.iso.org/standard/38967.html
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characterizes the spectral magnitude of the sought modal components. Accordingly, a
relationship between the useful signal magnitude y∗ and the intrinsic sensor noise floor
value ye can be stated as:

PNSR∗ ⩾ 20 log (y∗) − 20 log (ye) (24)

In particular, assuming that y∗ is g times the minimum detectable acceleration value ymin

(y∗ = gymin), the amplification factor g can be obtained as g ⩾
ye

ymin
· 10(PNSR∗/20).

Focusing on the application at hand and assuming the sensor characteristics men-
tioned in Appendix A, for the chosen sampling rate of 200Hz, ymin = 0.061mg and
ye = 80µg

√
200 = 1.128mg can be estimated. These values yield to g ⩾ 185, i.e.,

y∗ ⩾ 11.24mg. This signal entity meets the typical acceleration ranges involved in OMA–
based scenarios, where the common magnitudes are in the order of thousands of µg, such
as human–related activities, earthquakes, ground blastings [140].

4.6 conclusions

This Chapter focused on the optimization of state–of–the–art CS solutions for data com-
pression in the field of vibration monitoring. This objective has been achieved by com-
bining a novel model–assisted CS strategy, the MRak-CS method, capable of adapting, in
a conservative manner, to the specific spectral signature of the target structure. Besides,
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a structurally–shaped algorithm for the design of the sparsity basis based on the WPT

has been presented, favoring a better sparsity level of the processed signals and, thus,
allowing for a higher compression level.

The validity of the proposed data compression system was assessed during an exper-
imental campaign aimed at verifying the integrity conditions of a pinned–pinned steel
beam. The obtained results highlight that the concurrent optimization of the signal rep-
resentation domain, together with the advantages of the MRak-CS sensing scheme, can
disclose increased compression ratios while attaining superior performances in the qual-
ity of the reconstructed structural parameters if compared with conventional approaches.
The effectiveness of the methods was also shown in defective configurations.

Finally, the practical issues to be coped with while deploying CS operators in decentral-
ized monitoring systems were investigated. In more detail, it has been proven that: (i) CS

is a local optimization tool compatible with mode shape merging procedures for the con-
sistent retrieval of global modal features; (ii) the effect of instrumental and environmental
influences could play a crucial role for the effective CS–driven manipulation of vibration
data collected in operative scenarios.
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abstract

Overcoming the main shortcomings of CS techniques for vibration diagnostics, the current Chapter
explores SysId as an innovative strategy for data compression suitable to be performed at the
extreme edge. Solutions taken from the dense linear algebra are exploited to run input–output and
output–only SysId models on a resource constrained device. Besides, a cost–benefit analysis is also
presented, in which the energy saving brought by SysId running on peripheral sensor nodes is
comprehensively measured against the power consumption due to data transmission, as implied by
state–of–the–art communication protocols for IoT ecosystems.

The content of this Chapter is based upon the research work [P9]:

"System Identification at the Extreme Edge for Network Load Reduction in
Vibration Monitoring" by Zonzini F., Dertimanis, V., Chatzi, E. and De Marchi
L. (2021). Submitted to IEEE Internet of Things Journal, 2021.

from which part of the text is drawn.

5.1 introduction

In Section 2.2.2.1, it has been asserted that:

The objective of parametric system identification is to estimate that set of filter
coefficients, also known as model parameters, which can exactly reproduce the
measured input–output system relationship.

This statements specifies that the power of time series models (or, simply, parametric
models, as they are commonly addressed in the literature) is to instill structure and to
encapsulate, in this way, the meaningful portion of the signal content in a reduced set of
values (the model parameters), which fully capture the underlying system dynamics.

The key reason for their exploitation in SHM applications is that, since the number of
parameters typically settles below a couple of dozens [141], massive compression levels
could be potentially attained considering the length of the time series to be collected.
Hence, SysId represents a compelling alternative to standard Fourier–driven, as well as CS

or eigenvalue–based approaches, in the context of vibration monitoring.
It is worth pinpointing that the benefit in pursuing parametric identification strategies is

not restricted to the reduction of the data payload to be transmitted, but more importantly
extends to the significant enhancement in the quality of the retrieved spectral properties
[142]. In this sense, a twofold advantage is brought. Firstly, the spectrum is analytically
generated from the computed filter coefficients, as opposed to the conventional approach
of applying a Fourier transformation on the raw data, where the influence of noise might

79
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be detrimental. Thus, spectra deriving from parametric methods inherently allow for a
significant increase in the SNR. Secondly, it follows that the delivered spectral profiles
are characterized by a much sharper and smoother trend with respect to non–parametric
approaches; as pinpointed in Section 2.2.1.1, this trait facilitates the subsequent feature
extraction phase, especially when dealing with PP algorithms.

Notwithstanding these advantages, there are very few examples of SysId implementa-
tions on edge or extreme edge devices available in the literature. A possible explanation
is in the high computational complexity and memory requirement of the involved al-
gorithms, which render their embodiment in resource–constrained sensors a non–trivial
task.

A noteworthy exception is the work presented in [12], where the authors exploit para-
metric system modeling, running on the Imote sensor platform, for the structural assess-
ment of civil infrastructures. Nevertheless, despite showing promising results, the very
restrictive memory footprint of this sensor board was not compliant with the execution
of the algorithms required by output–only SysId. To tackle this issue, the same authors
adopted simple correlation–based methods, at the expenses of a lower communication
efficiency, implied by the necessity of broadcasting a reference signal to multiple nodes.

Conversely, in the strategy proposed in this work, such requirements are alleviated and
accounted for by means of efficient linear algebra operations. Coherently, the expedients
resorted to for the embodiment of SysId in extreme edge devices are investigated, and their
performances thoroughly evaluated from an algorithmic, structural and energy point of
view.

5.2 estimating model parameter at the edge : from ols to s-tsqr-ols

5.2.1 The OLS formulation

SysId makes use of regression techniques to identify the sought model parameters, as
typically those minimizing the error between the predicted and actually measured system
response according to certain heuristics.

Accordingly, the expression provided in Eq.(1) can straightforwardly be converted into
a linear regression formulation, as follows:

y[k] = ζ[k]Tβ+ ε[k] (25)

with ζ[k]T ∈ R1×Np designating the regression vector and β ∈ RNp×1 denoting the
coefficient vector to be estimated. Assuming that the time series spans an observation
window of N samples, a full–scale variant of (25) is given as:

Y = Zβ+ E (26)

where Z = [ζ[1] . . . ζ[N]]T ∈ RN×Np is a rectangular matrix with regression vec-
tors arranged as horizontal entries, per row; Y = [y[1] . . . y[N]]T ∈ RN×1 and E =

[e[1] . . . e[N]]T ∈ RN×1 correspond, instead, to the observation and error vector. Hence, a
final estimate of the sought coefficient vector is yielded via Ordinary Least Squares (OLS),
according to:
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Table 11: Regression matrix and model parameter vector for the ARX, AR and ARMA parametric
models.

ARX AR ARMA

Z[k] =



−y[k− 1]
...

−y[k− q1]
u[k]

...
u[k− q2]


β =



θ1
...

θq1

γ0
...

γq2


Z[k] =

 −y[k− 1]
...

−y[k− q1]

β =

 θ1
...

θq1

 Z[k] =



−y[k− 1]
...

−y[k− q1]
e[k]

...
e[k− q2]


β =



θ1
...

θq1

γ1
...

γq2



β = (ZTZ)−1ZTY (27)

while a recovery of the prediction error is returned as

E = Y −Zβ (28)

with variance σ2
e = ETE. As such, any parametric model is completely characterized by a

set of Np + 1 values. Obviously, the regression quantities β and Z strictly depend on the
adopted SysId model: for ARX, AR and ARMA, they have been collected in Table 11.

5.2.1.1 OLS for ARMA models: the Hannan–Rissanen algorithm

The regression technique described above is only applicable for single–stage parametric
models, such as ARX and AR, and may not be implemented for evaluation of the ARMA

counterpart. In fact, in the latter case, y[k] is regressed not only on its past values, but
also on the preceding unobserved quantity e[k], which thus needs to be implicitly calcu-
lated. In this case, the Hannann–Rissanen (HR) algorithm [143] provides a simple and yet
asymptotically stable solution. HR is based on the cascade of two successive OLS steps:
firstly, a high–order AR model is fitted to the measured response and an estimate of the
noise term is derived, as dictated by Eq. (28). Knowing E, the next step involves matching
a low–order ARX model to the same time series, finally returning an estimate of the ARMA

parameters. To be consistent, the order of the first–step AR model should be at least twice
the one adopted in the second ARX stage.

5.2.2 From OLS to QR decomposition

The canonical OLS algorithm, which is given in Eq. (26), might be prone to numerical
instability, rounding effects and bad conditioning, primarily due to the required inverse
matrix operation. To partly alleviate these effects, the QR factorization of the regression
matrix is usually suggested as a viable procedure. Indeed, the QR [144] factorization aims
at decomposing a full–rank matrix in the product of two independent matrices, namely an
orthogonal matrix Q and an upper triangular matrix R, with the advantage of converting
any complex linear system into a simple back–substitution procedure.



82 system identification at the extreme edge for network load reduction

For the problem at hand, Z = QR can thus be computed and, once plugged into (26),
the QR–based variant of OLS (QR for Ordinary Least Squares (QR-OLS)) becomes:

β = R−1QTY (29)

The dimensions of the two factorizing matrices depend, in turn, on the arrangement
of the matrix to be decomposed. In our case, the ratio between the number of rows
(N = Ns1pNp) and columns (Np) of the regression matrix exactly amounts to Ns1p,
i.e., the number of samples per parameter, which is empirically suggested to be a quan-
tity larger than 20 in order to guarantee a sufficiently accurate estimation of the model
parameters. Given this, the upper triangular structure of R imposes that only its upper
[Np ×Np] partition differs from zero. As such, an economy–size variant of the standard
QR has to be preferred, returning Q ∈ RN×Np and R ∈ RNp×Np .

Several algorithms are available to accomplish QR decomposition. The Householder
reflection method [144] is specifically suggested for edge solutions, granting the most–
favorable compromise among the modified Graham–Schmidt orthogonalization, which is
readily implementable but extremely prone to numerical errors, and Givens rotation, that,
conversely, shows great stability but sensitivity to overflow/underflow in single–precision
floating–point values [99], [145]. The choice was driven by the necessity to handle very
weak and faint signals, sometimes close to the sensor sensitivity, as would be the case for
vibration responses that are induced by ambient loads.

5.2.3 From QR to Sequential Tall–skinny QR decomposition

QR-OLS is efficient in terms of processing, owing to its conceptual and algorithmic simplic-
ity. However, in this form, it appears impractical for near–sensor embodiment because of
its elevated memory requirements imposed by the large dimensions of the matrices to be
processed. It should be noted that the dimension of Z increases with the square power
of the number of parameters, i.e., dim{Z(·)} ∝ N2

pNs1p, while the Random Access Mem-
ories (RAM), in low–power and low–cost MCUs, are typically below a couple of hundreds
of kB, even for the devices with the largest storage capabilities. It follows that, when Np

is in the order of a few tens and a minimum number of samples per parameter (Ns1p) is
set, the available memory is rapidly consumed. As an example, assuming a single piece of
data is represented as a word of 4B (i.e., 32–bit parallelism), the combination of Np = 20

and Ns1p = 20 requires at least 4N2
pNs1p = 32 kB of memory entirely dedicated to the

storage of the regression matrix.
To overcome these restrictions, a MCU version of the classical Sequential Tall–Skinny

QR (S-TSQR) decomposition [146] is proposed. S-TSQR was originally conceptualized to by-
pass the limitations of parallel architectures (in particular, of MapReduce) to provide a
communication–avoiding solution for dense linear algebra problems enabling data trans-
fer reduction by means of local grid operations. In this work, the standard S-TSQR has been
adapted to single–core embedded platforms, in which the computing power and the mem-
ory allocation policy of the processor are dramatically lower. Such goal was achieved by
exploiting efficient coding techniques such as loop unrolling, register blocking, buffered
multiplications, vector outer product and matrix addition merging and transposed multi-
plications enabling fast arithmetic and optimal memory re–use.
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Figure 32: Processing flow at the basis of the S–TSQR decomposition approach adopted in this
work for the sake of matrix dimension reduction.

In general terms, S-TSQR leverages the key concept of reproducibility, i.e., the ability to
obtain bit–wise identical results from different runs of the same algorithm given identical
input data, regardless of how the computing resources are scheduled. In this sense, the
ruling principle at the basis of S-TSQR (schematically depicted in the block diagram of Fig.
32) is to partition the full–scale decomposition of Z in the subsequent decomposition of
small–size Ži ∈ RNr×Np(i ∈ {1,Nch}) matrices comprising at most Nr = N/Nch +Np

rows dictated by the selected number of chunks Nch. The procedure is described as fol-
lows. Apart from the initial step acting directly on the first N/Nc rows of Z, in all the re-
maining Nc− 1 iterations QR is performed on the newly generated matrix Zi = [Ri−1|Ži]

T

obtained from the horizontal concatenation of the previously computed Ri−1 matrix and
the current block rows Ži. Accordingly, the original Q and R terms, referring to the com-
plete regression matrix, can be recovered as R = RNch

and Q = Q1Q1 . . . QNch
. This

means that, while R can be taken directly at the output of the last iteration in a very ef-
ficient way, the computation of Q according with the canonical S-TSQR procedure [146] is
not affordable because it consumes a memory space exactly equal to the original regres-
sion matrix to be decomposed, and because it implies the storage of all the intermediate
Qi matrices.

To overcome this limitation, a new and memory efficient procedure has been imple-
mented in a novel manner. The proposed solution, referred to as Embedded S–TSQR
(eS-TSQR), is inspired by the sparse structure of the Qi matrices, whose non–null and non–
unitary entries are the Householder reflectors αi [144], i.e., those vectors which are used to
perform the orthogonal triangularization of the matrix R. In particular, at the end of each
TSQR iteration, an additional step (the coefficients vector update) is introduced, so that the
matrix product QTY = QT

Nc
. . . QT

2Q1Y is substituted by two dot–products Yi = αiα
T
i Yi−1

(Y0 = Y).

5.2.4 Wrapping up: the eS-TSQR-OLS approach

A complete description of the implemented Embedded Sequentail Tall–Skinny QR De-
composition for OLS (eS-TSQR-OLS) procedure is depicted in Fig. 33, where the two main
phases, namely eS-TSQR and SysId, are underlined. Note that ARX and AR form direct meth-
ods meaning that one single cycle of eS-TSQR-OLS is necessary to obtain the sought model
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Figure 33: eS-TSQR-OLS processing flow for model parameter estimation. From left to right: once
signals have been acquired (step 1), the eS-TSQR decomposition process is entered and
repeated Nch times: at each i–th iteration, the regression matrix is firstly created as
stated in Table 3 by selecting the proper signal frame (step 2.a), each comprising a
sliding window of N/Nch samples at step size equal to the number of parameters Np.
Then, the Householder decomposition of Zi is applied (step 2.b), paving the way for
the subsequent update of the coefficient vector Y̌. At the end of the Nch–th cycle, the
upper triangular matrix RNc

and YNch
are used in the SysId phase to compute the

model parameters β (step 3.a) and the residual noise density σ2
e (step 3.b). The finite

set of Np quantities can, thus, be transmitted at the receiving side, where the spectrum
profile Sy(f) of the acquired signal can be reconstructed and the sensor–related modal
information are then extracted (e.g. the peak spectral values fp).

parameters. Conversely, ARMA models imply a recursive two–stage procedure. In this case,
the entire procedure needs to be repeated twice: firstly, AR is adopted to retrieve the (un-
known) noise exciting force, which is then used in a second eS-TSQR-OLS iteration built on
the ARX model in order to derive the ARMA parameters.

5.2.4.1 Selecting the chunk size

The optimal number of partitions Nch for the eS-TSQR decomposition is a function of the
selected number of samples per parameter. In order the Householder algorithm to be ap-
plicable, it must be ensured that the number of rows in the regression matrix is strictly
higher than the number of columns, corresponding to Np. This condition is always sat-
isfied in the second iteration of the S-TSQR, due to the fact that the regression matrix
constitutes of the horizontal concatenation of the previously computed Householder ma-
trix R and the new block row. While, in the first iteration, Nch should be selected such
that

Ns1pNp −Np

Nch
⩾ Np (30)

from which it is easy to derive that N∗
ch ⩽ Ns1p − 1. Hereinafter, Nch = N∗

ch will be
assumed.
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5.3 prototyping sysid at the extreme edge

During the prototyping phase, the algorithmic accuracy of the proposed eS-TSQR-OLS is
firstly assessed, then investigating the effectiveness of the entire methodology for damage
assessment even in presence of noisy signals.

5.3.1 Materials

The parametric models presented in Section 2.2.2.1 were embedded in the STM32L522ZE–
Q Nucleo board, which is one of the latest products released by ST Microelectronics for
the prototyping of embedded applications requiring ultra–low–power consumption and
higher security levels. It integrates, at its core, an STM32L5 MCU [147] based on an ARM©

Cortex©–M33 processor with a single–precision FPU and upgraded level of performances
thanks to the enhanced Digital Signal Processing (DSP) functionalities. The equipped mem-
ory amounts to 256kB of RAM and 512kB of FLASH, which are enough to accommodate
both static and volatile data for typical duty–cycles of SHM scenarios.

5.3.2 Algorithmic validation

5.3.2.1 Model order selection

The selection of the proper model order is a critical point for the efficacy of parametric
models, since both under or over–estimation may hamper the actual retrieval of the hid-
den structural information [148]. A plurality of methods has been proposed to tackle this
challenge, which are usually based on statistical metrics, such as the Bayesian Information
Criterion (BIC) adopted in this work [149]. Once estimated on a meaningful batch of data,
the model order is assumed constant; as discussed before, such approach is enabled by the
slow–varying structural properties characterizing the vast majority of civil and industrial
structures [132].

5.3.2.2 Performance metrics

From the computed set of parameters, modal information can be retrieved by analysing
the associated PSD. As such, the quality of the identified structural properties was assessed
by means of the Itakura–Saito Spectral Divergence (ISD) [150]. ISD represents a cumulative
measure of the point–wise spectral distance between two different PSD curves. For N–long
frequency vectors, it is defined as:

ISD =
1

N

N∑
c=1

[
Sy(f)

Ŝy(f)
− log

(
Sy(f)

Ŝy(f)

)
− 1

]
(31)

The goal of this analysis is to demonstrate the equivalence of fast running remote
servers processing high–depth signals and extreme edge–processing computation in vi-
bration monitoring; thus, Sy(f) and Ŝy(f) are the PSDs computed via SysId as detailed in
Section 5.2, by using the model parameters estimated by the MCU with the eS-TSQR-OLS

approach, and via built–in MATLAB® functions addressing the same task, respectively.
ISD ranges between 0 and 1: spectral superposition is considered perfect in case the ISD

equals to zero, whereas higher values highlight possible misalignments.
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Table 12: ISD values (multiplied by 102) for varying model order and number of samples per
parameter.

Np

Ns1p 9 17 25 33 41 49 57

25 1.36 1.42 1.40 1.42 1.39 1.40 1.36
30 1.15 1.15 1.16 1.12 1.12 1.17 1.12
35 0.95 0.99 0.95 0.93 0.93 0.93 0.93
40 0.82 0.83 0.82 0.82 0.80 0.79 0
45 0.73 0.69 0.71 0.71 0.71 0 0

5.3.2.3 Results

The effectiveness of the implemented extreme-edge processing with respect to off–line
computation has been verified in the first phase of the experimental validation. In partic-
ular, attention is focused on the validation of the ARMA model estimation because, given
the dual–stage structure of the HR algorithm, the retrieval of ARMA parameters implicitly
confirms the validity of both the AR and ARX implementations.

This was accomplished by loading into the STM32L5 FLASH memory one noise-
corrupted vibration signal, which was generated via simulation of a six–storey shear
frame under white noise base excitation. All the possible combinations of Np and Ns1p

values were explored by varying the former quantity in between 9 and 57 (step size equal
to 8), whereas the latter was swept in the interval [25; 50] (step size equal to 5). The per-
formance was evaluated in spectral terms via the ISD and the corresponding results are
reported in Table 12.

As can be observed, ISD values are below 1.5 ·10−2 even for the worst-performing config-
uration, while reaching perfect superposition in some cases (e.g., Np = 49 and Ns1p = 45).

5.3.3 Execution time

To measure the execution time, the Np and Ns1p pairs discussed in Section 5.3.2 were
selected, obtaining the processing times depicted in Fig. 34 for the AR1 (red scale curves)
and ARMA (blue scale curves) model.

The reported trends confirm that the time consumed by the ARMA model is nearly dou-
ble the time required by the MCU for execution of the AR variant, when a mutual number
of samples per parameter and total amount of parameters is used for both models. This
outcome is, once again, consistent with the AR–ARX nature of the adopted HR algorithm.
From Fig. 34, it can be seen that the relationship between the processing time and Np is
cubic, whereas the variation due to Ns1p is a linear function of the selected number of
samples per parameter.

The maximum reported computation time amounts to 129 s and is associated with an
ARMA model involving Np = 57 and Ns1p = 45, i.e., 57 parameters are to be extracted
from the time series (2565 samples). For real–field deployment, where algorithms are
to be executed with low latency, such computation time is barely compatible with high

1 Execution time for ARX model were not included since it is equal to the one required by AR for the same total
number of parameters.
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Figure 34: Execution time for ARMA (blue scale curves) and AR (red scale curves) model running
on STM32L5 MCU under different Np and Ns1p configurations.

sampling rates. For the sake of an example, acquiring 2565 samples at 50Hz requires
about 50 s, which is slightly more than one third of the time taken for processing them.

It is worth noting that, in many practical applications, a viable way to speed up identi-
fication is to apply a band–pass filtering operation before running the actual parametric
identification task. This reduces the true content of the signal, owing to the focus on some
selected spectral bands and, in turn, lowers the number of parameters that are necessary
to accurately model the system dynamics, which implies a decrease in the computation
time according to N3

p. In addition, as mentioned above, computing such a large number
of parameters is hardly required in typical SHM scenarios, where model orders are usually
confined below a couple of dozens even for the most complicated vibration patterns, such
as the ones characterised by highly coupled modes or very rich profiles [141]. As such,
SysId remains an efficient means for data compression even in presence of rapidly varying
structural behavior. This possibility is granted by the fact that, by processing successive
time frames with comparably shorter size, it is possible to identify potential anomalies
in the structure by tracking how the spectral content extracted from the corresponding
model parameters changes over subsequent signal instances.
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5.3.4 Structural validation

5.3.5 The case study: a Windspot blade wind turbine

The proposed edge solution for data compression was validated on an actual operating
structure. This objective was pursued by exploiting field data collected for a small–scale
wind turbine hosted in the IBK laboratory at ETH Zürich. In more detail, the considered
test-bed consists in a 3.5 kW Windspot prototype blade, manufactured by Sonkyo En-
ergy [151]. Its structural behaviour has been extensively investigated against artificially–
induced dynamic excitation, as well as varying environmental conditions under both pris-
tine ("healthy") and damaged scenarios2. In the referenced work, the vibration response
signals, induced by white noise excitation (effective frequency bandwidth between 0 and
400Hz) are considered to emulate a practical OMA scenario, which requires use of a broad-
band (ambient) excitation.

In [151], an experimental study has been performed on the considered blade structure,
which reveals that the vibration pattern experienced by this structure is remarkably com-
plex, as it is characterized by multiple and closely–spaced spectral regions undergoing
significant changes due to varying temperature and operational effects. This suggests that
simple AR models would be either ineffective in capturing all the significant components
with enough resolution or, conversely, too complex to approximate a reasonable solution.
Hence, an ARMA model was applied, whose model order - according to the BIC criterion
- has been estimated equal to 20 (Np = 40+1), for processing time frames of 3000 sam-
ples, acquired at a sampling frequency of 833Hz. The corresponding compression factor
amounts to CR = 3000/40 = 75.

5.3.6 Including the effect of instrumental noise

Similarly to the approach adopted in the preliminary validation step, data were statically
loaded into the MCU non–volatile memory at the start–up after conversion to the float32

bit format. Moreover, since the response signals were acquired via use of commercial in-
strumentation involving PCB Piezotronics accelerometers that feature high sensitivity and
high resolution levels, which are not compliant with long–term and low–cost monitoring
systems, the datasets were corrupted with white Gaussian noise. This is meant to replicate
the intrinsic electronic and mechanical drifts that are common in commercial digital MEMS

devices for low–cost and low–power embedded applications. In particular, the following
features were considered: sensor noise equal to 80µg/

√
Hz, a constant offset bias of 40mg,

16–bit ADC resolution corresponding to 0.061mg/LSB, zero-g level and sensitivity change
versus temperature of ±0.1mg/°C and ±0.01%/°C, respectively.

5.3.7 Results

The effectiveness of ARMA models for data compression has been evaluated by verifying
whether the spectral signatures, that were reconstructed by the ARMA parameters that
were computed by the STM32L5 device under varying conditions, are capable to track
the corresponding shifts in the peak spectral values. The rationale behind this choice

2 The collected signals have been made publicly available at https://zenodo.org/record/3229743#

.YLpz8vkzaUm)

https://zenodo.org/record/3229743#.YLpz8vkzaUm
https://zenodo.org/record/3229743#.YLpz8vkzaUm
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Figure 35: Spectra of the wind turbine blade working at the reference temperature of +25 °C under
progressive damage tests (left), while the effects of temperature changes are underlined
in the right hand image for the damage–free status. Signals at higher density levels,
characterised by a smoother profile, are obtained by SysId running on sensor, whereas
the ones appearing at the bottom part are computed by standard Welch’s method for
PSD.

is that variations in the frequencies that are associated with the most energetic modal
components form important indicators of possible damages or, in other words, are proxies
of anomalies (defects).

Two different analyses were performed and the obtained spectral profiles are shown
in Fig. 35. In Fig. 35a, the capability of the adopted ARMA model to follow the frequency
variations induced by man–made damages is investigated. Three reference cases, denoted
in the figure with label A, D and L and characterised by the same temperature value of
+25 °C, correspond to three different damaged status simulating, in sequence, the presence
of one added mass (case A), the formation of one single crack (case D) and the concurrent
occurrence of three cracking phenomena (case L). On another study, three signals for
the healthy blade were processed while varying the temperature range between −15 °C,
+25 °C and +40 °C (see Fig. 35b). In both cases, the perturbation in the spectrum is clearly
evident and increases for higher natural frequencies. This is additionally noted via use of
grey background boxes whose width increases while moving toward higher frequencies.

Comparing the spectral curves derived from ARMA parameters and the ones computed
via the more conventional Welch estimator (lower part of the spectrum), a good agreement
is noticeable: indeed, despite a vertical shift due to a bias in the estimated noise density
σ2
e, the peak locations remain clearly centered as well as the global trends superimpose in

quite a precise manner. The main difference between the two spectral estimators is given
by the filtering effect of the parametric method, which finally provides a PSD plot that can
be more reliably used for extraction of the structural modes in both regimes.
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5.4 cost–benefit analysis

The energy consumption of a sensor node strongly depends on the executed tasks, which
may pertain to data acquisition, data processing and data transmission, with each task
contributing to the overall power budget. Indeed, it has been demonstrated [152] that
outsourcing data in wireless devices is the most demanding operation, due to the signifi-
cant amount of power required by the transmission module to travel long distances with
minimal payload degradation.

When no operation needs to be executed, the sensor node enters a quiescent mode in
which the energy expenditure is kept minimal to preserve battery life–cycle. Furthermore,
this discrepancy increases when considering the power spent in idle state. In this con-
dition, which is imposed when no overriding task is executed, the sensor node enters a
sleep phase to minimize the power consumption: no more than a couple of µW are usually
consumed in this modality, which is more than three order of magnitude less expensive
than transmitting.

The energy consumption is also strongly influenced by the execution time of compres-
sion and/or identification tasks. Unfortunately, while the elapsed times for acquiring and
transmitting information are deterministic quantities (related to the total frame size, the
compression technique and the communication protocol), the accurate estimation of the
DSP time is non–trivial. The reason is that some dependencies between different portions
of the code (i.e., break instructions, conditionals) can be thoroughly evaluated only at
run–time.

5.4.1 Quantifying energy consumption in IoT applications

Overwhelming the common approach usually focusing only on the mathematical tech-
nicalities, the specific impact of extreme edge signal processing for SysId to the power
budget has been comprehensively evaluated in conjunction with the one of transmission,
by taking into consideration the communication protocols that are best suited for IoT ap-
plications. In doing this analysis, the energy spent for sampling can be neglected, as it is
proportional to the length of the signal to be acquired, which is supposed equal for all the
adopted compression algorithms.

Further to SysId solutions (label SysId), compression–free scenarios (label No DSP), as
well as compressed sensing solutions (label CS) are considered, the latter representing the
main (and most commonly adopted) competitor for data compression in this field.

5.4.1.1 IoT–protocols for WSN

To accomplish this goal, the IoT analyzer toolbox3 presented in [152] has been specifically
exploited since it provides an open source platform which allows to simulate the working
principles of different IoT–oriented protocols for wireless sensor networks, and to quan-
tify the energy consumption of the corresponding hardware modules. The complete list of
protocols and related hardware considered in this work includes: the nrf52840 multipro-
tocol System on Chip [153] supporting both Bluetooth Low Energy (BLE) 5.0 with Long
Range connectivity and the 802.15.4 stack; the MAX2830 module [154] enabling 802.11
Power Saving Mode (PSM); the very recent SX-NEWAH [155] module implementing the

3 https://gricad-gitlab.univ-grenoble-alpes.fr/morinelo/iot-analyzer

https://gricad-gitlab.univ-grenoble-alpes.fr/morinelo/iot-analyzer
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communication based on 802.11ah Wi–Fi HaLoW; finally, the SX1272 tranceiver [156] was
chosen for LoRaWAN technology. These devices differentiate both in terms of maximum
power consumption (from 30mW to 700mW in transmission mode), available data rates
(from 125kbps to 10Mbps) and maximum packet size (from 120 to 1280 Bytes).

5.4.1.2 Setting the simulation scenario

The periodic acquisition of N–sample time series per hour from a tri-axial accelerom-
eter device is simulated to mimic real vibration–based monitoring scenarios. Here,
N = Ns1pNp is the total length of the waveforms to be acquired in case of the SysId

method. The communication–related energy consumption computed by the analyzer (for
a transmission distance of 200m to be compliant with the communication ranges sup-
ported by all the considered protocols) is thus complemented with the one associated
with the DSP task. To this end, the execution times reported in Fig. 34 were specifically
employed and multiplied by the average power consumption of the STM32L5 device in
normal operative mode, which has been experimentally measured equal to 15mA, while
powered at 3.3V; a compression ratio equal to 5 has been chosen for CS processing. In
what follows, among the various tried configurations, results are presented only for the
most critical one, corresponding to ARMA model with Ns1p = 45: this leads to a gain in
the compression factor of 9x and 45x comparing with CS and No DSP, respectively.

5.4.2 Results

In Fig. 36, the trends representing the total energy consumption deriving from the commu-
nication and processing operations are shown. The different background colors are used
to identify the three considered working configurations, namely blue, gray and green are
associated to SysId, CS and No DSP, respectively. Additionally, the markers are used to
indicate the same transmission payload (per given Ns1p, while varying Np in the interval
[9, 57], in steps of 8), such as it is easier to compare the considered approaches. The plot
indicates that the power saving of SysId with respect to CS can reach 10x, increasing up
to 100x in case of no data compression.

It is further worth mentioning that SysId yields the most efficient performance for all the
considered communication protocols. Apart from a horizontal bias due to hardware char-
acteristics, the same consumption curve characterizes BLE 5.0, 802.15.4 and WiFi HaLoW
by exhibiting a sharp increase for data payload higher than 1 kB. The trend is slightly
different for 802.11 PSM, where the estimated energy profile is almost constant with a
minimal increase in case of very large packet sizes. The reason is that this protocol works
at a very high data rate (11Mbps) with a large packet size (1280B).

The gain in the saved energy for the least power–hungry protocol (i.e., 802.15.4) has
been highlighted in Fig. 36 for the two extreme cases of Np = 9 and Np = 57. As can be
observed, the energy savings are always favorable, moving from a minimum gain of 1.07x
up to a maximum improvement of 1.19x in the comparison with CS–driven solutions, as
dictated by the minimum and maximum number of parameters. Notably, these gains rise
up to 1.38x (minimum Np) and 2.78x (maximum Np) while considering compression–free
scenarios.

The SysId–based approach yields a significant advantage with respect to the other so-
lutions, especially in the LoRa case. As a general observation, the restrictions in terms
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Figure 36: Total energy expenditure with one hour duty–cycle for different IoT protocols, taking
into account expenditure due to data processing and outsourcing. The acquisition of
triple-channel signals are assumed with Ns1p = 45, while sweeping Np in the interval
[9, 57] (depicted with different markers). Three different background colors are used
to indicate different data compression scenarios: SysId–based processing (blue), CS–
based processing (gray) and compression–free (green). Missing points mean that the
corresponding payload in the given Tx time is not supported by the corresponding
protocol.

of sub–band occupancy imposed by ETSI4 for protocols working in the sub–1GHz band
makes LoRaWAN less effective for this kind of applications. Despite this practical limita-
tion, denoted by the absence of markers in the purple curve for high payload sizes, the
chart shows that, when SysId data compression is leveraged, even this long–range commu-
nication technology could become feasible for the assumed transmission rates.

5.5 local–to–global mode shape reconstruction for sysid–based data
compression

To be applicable in the context of data compression, the computation of parametric models
is inherently performed in a sensor–driven logic. Conversely, the structural assessment
process must be accomplished in a global manner, aiming at providing a comprehensive
overview of the overall integrity condition of the structure. Therefore, a local–to–global
merging action needs to be performed to combine all the locally retrieved information.

4 European Telecommunications Standards Institute: https://www.etsi.org/

https://www.etsi.org/


5.5 local–to–global mode shape reconstruction for sysid–based data compression 93

This assertion assumes particular significance while tackling mode shapes, which are
spatial dependent quantities whose profile is determined by the relative position of the
sensors with respect to the modal response of the structure.

However, one fundamental point is worthy of discussion prior than entering the actual
algorithmic part of the local–to–global procedure: it relates to the algebraic formulation of
output–only SysId models. Indeed, when performed on a decentralized and OMA–driven
basis, the reconstruction of mode shapes from local modal coordinates is implicitly an ill–
posed problem. In modal terms, the issue is that, contrarily to input–output models where
a known and shared exciting force is used to normalize each local output with respect to
a common reference, retrieving the complex modal contribution, namely both the relative
magnitude and phase of each mode at distinct sensing positions, becomes impossible.

Such drawback arises from the fact that, from the pure knowledge of the model pa-
rameters, it is in principle not possible to recover a unique estimate of the variance σ2

e

associated to the true white stochastic process exciting the structure. Consequently, no
common scaling factor is available and, thus, there is no guarantee that the hierarchy in
the relative energy distribution across different sensors is preserved after the computation
of the SysId power spectrum. On the other hand, it should be considered that the variance
of the assumed white noise is usually very low, owing to the fact that such quantity sta-
tistically coincides with an error term (see Eq. (28)), ideally assuming null values in case
of perfect prediction. The importance of the latter observation is pivotal because it allows
naive PP algorithms to be applied to single PSD estimates for the fruitful reconstruction of
the absolute value of the mode shapes.

Despite offering the naivest approach to extract modal coordinates in decentralized
systems, PP suffers from the same problems highlighted in Section 2.2.1.1, namely it is
extremely prone to local drifts and inaccuracies, which obstacle the accurate identification
of the peak spectral values. When this algorithmic instability combines with the additional
uncertainties due to output–only processing, the results yielded by this approach cannot
be considered sufficiently reliable.

Moreover, what is more detrimental is the fact that all the phase delays associated
with the individual SysId filters for output–only identification are zeroed, irrespective of
the physical relationship between each measured vibration response and the common
exciting source. Hence, the relative temporal shifts between multiple sensing positions,
corresponding to as many phase rotations in the phase diagram of the corresponding FRF,
are completely missed; this hampers the possibility to compute back the sign of the mode
shapes. Note that, since phase rotations are phasor of unitary value, this phase hindrance
has no effect on the magnitude of the FRF (and, thus, the relationships in the magnitude
of energy collected at different sampling points could be preserved, in principle, less then
the noise term). As such, the mode shape identification problem turns, in essence, to the
divination of the sign of the mode shapes.

With these intrinsic shortcomings in mind, the pursuit of this Section is to offer a suit-
able strategy for the estimation of the global mode shapes under the premise that (i) the
adopted SysId model is known and (ii) only the locally computed model parameters are
accessible at the cluster edge for aggregation.
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Figure 37: Typical SysId–enabled clustered architecture for vibration–based SHM. From left to
right, the SysId local identification is allocated to the PSNs which transmit their re-
lated model parameters to the CH unit where global modal identification is performed
through SysId2FDD. The latter is formulated as follows: firstly, the FRF associated to
each i–th node (Hyi

(f)) is computed and passed as input for the calculation of the CPSD
matrix, directly in the frequency domain. The absolute value |Φ| of the mode shape ma-
trix is retrieved via standard FDD, whilst the corresponding sign vector ηi per given
sampling position is yielded by the DP method applied to Hyi

. The actual mode shapes
corresponds to Φ = η⊙ |Φ|. Finally, the SN provides the sought structural bulletin via
analysis of the aggregated information.

5.5.1 The SysId2FDD algorithm

Overcoming the main drawbacks of PP algorithms, the methodology devised in this Sec-
tion for the sake of global mode shape reconstruction from SysId is original in that it
takes advantage of the centralized nature of FDD with the superior resolution in the spec-
tral profiles delivered by SysId. Leveraging on this dual properties, the technique will be
addressed, in the following, as SysId–to–FDD algorithm (SysId2FDD).

The operative framework is identical to the one depicted in Fig. 29; the only variation
is that, since the core point of the method is to demonstrate the actual retrieval of mode
shapes, the simplistic case with one single cluster is considered. Once model parameters
are identified at the PSN level and outsourced to the CH node, the SysId2FDD algorithm can
be run at the cluster node involving the following steps:

1. FRF retrieval: for all the mastered nodes, the complex quantity Hyi
(f) is computed

according with the selected SysId model5.

2. CPSD matrix estimation: differently from its canonical definition in the time domain
introduced in Section 2.2.1.2, the generic CPSD function Syi,yj

(f) is computed directly
in the frequency domain as the complex product between FRF Hyi

(f) and Hyj
(f)

5 The expressions to be employed to this end coincide with the PSD equations in Table 3 less than the square
magnitude operator.
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collected at node i and j, respectively. For analogy with Fig. 5, let’s denote the CPSD

matrix as SY(f).

3. Mode shape magnitude retrieval: the remaining operations invoked by FDD are then
performed, yielding the modal frequency vector f and the absolute value |Φ| of the
mode shape matrix.

In order to reconstruct the sign of the mode shape, an effective strategy is suggested by
the Dip Picking (DP) algorithm. DP has been proposed in the literature as the dip–driven
counterpart of the more famous PP strategy. In essence, DP aims at identifying phase
rotations in a given spectral representation by probing for the presence of antiresonant
frequencies [157], the latter corresponding to those frequencies whose vibration ampli-
tude is theoretically null. If Φi = [Φi,1, . . . , Φi,P]] represents the row vector of P modal
coordinates identified for PSN i, a phase change among two successive modal coordinates
Φi,p and Φi,p+1 can be revealed via DP in case one antiresonant frequency is identified
between their peak spectral values fp and fp+1. Therefore, the sought mode shape sign
vector ηi can be structured as a row–wise antipodal vector containing, for each entry
ηi,p(p ⩾ 2), a value equal to −1 or 1 depending on whether or not one antiresonant
point is identified between the modal component p and the preceding p− 1; the method
assumes ηi,1 = 1 for all the sensor locations6.

The complete mode shape matrix is finally fetched as:

Φ = η⊙ |Φ| (32)

where η is a row matrix containing - in each i–th row - the mode shape sign vector ηi,
and ⊙ indicates the point–wise Hadamard product.

Noteworthy, there are three aspects to be considered for the actual effectiveness of the
DP technique. The former is that the spectral profile of the structure at the antiresonant
frequencies is clearly distinguishable, a condition which depends, in turn, on the selec-
tion of the most appropriate model order, whose estimation becomes the tricky point of
the overall processing flow. The second one pertains, instead, to the relative spectral dis-
tance between the modal components of interest, which might impede, in case of closely–
spaced modes, the actual frequency tracking activity of DP. Finally, being DP nothing but
a PP method adapted to search negative rather than positive peak quantities, it might be
affected by the same drawbacks.

Nevertheless, in the SysId2FDD realization, since modal frequencies are provided in one-
shot by the FDD algorithm, the antiresonance check implied by DP takes advantage of the
centralized retrieval of the frequency bands, which are known in advance and can be
proficiently exploited during the sign retrieval step to focus the attention on the proper
spectral regions. Conversely, the standalone application of PP is less robust since, in this
case, one initial step of global frequency identification needs to be executed to select
common modal components out of local frequency representations that might be affected
by artifact components, which most likely occur in case of unfavorable sensing locations
or instrumental failures.

From an edge processing perspective, another point is worthy of discussion, which is
the low computational complexity implied by SysId2FDD, which is substantially identical

6 Coherently, the method is applicable for structures whose first peak spectral value correspond to a clear
bending mode.
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to the one required by the classical FDD plus the additional cost due to the computation
of the FRFs. The latter is negligible if compared to the other operations; hence, the method
appears affordable even at a hardware–oriented level. Additionally, it is important to
observe that such methodology is also compatible with the possibility to adapt the number
of parameters in a sensor–wise manner to better capture vibration modes irrespective of
the sensor position. This is viable since the retrieval of modal parameters only depends
on the computed FRFs, independently from the actual number of parameters required for
their computation.

5.5.2 Experimental validation

In the following, the effectiveness of the proposed SysId2FDD+DP method is discussed and
proved against damage detection capabilities. Since the objective of this analysis is to
verify the correctness of the local–to–global workflow, such validation was performed of-
fline in the MATLAB® environment. ARMA models were considered due to their superior
performances in OMA scenarios.

5.5.2.1 The use case: a laboratory high–rise shear structure

Vibration responses collected for a metallic shear frame located at the research labs of the
Department of Civil Engineering of the University of Bologna, Italy, are employed. The
facility consists of a high-rise five-story frame composed of five identical cubic modules
with nominal height of 1m, arranged in a way that imposes quite a rigid mechanical
response. Combined with the symmetric design, all these structural properties led to
the presence of tightly coupled modal components and, for this reason, it provides a
challenging scenario for the actual validation of the SysId2FDD+DP strategy.

5.5.2.2 The monitoring network

This structure represents one of the pillar test–beds of the MAC4PRO project for the mon-
itoring and predictive maintenance of industrial sites and civil engineering structures by
means of a customized sensor–to–cloud architecture. Pursuing this objective, the ISSLab
sensor network presented in Appendix A was selected as candidate player for the data
measuring layer thanks to its low–cost, light–weight and versatile characteristics. More
details about the complete monitoring platform, from the first field validation to recent
improvements, can be uncovered in [P10] and [P11].

The structure was instrumented with a double chain of six inertial nodes fixed in corre-
spondence of the junction elements. One out of two CH units were preferred to minimize
the total electrical consumption while exploiting the beneficial multi-drop capabilities of
the communication bus. Furthermore, a favorable deployment strategy was followed to
halve the electrical load seen by the CH device. The final installation plan is sketched in
Fig. 3, where the two clusters of sensors have been differentiated with red (cluster 1, la-
bel C1) and green (cluster 2, label C2) colors, while the CH unit is identified by the gray
rectangle drawn at the mid-span of one bar on the third floor.

Notably, the geometrical rigidity of the elements imposes quite a stiffened dynamic
behavior. Thus, a sampling frequency Fs = 833Hz was selected (among the available
ones) to extend the spectral analysis in a frequency range compatible with the high–order
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Figure 38: Rendering of the five–storey shear frame located at the research lab of the University
of Bologna and relative sensor installation plan: two different sensor clusters (red and
green colors) and one CH device (black box). An insight about the sensor–to–structure
bolting is also enclosed, as well as labels indicating the beam removed during testing.
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Figure 39: Color–map of the waterfall plot obtained from the cascade of PSD spectra as computed
by ARMA parameters for different structural configurations of the five–storey frame.

modes of vibration. Time series were acquired continuously with a fixed batch size of
2000 samples along each axis.

5.5.2.3 The testing protocol

Preliminary studies conducted on this structure revealed that, as a consequence of the
bonding mechanism that forces the structure to vibrate along the in plane axes, highly
lateral displacements are favored while the vertical and rotational ones are minimized
[P10]. As such, the meaningful signal content is hidden in acceleration signals measured
along the x and y direction, which are the only one considered in this analysis. Moreover,
since the sensor distribution of cluster C2 is not sufficient to reconstruct with enough
accuracy mode shapes associated to torsional modes, attention has been restricted on
lateral bending modes, which can conversely be well–captured by cluster C1.

In order to replicate operative scenarios affected by EOP factors, a fan motor simulating
the effects of wind was used to excite the structure. Beside tests in nominal condition, the
experimental campaign was extended to damaged ones in which beams B1, B2, B3 were,
in order, removed and re–inserted to create defective configurations, one at a time. The
primary effect of this action is to induce an asymmetric mass distribution and a loss in
the mechanical stiffness of the structure, which causes mode decoupling manifesting as
a significant change in the observable spectral content. For each structural configuration,
ten different measurements were registered.

These effects are evident in the waterfall plot of Fig. 39, which shows the cascade of PSD

profiles as computed by ARMA parameters (Np = 32) extracted at node C1.6 for varying
structural conditions, from the nominal (case Nom) to the damaged ones (label B1, B2, B3).
From this graph, it is immediate to observe the abrupt change in the first vibration mode,
which moves from almost 16.22Hz to 10.19Hz as beam B1 is removed. The frequency
shift is less pronounced for the remaining modal components, which undergo variations
in the order of a couple of Hertz.
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Table 13: First six modal frequencies of the five–storey shear frame computed via SysId2FDD by
averaging over the ten successive measurements per given structural configuration.

Configuration f1 f2 f3 f4 f5 f6

Nom 16.22 17.68 39.10 86.53 100.06 110.45
B1 10.19 16.43 39.10 85.70 99.44 110.24
B2 11.65 17.89 39.94 86.11 100.27 110.03
B3 11.65 17.68 40.14 86.53 100.69 110.03

Table 14: Average MAC percentages (µp) and standard deviation (σp) between FDD and
SysId2FDD+DP reconstructed mode shapes for the laboratory five–storey frame. Differ-
ent structural configurations are considered: nominal and B1, B2, B3–damaged scenarios.

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6

Conf. µ1 σ1 µ2 σ2 µ3 σ3 µ4 σ4 µ5 σ5 µ6 σ6

Nom 99.60 0.02 98.60 0.34 97.94 1.19 95.64 0.74 98.08 0.53 97.53 1.80
B1 99.29 0.10 98.49 0.07 98.31 0.39 88.51 2.41 97.14 0.70 94.60 2.27
B2 99.58 0.12 98.97 0.12 98.35 0.87 42.83 35.61 98.02 0.44 95.29 1.03
B3 99.62 0.07 99.06 0.06 97.96 1.80 43.31 30.95 98.64 0.21 95.28 1.02

5.5.2.4 Modal parameter identification

To better quantify the damage tracking capability of SysId2FDD+DP and fulfill the global
identification task, modal parameters were extracted and compared to the ones obtained
via application of the standard FDD technique, which serves as a benchmark approach,
to the vector ensemble of measured data. Indeed, since an updated numerical model
of the structure was not available, this prevented a direct comparison with numerical
predictions.

The frequency distribution in Fig. 39 also suggests that six modal components are
present below 120Hz: their evolution over time is summarized in Table 13, which reports
the frequency values (averaged over the ten data logs) taken as output of the SysId2FDD.

Then, the analysis was extended to the reconstruction of the global mode shapes, which
are intrinsically more complicated to be recovered with sufficient accuracy. Average MAC
percentages (µp) per working status and the associated standard deviation (σp) over
the ten measurements are reported in Table 14. MAC values always above 94% demon-
strate that, apart from the isolated case related to the fourth modal component, for all
the remaining modes and irrespective of the structural configuration, mode shapes from
SysId2FDD+DP are remarkably superimposed to the ones provided by FDD. The quality of
the results is further corroborated by the low standard deviation among the different tests,
which remains stably beneath 2.5%.

Accordingly, the promising outcomes yielded by this novel approach demonstrate that
a viable solution could exists to the problem of global structural identification and assess-
ment even in presence of SysId–based data compression performed at the extreme edge.

5.6 conclusions

In this Chapter, the implementation of SysId schemes as a means for data compression in
the context of vibration–based SHM has been presented and validated on both synthetic



100 system identification at the extreme edge for network load reduction

and experimental structural responses. Embedded versions of linear algebra techniques,
namely the eS-TSQR decomposition combined with least–squares estimators, have been
specifically proposed to tackle the memory constraints of the involved algorithmic proce-
dures and meet the computational and storage resources of extreme edge devices.

The potential power savings due to the network load reduction achieved by running
SysId in a near–sensor manner have been thoroughly evaluated, taking into account the
energy expenditure necessary for the model parameter computation. To this end, differ-
ent wireless transmission protocols that are commonly adopted in the IoT framework have
been considered. It has been demonstrated that SysId is more advantageous with respect
to CS–driven and compression–free scenarios even in the most adverse network configura-
tions (i.e., for very long payload sizes), thus ensuring a longer–lasting monitoring system.

Besides, a new approach for the reconstruction of global modal parameters from mul-
tiple local estimates has been proposed: the SysId2FDD+DP method, that combines the
advantages of centralized processing granted by standard FDD with the superior spec-
tral resolution ensured by SysId. Validated on real–field data from a high–rise laboratory
infrastructure, the novel method proved reliable results also in presence of anomalous
structural configurations, hence supporting SysId as a cost–effective and reliable method
for full–scale assessment.



6
F R O M M L T O T I N Y M L – E N A B L E D V I B R AT I O N D I A G N O S T I C S

abstract

Exploiting the encouraging performances of the data compression techniques delved into the pre-
vious analyses, the scope of this Chapter is to further extend their reliability towards damage
detection in combination with the most recent solutions promoted by the artificial intelligence field.
Moreover, as an alternative to standard ML–driven scenarios, where the inference process is usu-
ally performed in a centralized, bulky manner, the unique TinyML paradigm is investigated for
vibration–based assessment at the edge. To this end, inference models were successfully coded in
a resource–constrained device, proving high accuracy for the timeliness retrieval of the structural
bulletin.

The content of this Chapter is based upon the research work [P12]:

"Machine Learning Meets Compressed Sensing in Vibration-based Structural
Health Monitoring" by Zonzini F., Carbone, A., Romano, F., Zauli, M. and De
Marchi L. (2021). Submitted to Sensors, 2022.

from which part of the text is drawn.

6.1 introduction

Damage detection has a pivotal role in SHM systems as a fundamental means to imple-
ment on-condition maintenance. In particular, many novel damage detection procedures
are gaining momentum thanks to the recent developments in the ML field [46]. AI applied
to SHM proved considerable advantages in the accuracy and quality of the estimated struc-
tural integrity and, as discussed in Section 2.3, plenty of literature has been published in
these regards in the last decades.

As far as classification is concerned, ML architectures targeting the identification of struc-
tural damages have been extensively investigated (see [158] and [159]). In such scenario,
the primary aim of classification networks is to determine whether degrading phenom-
ena are occurring or not and to notify alerts in a timely manner, a task which is usually
referred to as One Class Classification (OCC) [160]. The objective of OCC is, therefore, to
find which specific class a given input object belongs to by selecting either the target
(i.e., ’normal’) or outlier (i.e., ’anomalous’) class. OCC solutions based on standard Neural
Network (NN) models were shown to achieve good classification scores in numerous ap-
plication scenarios, such as the monitoring of civil infrastructures (e.g., bridges [161]),
industrial plants (e.g., mechanical rotors [162], wind farms [163], [164]) and avionics or
automotive structures [165], [166].

Nevertheless, several issues still need to be tackled in the SHM field, which extended
the monitoring process beyond the mere data analytics and structural assessment goal.
Among them, the problem of potential network congestion implied by the transmission

101
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of voluminous raw datasets has been extensively discussed in Chapters 4 and 5, and pos-
sible solutions to cope with it have been proposed. The performance of compression ap-
proaches is usually evaluated by computing the mean square error between the recovered
and the originally acquired signals [104], or by analysing the degradation in the modal
parameter estimation [101], [167], while only minor attention has been paid to assess how
compression affects the damage classification performance. Furthermore, condition moni-
toring data are typically affected by EOP disturbances, whose effect on modal parameters
can be even more pronounced to the one due to pure structural degradation [42]. Thus,
EOPs need to be properly modeled and taken into consideration to avoid false alarms.

Beyond these aspects, another important challenge is the reduction in the computational
complexity of the designed ML models, which are - up–to–date - typically demanded to
huge data centers. Nonetheless, this procedural manner is not compatible with real–time
structural inference. Therefore, a large demand for hardware–oriented ML solutions has
become of the utmost importance for the next generation of monitoring systems.

In such scenario, this Chapter proposes a comprehensive framework for vibration–
based diagnostics. As will be extensively described, data compression techniques are
firstly introduced as a means to shrink the dimension of the data to be managed through
the system. Then, NN models solving binary classification problems are encompassed for
the sake of damage detection, by taking into consideration both the influence of environ-
mental factors and the one of instrumental noise while. Finally, the devised models will
be coded on an edge device by following the Tiny Machine Learning (TinyML) precepts.

6.2 from raw data to anomaly detection

The ML–enabled monitoring framework proposed in this work is organized around three
successive steps (Fig. 40): (i) the data compression and recovery phase, which is aimed at
retrieving the original time waveform from compressed acquisitions; (ii) the modal iden-
tification step, returning the structural features of interests, and (ii) the final classification
stage, which leverages ML techniques as enabling tools for structural integrity assessment.

Hereinafter, each processing phase is detailed.

6.2.1 Structural identification

For the sake of brevity, and without any loss of generality, the particular scenario lever-
aging CS as a means for network load reduction is considered. Nevertheless, any of the
previously discussed techniques, compatible with the retrieval of modal parameters of
interest, could be employed.

6.2.1.1 Data compression and recovery

Noise corruption, data missing and outlier deviations are among the most frequent
sources of inaccuracies hidden within acquired data. Therefore, data cleansing proce-
dures, such as trend removal and filtering, are usually performed to account for these
issues and format data in a convenient manner for the following modal investigation task
[48]. At this point, compression operations are performed by peripheral sensors installed
on the structure [168] and, subsequently, compressed data are transmitted to a central ag-
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Figure 40: Proposed framework for structural assessment: from left to right, data compression and
recovery, modal feature extraction and selection with the final structural assessment
block. The matrix Ŷ is used to indicate the ensemble of CS–reconstructed signals from
all the different acquisition points, as it is required by OMA algorithms to provide a
global understanding of the structure under analysis.

gregating unit where the original time series is recovered following the CS decompression
procedure explained in Section 4.2.2.

6.2.1.2 Modal parameter extraction

Once the vector ensemble of vibration data has been estimated, the modal identification
task can be entered. To expedite the monitoring process, fully automated modal identifica-
tion methods would be preferable, since the retrieved outputs can be directly plugged as
input for AI tools, without the need for intermediate steps aided by manual intervention
of the experts. To this merit, particular attention deserves the SSI algorithm introduced in
Section 2.2.2.2, the principal advantage of which over conventional spectral alternatives
relying upon its completely unsupervised nature.

The crucial point of SSI is the selection of the most appropriate model order which
dictates the number of identifiable modal components. It is worth noting that the model
order also depends on the influence of EOP parameters which might gave birth to spurious
components, or induce significant changes in the spectral content distribution: therefore,
such parameter must be selected in an adaptive manner.

To tackle this issue, the so–called stabilisation diagram [169], i.e., a point chart repre-
senting how the location of the identified modal frequency values may vary as a function
of increasing order number Np < NF, can be employed. NF represents the maximum
model order deemed sufficient for the considered structure. In more detail, by sweep-
ing in a sufficiently wide order range (let’s suppose Np ∈ [1;NF]), the vector ensemble

F =
NF⋃

Np=1

FNp
, FNp

1 ∈ R1×Np is created, which gathers the estimated frequency compo-

nents for increasing model order. Hence, physical over artifact modal components can be
visually evidenced as those vertical lines (i.e., modal contributions) with higher density
points; in these terms, modes are labeled as stables if their modal contribution is evident

1 A one–to–one correspondence exists between the number of structural modes and the given model order.
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since low model orders. A very schematic representation of a stabilisation diagram is
drawn in the green box of Fig. 40 under the label "OMA - EOP extraction": in this rep-
resentative case, true modes coincide with the colored dotted vertical lines. When paired
with clustering procedures, this tool provides valuable information about the frequency
vector F containing the NF stable modes, in a totally unsupervised manner.

6.2.1.3 Feature tracking

Once modal frequencies have been estimated via any of the clustering procedures, their
evolution over time can be tracked with Gaussian moving average filters. This further
step is essential for three main motivations: (i) keeping trace of slow variations induced
by environmental effects, (ii) filtering out spurious components which are not consistent
across successive measurements and (iii) shrinking the dimensions of the feature space to
NH ⩽ NF components of interests. The latter aspect, in particular, is fundamental to en-
sure consistency between subsequent acquisitions (indicated as NI). Indeed, the number
of centroids to be identified at the end of the modal feature selection step can be much
higher than the total amount of meaningful vibration modes; thus, it is necessary to pre-
vent outlier points from altering the true frequency distribution. The filter is designed
to update the h-th frequency component f(i)h at iteration Ni with the mean value of the
previous frequency points falling into a band of ±3σ with respect to the mean value es-
timated for the preceding structural instance. In the following, it is assumed that all the
tracked frequency components are organized in the matrix H ∈ RNI×NH .

6.2.1.4 Environmental Analysis

As widely discussed in the manuscript, modal parameters are extremely sensitive to en-
vironmental factors, since they are constitutive elements determining the stiffness and
damping property of the structure [128]. The conventional approach to cope with them is
to resort to regression methods [170]. Dynamic regression analysis and PCA are just a few
of the reference approaches already investigated in the field [170]. All these methodologies
aim at finding non–linear dependencies between the measured environmental factors and
the identified structural parameters, which are then compensated by means of standard
fitting models.

Conversely, the approach presented in this work tackles this problem from a pure data–
driven perspective, by including NE EOP parameters (grouped into the NE–dimensional
vector E) as additional input features of the AI block. In this manner, the neural network
is instructed to autonomously learn this frequency vs EOP relationship, without requiring
any further processing steps to be performed aside.

6.2.2 Neural Network design

The real ML machine can be entered as soon as modal features are available. In their basic
form, OCCs can be seen as standard neural networks trained with samples acquired for the
pristine structure, since no training data is usually available for damaged conditions (i.e.,
the so called adversarial population). In these cases, a possible alternative consists in gener-
ating artificially these adversarial points. Among the OCC implementations presented in
literature, the very recent One Class Classification Neural Network (OCCNN) proposed in
[48] and the Autoassociative Neural Network (AENN) are taken as reference solutions.
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6.2.2.1 OCCNN

OCCNN [161] is a ML technique aiming at finding either linear or non–linear boundaries
between healthy and defective conditions in the parameter space. In these terms, it serves
the goal of anomaly detection in low feature space by predicting whether an input feature
vector falls into a normal or abnormal region of the total feature space. Let’s suppose
that NT measurements are used in the training phase (quantities H and E in Fig. 40).
The neural network topology consists of three main elements (see grey box "Structural
assessment" in Fig. 42). The former is a point density estimator (step 4.1), in charge of
identifying the scattering distribution of the feature values identified at the end of the
tracking phase; the second one is the Adversarial Point Generator (APG) block (step 4.2),
which randomly generates data χ ∈ RNχ×(NH+NE) of the defective class in the damaged
space identified at a given iteration of the alorithm, where Nχ can be selected as detailed
in [48]. These adversarial data, together with healthy instances, are plugged as inputs to
the last AI component (step 4.3), that is a two–layer fully connected NN with NN neurons
in each hidden layer, whose weights provide an exact estimate of the sought boundaries
Ω between the healthy (yellow) and unhealthy (dark violet) point distribution.

The number of cycles of the adversarial point generator is iterated until the desired level
of fitting with respect to the training data distribution is reached. The higher this number,
the higher the resolution of the boundary contours will become. It follows that two key
variables might significantly affect the classification performance of OCCNN, which are the
number Ncy of APG iterations retained sufficient for a robust system realization, and the
number of neurons per layer.

The performances of OCCNN were firstly tested in [161], with a reported accuracy of
96% and a precision of 98%. However, the quality of the results provided in that work
is strongly influenced by the training set point distribution. This means that a long data
collection phase, usually performed on a yearly or at least seasonal scale, has to be con-
ducted to create a set of baseline values comprehensive of all the possible structural–to–
EOP dependencies; in turn, this mandatory step slows down the actual system deployment
process. Differently from that, the framework discussed in this manuscript automates this
learning task in a purely ML manner.

6.2.2.2 Autoassociative Neural Network

In essence, an AENN [171] (Fig. 41) represents a feed–forward multilayer NN whose goal
is to reconstruct data as they appear at the input layer (a condition which implies an iden-
tical number of neurons in the input and output layer). The processing chain involves a
compression stage, in which the dimensions are reduced by means of a mapping function
with progressively lower neurons per layer, followed by a reconstruction step, also known
as demapping layer. The role of the mapping layer (with NA neurons) is to project the
input data into a lower dimensional space, that is used as a bottleneck layer thanks to a
number of neurons NB lesser than the dimensions of the feature space; an opposite func-
tion is conversely fulfilled by the demapping counterpart. Anomaly detection is achieved
by searching for abrupt variations in the residual (i.e., reconstruction error) between the
input and the currently predicted output values.
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Figure 41: General scheme of an AENN architecture.

6.3 experimental validation : the z24 bridge case study

The openly available dataset related to the Z24 bridge [118] provides unique features for
the assessment of SHM algorithms. The Z24 bridge was monitored for more than one
year by means of a permanently installed monitoring network consisting of 11 uni–axial
accelerometers and multiple environmental sensors (humidity, temperature, wind). Two
different experimental campaigns were performed: a long term continuous test, during
which the structure was subjected to operational excitation, and a progressive damage
test, consisting of purposely induced deterioration processes.

The monitoring system was programmed to acquire, on a hourly basis and from all the
installed accelerometers, 65536 acceleration values at a sample rate of 100Hz, correspond-
ing to observation windows of 11min. Unfortunately, some measurements were lost due
to sensor failures, such that only 55.6% of the total data are now available. Among the total
NI = 5651 observations, 4922 instances belong to the normal class, which are acquired in
healthy structural conditions, while the remaining 729 instances are collected in damaged
configurations.

A dataset preparation phase was necessary, too. Since the NN models adopted in this
work only need data from the normal class during training, 70% of these data from the
normal class was randomly sampled to favor diversity in terms of environmental condi-
tions. This subset was further subdivided: 70% of it was used for training and the leftover
30% allocated to validation. Conversely, the remaining 30% of the normal class, together
with all the data acquired in damaged conditions, have been employed for testing pur-
poses. For the sake of clarity, a revised version of the workflow depicted in Fig. 40 is here
included (see Fig. 42) and specialized to the Z24 use–case assuming OCCNN as neural
network driver.

6.3.1 From CS to feature tracking

6.3.1.1 Data compression and recovery

The MRak-CS technique presented in Section 4.3.1 was considered for data compression and
recovery, thanks to its peculiar adaptation to the second order statistics, i.e., to the signal
energy distribution, of the processed data. The sensing matrix was designed as illustrated
in Section 4.3.1.2 for N = 512 long segments; a compression level equal to 6 was selected
to emulate feasible compression parameters compatible with on–sensor implementations,
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Figure 42: General scheme of the OCCNN–driven monitoring framework adopted for the struc-
tural assessment of the Z24 bridge. A graphical description of OCCNN is provided at
step 4 under the label "Structural assessment".

whilst the DCT was assumed as sparsifying basis. Setting this compression factor can be
regarded to as a critical scenario compared to the average compression factors discussed
before while adopting CS–based solutions. Finally, the OMP algorithm was employed for
the recovery of the sparse coefficients in view of edge–oriented architectures (step 1 in Fig.
42).

6.3.1.2 Modal identification

At step 2, SSI-COV [130] was adopted to estimate the main vibration components of the
bridge. More specifically, the structural identification process was divided into three steps.
Firstly, the stabilisation diagram was computed for a model order ranging from NF = 1

to NF = 160; then, by fixing the number of centroids to 15, the k–means algorithm [172]
was run to create a batch of candidate modal frequencies. Thirdly, only the first bending
and lateral modes were retained for the following analysis (i.e., NH = 2) due to their high
energy content and, consequently, better identification capability. The Gaussian moving
average filter was finally applied to track their evolution over subsequent instances.

6.3.1.3 EOP selection

The environmental monitoring system deployed on the bridge mostly constituted of tem-
perature and humidity sensors, which were deployed in a redundant configuration (more
than 53 different measurement positions) over the whole structure, so as to precisely keep
trace of EOP effects on the vibration signature. As already proven in previous works for
the Z24 use–case [173], very high correlation was found between the frequency shifts in-
duced by thermal excursion and the temperature variation at the top deck of the structure.
Worthy to be underlined, thanks to the relatively high thermal inertia of the structure, just
one temperature value per acceleration series has to be stored (NE = 1). Trends in modal
frequencies induced by temperature fluctuations are depicted in Fig. 43 for the first (43a)
and second (43b) vibration component.
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Figure 43: First (a) and second (b) frequency component vs temperature.

6.3.2 Neural network models

The details of the explored NN models are presented in this subsection. For the sake of
brevity and from this point onward, the acronym OCCNN and AENN will be denoted as O

and A. The basic OCCNN implementation, i.e., the one was proposed in [48] consisting of
two hidden layers with NN = 50 neurons each, is referred to as model A (OA); conversely,
subscripts B, C and D will be used to indicate its distilled versions with 32, 16 and 8
neurons per layer, respectively. Besides, the number of adversarial points was generated
as detailed in [48]. For the AENN case, NA = 64 neurons were selected in the mapping
and demapping layer, whereas one single neuron was used for the bottleneck layer in
both cases.

When the networks are fed with CS data, they will be indicated with superscript CS,
while the ones complemented with temperature values are named after with prefix T (e.g.
TOA, TA1). Rectified Linear Unit (ReLU) was chosen as activation function for the input
and hidden layers, while softmax was considered in the output layer for all the investi-
gated NN models. The number of training epochs was set equal to 5000 with a learning
rate of the stochastic gradient descent equal to 0.05. Cross–validation with k-fold = 5 was
also considered to avoid biases in the designed classification models.

6.3.3 Noise density in MEMS accelerometers

As anticipated in Section 4.5.3, signals acquired by MEMS accelerometers are affected
by relatively higher intrinsic noise density values, which thus need to be properly ac-
counted for in the signal processing chain to assess the actual performances of the imple-
mented algorithms. To this end, further analyses were performed, in which the original
data were degraded by adding the residual noise floor inherent in two different kinds
of digital accelerometers. In more detail, the mechanical characteristics in Table 15 were
assumed: as can be noticed, MEMS accelerometer type MA (No = 25µg/

√
Hz) refers to

commercial off–the–shelf devices exhibiting the lowest noise density levels, while type
MB (No = 80µg/

√
Hz) is representative of medium–class but extremely low–cost devices.
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Table 15: Mechanical features of the considered MEMS accelerometers types.

Feature Unity of measure MA MB
Sensitivity @ ±2 g µg/LSB 61.0 3.9
Zero-g level offset mg 40 25
Noise (No) µg/

√
Hz 80 25

Zero-g change vs temperature mg/C ±0.1 ±0.1
Sensitivity change vs temperature [%/C] ±0.01 ±0.01

Coherently, the newly obtained waveforms were then processed encompassing the same
operations used in presence of noise–free data while maintaining unaltered all the remain-
ing parameters.

For the sake of NN validation, noise–corrupted data can be treated as novel datasets
and, for this reason, they were taken as inputs to the previously trained TOD model (the
one with noise–free data). This verification procedure has been preferred over the gener-
ation of new models for each of the new datasets, since it represents a more severe test
to be passed. At the same time, it is also appropriate in view of practical implementa-
tions, in which the variability and the uncertainties hidden in the acquired data cannot be
predicted a priori.

6.3.4 Results

Four main objectives were pursued within the experimental validation phase: (i) assess
the improvement brought by the introduction of temperature values as additional input
features of the AI block; (ii) evaluate the effect of the compression/recovery stages on the
classification performance of the designed SHM framework; (iii) reduce the complexity
(i.e., number of hyperparameters) of the NN models to be compatible with embedded
processors without impinging on the accuracy of the classification; (iv) evaluate the effect
of MEMS noise floor on classification performances to cope with real issues. To quantify
the performance of the classifiers, four classical classification metrics [46], i.e., accuracy,
precision, F1 and recall, were computed.

6.3.4.1 Effect of temperature data

As can be observed in the bar chart depicted in Fig. 44, adding temperature values as
additional input features to the NNs provides invaluable insight for OCCNN, which reports
an average increase of 4.5 point percentages while moving from the basic OA model to
the TOA one corrected with temperature data.

Conversely, in the AENN implementation, no consistent gain in the quality of the classi-
fication process is obtained by inputting temperatures. A possible explanation is related
to the compression step given by the bottleneck layer, which acts as a filtering operator re-
moving noise and minor details from the input signals [174]. This condition also applies
to the framework analysed in this work, where the detection of structural anomalies is
performed on the reconstructed frequency features at the output layer while disregarding
the additional temperature data used in the input stage. Basing on these observations,
only temperature-added OCCNN realizations will be investigated hereinafter.
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Figure 44: Performances of OCCNN and AENN reference models with (TO,TA) and without
(OA,A1) temperature input values, for compression–free configurations.

Moreover, it is important to pinpoint that classification scores attained by TOA are
highly competitive to the ones presented in [161], which explores a combined AENN–
OCCNN architecture to account for biases in the training point density estimation. In the
AENN–OCCNN case, an AENN is employed in the first step of the classification chain and
used to generate adversarial points rather than resorting to a first cycle of OCCNN to derive
a rough estimation of the feature boundaries, while totally neglecting the exogenous con-
tribution of EOPs on modal features. Despite its remarkable accuracy (96% of accuracy and
98% of precision), the AENN–OCCNN solution is poorly compatible with the inclusion of
temperature values and CS compression/decompression stages due to the filtering effect
at the basis of AENN.

When the current results are compared with the ones presented in [175], where PCA is
employed to decouple the impact of EOPs and structural damages, the TOA solution here
proposed performs satisfactorily well, allowing to discern between healthy and deficient
configurations without depending on specific principal components, the proper selection
of which affects the robustness of PCA–driven solutions.

6.3.4.2 Effect of data compression

The primary impact of compression/decompression stages can be observed in the larger
superposition between healthy and damaged data in the feature space distribution de-
picted in Fig. 45. Coherently, a reduction in the performance of the CS–driven versions
can be seen in the first column of Table 16 for OCCNN (TOCS

A ) with respect to the results
illustrated in the previous Section. Similarly as before, the inclusion of temperature in the
pool of NN inputs is particularly effective even in this case, since it returns classification re-
sults comparable to those pertaining to the basic OA alternative. Indeed, despite a minor
reduction in the precision, the accuracy is almost equivalent and F1 and Recall undergo a
significant improvement.

6.3.5 Effect of NN distillation

Finally, the computational cost, here intended as the number of NN hyperparameters, was
reduced to make the NN model compatible with the constrained resources of embedded
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Table 16: Performance metrics of OCCNN models A, B, C, D with temperature input values and
CS–processed configurations: beside the classical classification scores, the number of hy-
perparameters is enclosed.

NN TOCS
A TOCS

B TOCS
C TOCS

D∞ MA MB

Hyperparameters 2852 1250 370 122
Accuracy [%] 95.73 96.98 96.04 97.16 93.49 90.12
Precision [%] 94.12 95.78 94.59 96.25 92.65 89.25
Recall [%] 99.93 99.93 99.87 99.67 99.37 100
F1 [%] 96.94 97.81 97.16 97.93 96.18 94.04

devices, and the effect on the classification accuracy was, thus, evaluated. To this end,
starting from the network with NN,A = 50, the number of neurons per layer in the OCCNN

architecture was then reduced to 32, 16, down to 8, corresponding to a shrinkage of model
parameters to NN,D = 122, with intermediate values of NN,B = 1250 and NN,C = 370.
In Table 16, the reported classification scores are included together with the number of
hyperparameters, the latter decreasing at a large extent by halving the number of neurons
per layer.

Remarkably, model D with only 8 neurons attains high classification performances,
which are absolutely competitive with the ones associated with the most redundant con-
figuration (model A). Moreover, it performs even better than alternative solutions with
much higher parameters (see model B and C).

6.3.5.1 Effect of intrinsic noise density in MEMS accelerometers

The impact of non negligible noise floors in MEMS accelerometers can be quantified by
observing the last three columns in Table 16 (header MA and MB). As can be noticed,
the primary effect acts as a loss of up to 7 points percentage in the accuracy of the clas-
sified instances while moving from noise free (header ∞) to MB MEMS–type. A similar
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trend is evidenced for precision and F1; despite this, good performance values are glob-
ally attained, which are always very close or consistently above 90%. Recall demonstrates
to be less sensitive to such noise levels, being nearly constant. On the other hand, MEMS

typology MA, which features a less significant noise level, only undergoes a limited re-
duction in both accuracy and precision (which show, respectively, a loss of 3% and 4%,
respectively).

The importance of this study is pivotal since it proves how the selection of the sensing
unit might play a crucial role in the effectiveness of the adopted signal processing tech-
niques and, therefore, the inherent source of instrumental limitations must be coped with
while moving from theoretical analyses to real case studies.

6.4 running structural inference at the extreme edge : a tinyml ap-
proach

The framework presented in Section 6.2 tries to provide a response to two key issues af-
fecting state–of–the–art monitoring solutions empowered by AI, that are (i) the necessity
to reduce the complexity of the models and (ii) to lower the data–to–user latency time.
However, to further enhance the responsiveness and the resilience of the monitoring ar-
chitecture beyond the mere processing task, a final edge computing step is still lacking.
To this end, the emerging field of TinyML made the near–sensor data inference a tangible,
low–cost and computationally efficient complement fulfilling this specific goal.

The content of this Chapter is based upon the research work [P13]:

"Enhancing Vibration-Based Structural Health Monitoring via Edge Comput-
ing: A Tiny Machine Learning Perspective" by Zonzini, F., Romano, F., Car-
bone, A., Zauli, M. and De Marchi L. In Proceedings of the ASME 2021 48th
Annual Review of Progress in Quantitative Nondestructive Evaluation QNDE, vol.
85529, 2021 (pp 1-5).

from which part of the text is drawn.

6.4.1 TinyML for vibration diagnostics

TinyML is one of the most promising findings promoted by the recent advancements of the
electronic and information engineering community, as witnessed by the constantly increas-
ing interest in many application fields. Owing to its tight optimization level between the
hardware and software components, it disclosed previously unforeseen, yet completely
outstanding, opportunities for AI. More precisely, the TinyML computing paradigm refers
to the implementation of very thin and low–power neural networks capable of running
on edge devices, i.e., at the boundary between the physical and digital world2. Hence,
TinyML could bring a radical shift of perspective, moving from cloud–based data analytics,
which is usually performed on remote servers in a time- and energy-consuming manner,
to near–sensor data inference, empowered to smart sensors in charge of processing infor-
mation in a streaming fashion. Accordingly, the advantage of TinyML in the SHM context is
to bring the artificial intelligence itself in strict proximity where structural information is
actually sensed, so as to expedite the inference time and, in turn, the diagnostic process.

2 https://www.tinyml.org/
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TinyML was successfully applied in several domains, such as the biomedical [176], the
environmental [177], [178] and the image processing field [179], to name a few. Neverthe-
less, its application to vibration diagnostic frameworks is still an open field of research,
for which only a handful of works can be found in the literature [180]. In line with this
observation, the research effort presented herein specifically attempts at filling this gap in
the context of vibration monitoring.

To this end, among the multiple tasks involved in the SHM-chain, TinyML founds its
natural application to damage detection and classification. Hereby, the main contribution
of this Section is to present the practical embodiment of a TinyML architecture, in this
case the four OCCNN models validated in Sections 6.3.2-6.2.2.1, on the Arduino Nano BLE
SENSE board serving as prototyping edge device; preliminary results were presented in
[P14] for the AENN counterparts.

6.4.2 Experimental validation

6.4.2.1 Arduino Nano 33 BLE sense board

The Arduino Nano 33 BLE Sense board 3 was used as target platform for the valida-
tion of the explored TinyML architectures. It is characterised by the tiniest form factor
within the family of AI–empowered Arduino solutions. The MCU, which is the low–power
nRF52840 component by Nordic Semiconductor, features 256kB of serial RAM and 1MB
of FLASH memory with advanced digital signal processing functionalities enabled by a
single–precision FPU. The device embeds several peripherals, such as an inertial measure-
ment unit, a microphone, a temperature/humidity sensing element and a gesture/prox-
imity sensor, which make it a versatile architecture for general purpose applications re-
quiring low–power and smart sensing functionalities in a compact board.

6.4.2.2 Porting the model: from cloud–server running to Arduino

In Fig. 46, the three steps that can be followed to transform a standard NN model run-
ning on remote stations into MCU–compliant models, are depicted. Once the classification
architecture has been trained and validated offline in the standard Tensorflow (TF) pro-
gramming envirornment, a quantized variant is obtained by resorting to the Tensorflow
Lite (TFLite) extension, which converts the NN model and casts data types into an MCU–
like format, allowing it to be run directly on the edge sensor. Since the monitoring system
of the Z24 is no more active and it is actually impossible to process signals seamlessly,
the edge–running and real–time functionalities of the Arduino board were simulated by
pre–loading the modal features extracted at the end of the feature tracking step into the
non–volatile memory of the device. Such a framework is conceived to meet the typical
procedure applied in the SHM context, in which an initial and offline phase of structural
characterization is executed to derive a baseline, then followed by online structural diag-
nostics and prognostics. In the analysed case, they correspond to the training/validation
and testing of the TinyML deployment process, respectively.

3 https://store.arduino.cc/arduino-nano-33-ble-sense

https://store.arduino.cc/arduino-nano-33-ble-sense
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Figure 46: Sequence of steps to be implemented to transform a generic NN architectures from
cloud/server–based Tensorflow programming to MCU–compliant ML models passing
through Tensorflow Lite quantization.

6.4.2.3 Results

Results for the implementation on the Arduino board are summarized in Table 17, in
which the standard classification scores considered before have been computed together
with other remarkable performance metrics, such as the execution time, the model size
and the number of hyperparameters. Noteworthy, the TinyML approach proves to be highly
robust with respect to rounding effects, data cast and quantization, that were necessarily
implied by the TFLite converter. As can be observed, a negligible impact on the classifica-
tion metrics is exhibited while moving from TF to Arduino, with a maximum decrease of
less than one point percentage for all the four metrics: these remains consistently above
94%.

On another side, it is worth mentioning that the model complexity of the OCCNN ar-
chitecture is interestingly low, showing a memory occupancy around a dozen of kB, a
condition which makes its embodiment on the selected prototyping device feasible. Sim-
ilarly, the worst execution time of 1525ms for a total of 1561 testing instances (measured
fot the TOCS

A with 50 neurons per layer) led to an single inference time of less than 1ms,
hence being compliant with typical duty-cycles of the prospective applications.

In these terms, the exponential decrease in both the occupied memory and running
time of the algorithms as NN halves can be clearly observed, the combined action of
which could lead, in turn, to a consistent contraction of the associated power consumption.
Indeed, the model size shrinks more than 95% with a time gain above 75% while NN

moves from 50 to 8 neurons.

6.5 conclusions

In this Chapter, a comprehensive framework for vibration–based diagnostics has been
presented and thoroughly validated with experimental data from the Z24 bridge use case,
proving that the amalgam of data compression, TinyML architectures and environmental
information allows to attain high classification scores, i.e., accuracy and precision greater
than 96% and 95%, respectively.

Finally, the designed NN architectures have been embedded in a resource–constrained
device (i.e., the Arduino Nano 33 BLE sense board) serving as edge computing unit. Run-
ning inference model on this device reported promising classification results, corroborated
by scores always above 94%, corresponding to a loss of less than 2 points percentage with
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Table 17: Performance metrics of OCCNN model while moving from cloud–based TF to Arduino:
beside the classical classification scores, the overall complexity in terms of memory con-
sumption, number of hyperparameters and execution time, are enclosed.

NN TOCS
A TOCS

B TOCS
C TOCS

D

Model size [kB] 13.232 6.824 3.304 2.312
Hyperparameters 2852 1250 370 122
Execution time [ms] 1525 865 481 367
Accuracy [%]

TensorFlow 95.73 96.98 96.04 97.16
TensorFlow Lite 95.95 96.49 96.66 96.76

Arduino 33 BLE Sense 96.60 96.49 96.67 96.76
Precision [%]

TensorFlow 94.12 95.78 94.59 96.25
TensorFlow Lite 94.36 95.35 95.30 98.67

Arduino 33 BLE Sense 95.18 95.35 95.30 98.67
Recall [%]

TensorFlow 99.93 99.93 99.87 99.67
TensorFlow Lite 100 99.67 100 96.52

Arduino 33 BLE Sense 100 99.67 100 96.52
F1 [%]

TensorFlow 96.94 97.81 97.16 97.93
TensorFlow Lite 97.10 97.46 97.60 97.58

Arduino 33 BLE Sense 97.53 97.46 97.60 97.58
FLASH usage [kB] 293.896 287.488 283.968 282.976
RAM usage [kB] 185.760

respect to the TF counterpart. The overall solution paves the way to the design of an
efficient and reliable diagnostic framework driven by TinyML.
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abstract

This Chapter deals with the issues of scalability, versatility and technological limitation affecting
accelerometer–only monitoring networks. All these problems are approached from an edge comput-
ing perspective, via the implementation of a tilt sensor node capable of estimating, in real–time
and in a near–sensor manner, structural inclinations from the fusion of linear and rotational vibra-
tion signals. Alongside, a heterogeneous approach to OMA is proposed, which combines, both at the
hardware and signal processing level, standard accelerometers with low–cost piezoelectric transduc-
ers; such solution discloses new potential for a cost–effective and minimally invasive piezolectric–
based modal analysis.

7.1 introduction

Data fusion algorithms are supported by the widely shared opinion that single–
measurement systems cannot ensure satisfactory resilience, responsiveness and long–
term functionalities, which though represent primary requirements of every SHM process
[181], [182]. The problem in deploying homogeneous networks for vibration inspection
is twofold. First of all, since every sensing technology works in limited frequency bands,
mono–type measurements prevent the monitoring process to perform a multi–scale spec-
tral analysis, capable of capturing both the static and the dynamic structural footprint. The
second reason is that the geometrical shape of the structure may be such that, depending
on the selected measurement technology, some sensing positions could be totally or par-
tially blind with respect to the sought structural parameters. To this end, compensation
and auto–calibration obtained by a complementary and integrated approach, in which
multi–type measurements are exploited and aggregated together, allow the inspection
phase to be strengthened by seizing multiple aspects of the same deterioration process
[183].

A key challenge for vibration–based diagnostics of large–scale structures is, for exam-
ple, achieving the capability to distinguish between global (e.g., changing load paths, loss
in global stiffness) and local (e.g., crack propagation, corrosion) fault conditions [184]. In
these structures, the integrity may be compromised by rather different aging phenomena,
whose effect in terms of spectral content might interest broad and/or very distant bands.
For this reason, the development of new strategies exploiting multiple sensor signals is re-
ally promising to implicitly reduce the uncertainty of single–source sensing architectures.
Such a multi–sensing paradigm leads, in addition, to cost–benefit optimization [185], by
promoting a more flexible definition of the density, type, and positioning of the sensors
to be deployed.

In conventional OMA–based SHM systems, a multitude of MEMS accelerometers can be
used to monitor the structural health status. Nevertheless, these devices are not suitable
to perform a wide–band spectral analysis, primarily due to frequency range limitations,
since these devices are usually meant to be effective in the low frequency regions [P15].
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The necessity to pair this sensing strategy with alternative sensors, capable of operating in
different spectral bands, is of the utmost importance; for example, this can happen when
the meaningful frequency bandwidth exceeds tens of kHz, e.g., in rotating machines.

The list of sensing technologies complementary to conventional vibration sensors in-
cludes, but it is not limited to, acoustic sensors, piezoelectric sensors, strain gauges, in-
clinometers, magnetometers, fiber–optics, and other application–dependent sensing units,
all of them providing useful information for structural characterization. Among case–
studies where two or more of these tehcnologies are employed, the work in [186] can be
listed, in which the authors developed a SHM monitoring system for condition assessment,
using both accelerometers and strain sensors. Similarly, Ferrari et al. [187] installed a hy-
brid sensor network on the historical Brivio bridge in Bergamo, acquiring acceleration and
dynamic displacement responses, then merged via data fusion algorithms. An approach
based on the coupled exploitation of inertial and acoustic sensors was also adopted in
[188], demonstrating how the design of a heterogeneous sensor platform permits the
monitoring process to capture the vibration response with more accuracy.

In compliance with this scenario, the scope of this Chapter is to discuss the benefits
delivered by the adoption of a multi–sensing monitoring network in conjunction with the
integration of data fusion algorithms for the accurate retrieval of modal features from
the combination of different vibration quantities. Two main scenarios will be investigated.
The first one involves the exploitation of linear and rotational data for the on–board es-
timation of tilt values. The second one involves, instead, a mechanism to retrieve strictly
synchronized modal parameters from the combination of MEMS accelerometers and cost–
effective piezoelectric devices, paving the way to a more affordable monitoring system,
eventually based on a piezoelectric-driven modal analysis.

7.2 prototyping a tilt sensor node embedding a data-fusion algorithm

In this Section, the practical embodiment of a real–time data fusion algorithm based on
Complementary Filters (CF) for the near–sensor extraction of tilt angles recovered from
the combination of linear and angular vibration responses is presented.

The content is based upon the research work [P15]:

"A tilt sensor node embedding a data-fusion algorithm for vibration-based
SHM" by Tesoni, N., Zonzini F., Marzani, A., Scarponi, V., and De Marchi, L.
In Electronics, vol. 8, no. 1, p. 45, Jan. 2019.

from which part of the text is drawn.

The possibility to combine accelerations and angular velocities at the extreme edge and
in a real–time manner is granted by the combination of MEMS technology with multi-
degree of freedom Inertial Measurement Unit (IMU)s, consisting of the multi-axes mea-
surement of inertial quantities (e.g., the ones provided by accelerometers or gyroscopes)
by means of a miniaturized system–in–package. Thus, IMUs offer the ideal platform for
the estimation of the position of an object in the space in a very compact and cost–effective
manner.

The concurrent usage of accelerometers and gyroscopes provides a set of complemen-
tary quantities which can compensate for each other while estimating tilt values. The
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reason is that accelerometers perform well at low frequencies: in fact, even if dynamic fea-
tures suffer from crosstalk, this undesired effect is filtered out by the acceleration transfer
function. Conversely, gyroscopes work optimally at higher spectral bands; however, they
suffer from drifts induced by the integration procedure used to transform angular veloci-
ties into tilt values. Research works combining these techniques have been conducted for
high–rise buildings [189], showing that the joined exploitation of acceleration and rotation
sensors conveys a more precise understanding of the structural tilt at higher frequencies.
Similarly, coupling linear and rotational data proved superior performance in monitoring
wind–induced vibrations in tall infrastructures, as discussed in [190]–[193]. Furthermore,
diagnostic systems for bridge monitoring have been implemented through sensor net-
works comprising gyroscopes and accelerometers for the purpose of damage localization
[194], [195].

7.2.1 Combining accelerations and angular velocities via CF

Among the possible data fusion techniques for inertial data, the one based on CF, i.e., built
on the low-pass filtering of linear accelerations and high–pass filtering of angular veloci-
ties, is convenient both from an algorithmic and structural point of view. From one side, its
bank filtering nature readily implementable through FIR filters provides low–complexity
procedures and is, therefore, inherently suitable for the implementation in extreme edge
devices with limited processing functionalities. Moreover, as a primary byproduct, it min-
imizes phase and magnitude distortion around the cutoff frequency. On the other hand,
being the CF transfer function constant over the whole spectrum [196], its design is com-
patible with wide-band sensing.

7.2.1.1 Algorithm definition

The time–dependent acceleration–based and angular–based tilt values, addressed in the
following as θA and θG, characterize the modal behavior of structures undergoing vibra-
tions.

Let’s suppose, for practical convenience, that devices are installed on the top surface of
a structure. Under this condition, Fig. 47 schematically depicts the problem of estimating
tilt values from a geometric point of view. In detail, the sensor node laying on the xy-
plane is programmed to estimate inclinations of the vertical plane: consequently, the tilt
is intended as a positive value around the z axis.

Acceleration vectors constitute of three components ax, ay, az recorded along the three
directions, whereas angular rates ωx, ωy, ωz correspond to rotational spins projected on

the same axes. Radial acceleration ar = az and tangential acceleration at =
√
a2
x + a2

y are

fused together to extract the tilt values θ̂A defined as:

tan θ̂A =
at

ar
=

√
a2
x + a2

y + ξc + ξa

az + ξc + ξa
(33)

In the expression above, ξc and ξa indicate, in order, the crosstalk noise and the accelerom-
eter intrinsic noise affecting the collected data, their contribute becoming evident at higher
frequencies. Such disturbances must be filtered out by an appropriate low-pass transfer
function: as such, accelerations provide an accurate tilt estimation only for pseudo–static
behavior.
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Figure 47: Geometric relationship between tilt angles θ and accelerations along the z-direction for
a device installed on the top of a structure.

Angles described by rotation around predefined directions can be numerically com-
puted by integrating the absolute angular velocities

ω̂G =
√
ω2

x +ω2
y +ω2

z + ξb + ξg (34)

in which drift errors caused by inherently biased and noisy measurements, indicated as
ξb and ξg, respectively, typically impact on pseudo–static measurements. The robustness
of integration with respect to high-pass filtering leads to precise gyroscope-driven tilt
estimations only in the dynamic regime.

According to the CF technique, by taking the Fourier transform of Eq. (33) and (34), the
estimated θ̂A(f) and ω̂G(f) can be fused to obtain a unique tilt value θ̂(f) according with:

θ̂(f) = HL(f) θ̂A(f) − j
HH(f)

2πf
ω̂G(f) (35)

This is accomplished by applying, in parallel, two second order filters (2q1 being the filter
order): HL(f)θ̂A(f) is the low-pass filtered version of data coming from the accelerome-
ter, whereas angular signals are high-pass filtered. The two quantities HL(f) and HH(f)

designate the following low-pass and high-pass filter transfer functions:

HL(f) =
1

1+
(

f
fβ

)2q1
HH(f) =

1

1+
(
fβ
f

)2q1
HL(f) +HH(f) = 1 (36)

where fβ indicates the cut-off frequency of the filters. Inclination values are then trans-
formed back in the time domain by applying the inverse Fourier transform of the output
provided by expression (35).

7.2.2 Embedding tilt estimation on edge devices

In order to keep as low as possible the memory and computational resources of the al-
gorithm, the processing flow presented in Fig. 48 has been designed. Since operations in
the Fourier domain are more computationally convenient for the implementation of filter
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Figure 48: Schematic representation of signal processing method necessary to estimate tilt values
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Figure 49: Adopted OLA window necessary to shrink the computational burden of the data fusion
algorithm while running on sensor: (a) Time-domain working principle of the OLA
mechanism and (b) window spectral properties for overlapping fraction spanning in
the interval [0.1;0.5].

banks in a digital manner, data fusion can be performed directly in the frequency domain
by adopting the Overlap-Add (OLA) method [197].

In the OLA paradigm [198], data are windowed by setting the window size Nt (in the
time domain) at least one order of magnitude smaller than the entire time-series N. A
convenient choice of the filter mask is the one based on raised sine/cosine functions, since
they allow for a constant magnitude of the filter transfer function while sliding operations
are entailed. Accordingly, the mask adopted in this study is displayed in Figure 49a and
can be mathematically described as:

w(t) =


sin2

(
π
2

t
Tov

)
0 ⩽ t < Tov

1 Tov ⩽ t < Thop

cos2
(
π
2

t−Thop

Tov

)
Thop ⩽ t < Tframe

(37)

where Tframe is Nt

Fs
, Tov is the time interval in which two consecutive windows are

overlapped, and Thop = Tframe − Tov is the hop size. Windowed data are then Fourier–
transformed and filtered, and the estimated tilt values can be finally concatenated.
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7.2.2.1 Selecting the OLA parameters

The selection of the optimal cutoff frequency of the complementary filters is highly de-
pendent on the sensor technology, as well as on the specific application case. In the ex-
periments related to static tilt conditions, a recommended procedure for the selection of
such parameter is the inclusion of a calibration step aimed at minimizing the mean square
error between a reference angle and the mean value of the angle extracted from an initial
batch of data.

For the global accuracy, the selection of the window length Nt is also very relevant,
since this parameter directly affects the quality of the filter approximation based on the
discrete Fourier transform. This implies that the ratio between the frequency resolution
of the windowed and non–windowed processing (∆ft = Fs

N and ∆fw = Fs

Nt
, respectively)

should be lower bounded:

∆ft

∆fw
=

Nt

N
⩾ α → Nt ⩾ αN (38)

where α is a predefined accuracy threshold.
It is worth noting that, since the rising and falling edge respectively obey to a sin2(t)

and a cos2(t) trend, the mask of this window is shaped to satisfy the Constant-Overlap-
Add (COLA) constraint stated in equation (39):

Nw−1∑
k=0

w(t− k Thop) = 1, ∀t (39)

being Nw = Ttot

Thop
the total number of iterations. This necessary and sufficient condition

allows for the correct reconstruction of the signals split into successive windowed frames.
COLA implies that the spectral values of the window functions must be zero at all harmon-
ics of the hop rate Fhop = 1

Thop
; consequently, it must ensured that

W(k Fhop) = 0, ∀k = 1, . . . ,Nw − 1 (40)

Taking the Fourier transform of the window described in (37) and introducing the overlap
fraction No = Tov

Tframe
, it follows that

W(f) = −
(2fNoTframe)

2

1− (2fNoTframe)2
Thop cos(πfNoTframe) sinc(fThop)e

−jπfTframe (41)

shows zero values for f = k Fhop and it is then compliant with (40), independently from
both the duration of the window and the number of samples to be overlapped.

A narrow amplitude of the first lobe of the spectrum of the window, together with a
highly attenuated second lobe, would be desirable. However, the spectrum obtained by
processing windows with increasing values of Tov (see Figure 49b) clearly demonstrates
that a wider first lobe corresponds to a deeper attenuation of secondary lobes. As a result,
in order to reach the best performance, the final choice must be properly balanced among
these two opposite behaviors.

Besides accuracy, the computational cost to perform OLA processing is strongly af-
fected by the selection of Tov and Nt. As well known, executing FFT has a complexity
O(Nt log2Nt), implying a logarithmic decrease when Nt is reduced. Therefore, the com-
putational effort (Cost) paid to process a generic sequence of N elements divided into Nw

frames results in:
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Cost = NwNt log2(Nt) (42)

Specifically, the contribution associated with the number of overlapped samples is up-
per bounded to 2N whenever the maximum allowable Tov is chosen. On the contrary, the
logarithmic relationship from the window size leads to a consistent reduction of the cost
as Nt downsizes. Consequently, following what has been anticipated in (38), there is a
clear trade–off between the computational cost and the filter approximation accuracy.

7.2.3 Prototyping and Experimental validation

The ISSLab vibration sensor nodes were exploited for prototyping purposes thanks to
their DSP functionalities. To fully exploit the versatility of this circuitry, all the parameters
necessary to process data on–board were stored in registers programmable at run–time:
the sampling frequency, the total number of samples to be acquired, the overlap fraction
and the output data rate.

The reliability of the developed hardware and software architecture was assessed after
window parameters have been quantified. The accuracy in tilt estimation was finally ex-
amined via experimental data, firstly gathered in almost static conditions to serve as a
ground truth for algorithmic validation and, then, in dynamic regime for modal analysis.

7.2.3.1 System Validation in static condition

The Newport IG Breadboard anti–vibration table shown in Fig. 51 was used to filter out
unwanted surrounding vibrations, while one ISSLab sensor node was statically tilted to a
fixed angle. At this stage, the cutoff frequency of the complementary filters was computed.

The sampling frequency was set to 1250Hz. Since the maximum available storage capa-
bility is 30 kB (10 kB are reserved to the main program and to the firmware necessary to
sample/exchange/process data) and each sensor acquires simultaneously two data bytes
for each one of the six inertial Degree of Freedom (DoF), the available number of samples
on each channel could not exceed 2500. Since working with data segments amounting to
power of two is computationally more efficient in DSP, and assuming also a resolution ra-
tio α = 0.02, 64 samples shifted with an overlapping ratio equal to 0.25 were selected. This
ensured an optimal compromise among the spectral design of the corresponding window
frame and the computational complexity.

Experimental data were processed with fβ values varying from 80Hz to 180Hz at an
increasing step of 1.5Hz. The optimal cutoff frequency was obtained by that minimizing
the square error in the estimated vs reference angle, reaching a minimum for 153.5Hz.
Figure 50 shows that the selection of the most appropriate cutoff frequency effectively
captures the actual tilt value, while a wrong selection may cause periodic artifacts, the
periodicity of them being related to the window size.

In the following, first and second order statistics have been used to establish the accu-
racy of the measured inclinations in stationary conditions, with the sensor node fixed at
three different inclinations: 30°, 45°, 60°. Table 18 points out the distribution of the mean
value and standard deviation for each configuration: relative error εr lower than 0.7% and
σr always less than two-tenths of a degree prove that results are highly precise.
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Figure 50: Effect of proper cutoff frequency selection for OLA–based sensor data fusion (actual tilt
value: 30 °).

Table 18: Statistics obtained for tilt values in different pseudo-static configurations: mean value,
relative error and standard deviation.

Reference Tilt Measured Tilt εr σ
[°] [°] [%] [°]
30 30.1832 0.611 0.1399
45 45.0024 0.005 0.1523
60 60.3116 0.519 0.1985

It is worth pointing out that the variance slightly rises for increasing inclination values,
showing an almost linear trend. This evidence paves the way to future works, which
should be aimed at including an auto–calibration procedure performed directly at the
sensor level: once a finer–scale training would be executed, biased measurements could
be internally corrected after inferring the proper compensation curve.

7.2.3.2 Vibration Analysis

The steel beam already used in the previous Sections was instrumented with a network of
seven ISSLab nodes connected in a daisy-chain. Sensors were placed at a step of 220mm
starting from the first node, whose distance from the fixed left edge of the beam was
135mm.

An explicit relationship exists between acceleration and inclination. In more detail, by
resorting to trigonometric relationships for the scheme introduced in Figure 47, the time-
spatial dependent angle θ, described by rotations of the sensor, can be geometrically inter-
preted as the derivative of vertical position displacements along the longitudinal direction.

In mathematical terms, the governing equation of a thin rod undergoing transverse
motion is modelled as ([128]):

z(x, t) =

∞∑
p=1

(Ap cos(ωpt) +Cp sin(ωpt)) sin(βpx) (43)
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Anti-vibration
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Figure 51: Experimental setup in pseudo-static conditions: anti-vibration table equipped with TUV
level.

where appearing quantities Ap, Cp are constants deriving from boundary conditions,
ωp = 2πfp correspond to the pth–angular frequency and βp models the space depen-
dency. Algebraic manipulation of (43) yields to the more compact form:

z(x, t) =

∞∑
p=1

Rp sin(ωpt+αp) sin(βpx), Rp =
√
A2

p +C2
p; αp = arctan

Ap

Cp
(44)

on which a derivative operation can be performed providing the final result stated in Eq.
(45).

θ(x, t) =
∂z(x, t)

∂x
=

∞∑
p=1

βpRp sin(ωpt+αp) cos(βpx) (45)

In practical scenarios, P < ∞ is set.
Comparing (43) to (45), it can be inferred that the spectral content of z(x, t) and θ(x, t)

is localized at the same angular frequency ωp. As a consequence, frequency analysis
accomplished on tilt angles or acceleration signals allows to identify the same modes of
vibration. For this reason, the validation process in dynamic regime passed through the
analysis of similarities between the frequency spectrum computed on acceleration data
and the one estimated at the end of the data fusion procedure.

In this phase, data were acquired at a sampling frequency Fs = 1250Hz, which is com-
pliant with the dominant modes of the structure. The beam was excited at the two-thirds
of the span by means of impulse excitation, thus allowing it to oscillate in a condition
of free vibrations. Since the dynamic operative conditions substantially differ from static
measurements, a new calibration phase was necessary to be executed.

The most appropriate cutoff frequency was selected according to the spectral range of
interest. More explicitly, the analysis included the characterization of the first and second
harmonic, corresponding to f1 = 6.195Hz and f2 = 24.778Hz. Thereafter, a value of
fβ = 27Hz was adopted to properly balance accelerometers and gyroscopes performance.
Window size equal to 128 samples was chosen in order to provide high–resolution data,
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Figure 52: Comparison of spectra (obtained with FFT) resulting from the windowed and non-
windowed approach with respect to the spectral content of radial acceleration.

and an overlap factor No = 0.4 enabled to smooth the envelope of the window transition
bands.

In order to assess the reliability of the proposed multi-type sensor framework, PSD

results obtained for windowed and non-windowed processing were compared to the per-
formance obtained applying the aforementioned techniques to the same dataset used for
tilt angle estimation.

Improvements in the quality of the vibration analysis can be inferred from Figure 52.
Basing on data extracted from a single sensor node installed on the top surface of the
beam, the introduction of the right cutoff frequency intensely attenuates spurious peaks.
Furthermore, the spectral trend estimated through the windowing strategy is almost per-
fectly superimposed to the one extracted by processing the whole dataset at one time
(and it is also coherent with numerical predictions). The same outcome can be found in
the panels of Fig. 53a, from which the filtering effect of the CF–based data fusion algo-
rithm and the gain in the spectral insight obtained by the aggregation of both angular
and linear vibrations can be observed.

In modal terms, Fig. 53b shows the seven spectra obtained from the sensors installed
on the beam: not only the peaks corresponding to the different vibrating harmonics are
distinctly resolved over the whole band with a satisfactory PSNR of about 15dB, but a
good level of coherence between them is also evident. Moreover, from the same plot, it
can be observed that both the pinned–pinned frequencies (triangular marked peaks) and
the free-free flexural modal components1 of the structure (red circles) can be detected
via the implemented near–sensor data fusion algorithm. As a result, optimized real-time
algorithms embedded into the electronic equipment permit to capture detailed snapshots
of the rotational properties characterizing vibrating structures.

1 Probably a consequence of imperfect anchoring offered by the supports.
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Figure 53: (a) Effect of signal fusion in time and frequency domain and (b) Comparison of PSD
profiles for tilt signals estimated by nodes located at different positions of the beam.

7.3 heterogeneous sensor network for pzt–driven modal analysis

In the present Section, the ISSLab sensor network is exploited as a heterogeneous monitor-
ing architecture basing on both low–cost PZT transducers and tri–axial MEMS accelerom-
eters to prove that a combination of these two technologies is beneficial for continuous
SHM applications in the low frequency regime.

The final objective is to demonstrate how the parallel advancements empowered by
sensor networks, low–power circuits, communications and signal processing might help
in tackling the lack of scalability of conventional sensing solutions, leading to sensor
networks able to monitor structures with very large and complex geometries and provide
the users with a thorough insight about the current health status.

The content of this Section is based upon the research works [P16], [P17]:

"Vibration-based SHM with up–scalable and low-cost sensor networks." by
Zonzini, F., Malatesta, M. M., Bogomolov, D., Testoni, N., Marzani, A., and De
Marchi, L. (2020). In IEEE Transactions on Instrumentation and Measurement, vol.
69, no. 10, pp. 7990-7998, Oct. 2020. ©2020 IEEE
"Heterogeneous sensor network for vibration–based SHM" by by Zonzini, F.,
Malatesta, M. M., Bogomolov, D., Testoni, N., Marzani, A., and De Marchi,
L. (2019). In 2019 IEEE International Symposium on Measurements & Networking
(M&N), 2019, pp. 1-5. ©2019 IEEE

from which part of the text is drawn.

7.3.1 Piezoelectric technology for modal analysis

Piezoelectric transducer technology based on piezoceramic (PZT) transducer discs [199],
[200] permits operation in the range of hundreds of kHz and more and, prior than for
modal analysis [201]–[203], is most commonly applied for other monitoring tasks, such
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as ultrasonic inspection and acoustic emission testing [204]. In these cases, commercial
systems characterized by expensive, space–, weight–, and power–demanding solutions
are typically employed, leading to static and not versatile solutions.

Modal analysis inspection exploiting piezoelectricity can be applied in the high–
frequency range, up to and in excess of 10 kHz [202]. Conversely, in the low–frequency
range, down to and lower than 10Hz, PZT discs are scarcely employed, since in this fre-
quency band conventional accelerometers are classically understood to be more reliable.

An interesting byproduct of using PZT discs is the possibility to simultaneously per-
form OMA and AE testing [205]. This evaluation strategy is of primary importance in the
integrity assessment of metallic or composite structures, either intended for civil and resi-
dential buildings (e.g., bridges, towers, buildings) [188] or industrial applications (e.g., ro-
tating motors and hydraulic pumps [206], wind turbines [207], [208]), where the nominal
vibration behaviour co–exists with important acoustic phenomena occurring as a conse-
quence of structural deterioration (delamination, soldering, etc) and external agents (cor-
rosion, etc). In these contexts, there is a high demand in designing compact, cost–effective
and highly integrated sensor networks, while the systems presented in the literature [201]
are based on bulky monolithic instrumentation, incompatible with heterogeneous mea-
surements.

Differently, the design of the ISSLab piezolectric sensor nodes described in Appendix
A specifically aims at overwhelming this lack of versatility thanks to a very compact,
minimally invasive circuitry, which can be easily interfaced even with very low–cost (< 2
$) disc-shaped piezoceramic patches (or discs, as they will be referred in the following).

7.3.2 MEMS and low–cost PZT discs for modal analysis: a physical relationship

In this sub–Section, a simple test–bed consisting of an aluminum cantilever beam is ex-
ploited to derive a physical relationship between acceleration–driven and piezoelctric–
driven vibration data and, therefore, to justify the employment of the latter as a viable
companion technology for modal analysis.

7.3.2.1 The case study: multi–type OMA of a cantilever beam

As a representative case study, a light–weight aluminum beam pinned at one end was
employed in an experimental campaign comprising one piezoelectric sensor cluster (label
PZT) with three closely–located active areas, and one tri–axial MEMS accelerometer (label
ACC), vertically aligned on the opposite faces of the structure. The beam is L = 420mm
long, with cross-section area b×h, b = 40mm depth and h = 1.98mm height. As depicted
in Fig. 54, an additive hexagonal mass ma = 100g has been attached in the proximity of
the free edge, hence allowing the beam to naturally oscillate. The center of gravity of the
additional mass has been chosen to be exactly aligned at the mid–depth, xA = 15mm
distant from the longitudinal border. A material density of 2700 kg/m3 and a Young’s
modulus of 70GPa are other important physical properties, determining the stiffness and
the elasticity of the beam.

Assuming the structural configuration described before, together with the intrinsic ge-
ometric and physical properties of the beam, a numerical model has been purposely
developed in order to predict the theoretical modes of vibration. More specifically, by
following an approach similar to [209], the effects induced by the presence of the addi-
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Figure 54: Experimental setup comprising one piezoelectric transducer connected to a piezoelec-
tric sensor node (PZT) and a tri–axial MEMS accelerometer (ACC) installed on a can-
tilever beam. [©2019 IEEE]

tional mass have also been accounted for, providing a set of numerical frequencies equal
to f1 = 3.85Hz, f2 = 36.50Hz, f3 = 107.75Hz, f4 = 204.93Hz. A sampling frequency
Fs = 1000Hz has been selected for both the devices to ensure enough spectral band.
Signals have been acquired for 5 s: the PZT sensor node was programmed to work with
the maximum available gain of 27.3dB, whereas an acceleration range equal to ±2 g was
retained compliant with the dynamic excursion experienced by the beam.

7.3.2.2 Validation: time analysis

The structural response in the dynamic regime is represented in Fig. 55, which outlines
the three traces acquired by mutual PZT discs, one for each channel (lower graph) of
the PZT cluster, side-by-side the accelerations measured by the MEMS along the three
coordinate axes (upper plot). Measurements coming from the PZT sensor node2 consist
of extremely in–phase samples, clearly showing tightly consistent sinusoidal patterns, the
difference among them being a matter of amplification factors. Non–idealities, such as
manufacturing process, could be a reasonable explanation for this little variation.

An almost perfect superimposition between theoretical and experimental data can be
inferred from acceleration envelopes, according to the fact that the beam is constrained to
vibrate in a cantilever configuration as the clamp does fix its left cross section. As such, for
the considered experimental test–bed, the most significant acceleration measured by the
sensor is the vertical component (az) fluctuating around nominal 1 g, followed, in order, by
the horizontal (ax) and lateral (ay) ones, the latter being negligible compared to the other
two. As a consequence of previous observations, only data recorded on PZT channels
together with vertical accelerations az will be used for further characterization.

2 For the sake of correctness, the acronym PZT refers to the material with which piezoelectric transducers are
typically fabricated. In this manuscript, the same acronym will also be used as a pure linguistic license to
indicate the ISSLab nodes supporting such technology.
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Figure 55: Dynamic response of a cantilever beam induced by an additive mass. Signals acquired in
time domain on each channel of a piezoelectric sensor node and a MEMS accelerometer
(top) placed in the same position. [©2019 IEEE]

In addition, a comparative study of the normalized and averaged data is provided in the
upper plot of Fig. 56, highlighting how a derivative relationship exists between ACC and
PZT data. In fact, since in a beam in bending the strain along the beam axis is proportional
to the second order derivative of the displacement orthogonal to the beam axis, namely
the deflection, and accelerations are the second order derivative of the displacements, the
strain and the acceleration measured by the ACC nodes are linearly related. Moreover,
the macroscopic radial deformations of the transducer caused by the deformations of the
beam induce a charge redistribution in the PZT material which is related linearly to the
strain perceived by the transducer and to the piezoelectric potential Vq.

At low–frequency, this voltage does not directly correspond to the actual quantity mea-
sured by the PTZ nodes. Specifically, by adopting the first order electrical model of a
generic PZT transducer sketched in Fig. 57, where Cp corresponds to the piezoelectric
capacitance, Vout quantifies the measured voltage at the output stage across a loading ca-
pacitor CL in parallel to a load resistor RL. Basic circuit manipulation in Laplace domain
yields to the input-output voltage transfer function formalized in expression (46):

H(s) =
Vout(s)

Vq(s)
=

sRLCp

1+ sRL(CL +Cp)
(46)

which, under the assumption ω ≪ 1/[RL(CL +Cp)], with ω being the angular vibration
frequency, can be further simplified into Eq. (47), which acts as a derivative block on Vq:

H(s) = sRLCp (47)
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Figure 56: Comparison between PZT and ACC averaged envelopes: original signals (top) and nor-
malized acceleration time-derivative superimposed to normalized PZT signals (bottom).
[©2019 IEEE]
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Figure 57: First order electrical model of a PZT sensor.©2019 IEEE

Consequently, in the low-frequency range, the signal measured by the PZT nodes is the
first derivative of the the strain, hence the first derivative of the signal measured by the
ACC nodes.

This theoretical expectations is validated by the experimental waveforms presented in
the bottom plot of Fig. 56, which superimposes all the three channel responses measured
by the PZT device with the derivative of the vertical acceleration az: the good agreement
of the signals generated by the two different sources enforces the empirical evidence that
these devices register different physical quantities relative to the same vibration behavior.

7.3.2.3 Validation: frequency analysis

As far as natural frequency extraction is concerned, PSD was estimated through different
processing techniques, yielding to the spectra drawn in Fig. 58. It is worth noticing how
spectral peaks estimated from PZT and ACC acquisitions (dash-dotted vertical lines) are
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(bottom) computed with different processing techniques. [©2019 IEEE]

consistently aligned nearby the same values. From one side, this fundamental outcome
demonstrates the effectiveness of custom piezoelectric devices in capturing the dynamic
properties of vibrating structures, even at frequencies below a few tens of Hertz. At the
same time, it can be argued that the performance of PZT devices is even superior, their
spectral content being significant at higher frequencies beyond 100Hz. Indeed, the third
and fourth frequencies are visible in all the PZT spectral signatures obtained with the
selected PSD estimators (periodogram, Welch’s method, AR+Noise). Conversely, only the
AR+Noise method is capable of identifying two faint peaks corresponding to these frequen-
cies in the ACC curves: the other two methods are inadequate of such feat due to the poor
SNR which is globally associated to the two sinusoids in the acceleration spectrum.

The PSNR has been considered as the main metric to qualify the spectral insight ex-
tracted with the two sensing technologies. The most important outcome concerns the
higher PSNR characterizing the PZT–driven response around the two highest natural fre-
quencies, independently from the adopted PSD estimator. In detail, the PSNR value around
the third and forth modes nearly drops from 15dB and 10dB, respectively, to 0dB while
moving from the PZT to the ACC spectral trends. Conversely, a negligible deviation can
be observed for the first and second modal component, since their correspondent magni-
tudes are almost equally resolved with respect to the noise floor (i.e., PSNR = 25dB).

The spectral analysis reveals that the dominant modes are centered at the following
frequencies: f1 = 2.93Hz, f2 = 37.11Hz, f3 = 104.49Hz, f4 = 208.98Hz. These values
express the mean average among all the experimentally calculated peaks by means of
the AR+Noise estimator. Comparing these outcomes to numerical expectations, the highest
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in magenta), five MEMS accelerometers (ACC red devices) and akin PZT transducers
(blue ones) connected to two PZT sensor nodes (green ones). The light–grey wiring
lines identify the PZT transducer–to–sensor connections, whereas the blue ones refer to
the sensor–to–sensor communication cables. Four different positions x1, x2, x3, x4 were
considered to simulate the presence of crack-like faults by means of hanged masses.
[©2019 IEEE]

deviation can be noticed around the first vibration mode. Alongside, a relative error av-
eragely inferior to 5% proves the suitability of the proposed hybrid network to cope with
modal frequency estimation purposes in a more consistent manner than acceleration–only
alternatives.

7.3.3 PZT–driven modal analysis for damage detection

The objective of this sub–Section is to prove experimentally the defect capability of
piezoelectric–driven modal analysis and, thus, to stress its reliability as a complemen-
tary/competitive tool for vibration–based SHM applications.

7.3.3.1 The case–study: a simply supported steel beam

The structure in Section 4.4.1.1 was sensorized with a double chain of five PZT transducers
and as many accelerometers (Fig. 59). The devices were almost equally spaced, for a total
amount of ten passive sensing elements installed at a time. Sensors were fixed in corre-
spondence of the same vertical position but on opposite surfaces. Each piezoelectric disc,
which weights less than 190mg, presents an external and internal diameter respectively
equal to 6mm and 4mm. The total weight of the network so far deployed amounts to
53.1 g, which corresponds to less than 0.54% of the beam mass (9.70 kg), also comprising
the extra load due to the purposely designed lodging case. Such a modest weight incre-
ment is uniformly distributed over the whole beam span, then it can be argued that its
effects on the dynamic response of the structure are negligible. It is worthy to notice that
only two PZT sensor nodes were necessary to acquire five transducers’ signals, thanks to
the featured multi–channel acquisition capability of the ISSLab PZT node.

Faulty conditions were simulated by laterally hanging additional masses on the beam
at four different positions. In detail, two masses mA = 988g and mB = 1754 g were
employed (referred to as case A and B, respectively, in figures and tables), whereas the
positions of the mass were x4 = 335mm, x3 = 820mm, x2 = 1353mm and x1 = 1854mm
distant from the left edge of the beam. Hence, an asymmetric mass distribution was in-
duced, causing a decrease in natural frequencies dependent on both the amount and
placement of the weight itself. A schematic representation of the final monitoring net-
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work is depicted in Fig. 59, from which it is clear that the selected sensing positions are
proximal to the nodal and antinodal values of the first two modes of vibration.

After a preliminary characterization in nominal conditions, eight configurations with
simulated damage were tested stimulating the beam in a free position of the span by
means of an impact hammer. In all the experiments, 5000 samples were acquired at
Fs = 1 kHz. In such way, not only the effectiveness of the sensor network to extract
modal parameters was validated, but also the possibility to detect a defective condition.

7.3.3.2 Frequency–based assessment

The spectral characterization of the beam was conducted through the AR+Noise estimator
(Np = 60), given the necessity to efficiently handle the higher complexity of the con-
sidered scenario. The locally estimated PSD curves are finally averaged, thus obtaining
a cumulative evaluation. The suitability of this heterogeneous sensor network to track
damages, meant as frequency variations in the spectral content, is evidenced in Fig. 60.
The computed spectra are obtained from ACC and PZT signals, recorded in healthy and
altered conditions, from the halfway sensor node.

The panel proves the high accuracy of the instrumentation in identifying the high–
order and most damage–sensitive modes. Moreover, it should be mentioned that the per-
formances related to high–order even harmonics in the spectra are coherent with the
reported sensing position, representing the mid–span a nodal point for the chosen bend-
ing conditions. More importantly, the vertical alignment between PZT and ACC peaks
is clearly evidenced, supporting the suitability of low–cost and customized piezoelectric
devices to cope with classical OMA–based SHM. Finally, a good match with the numerical
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predictions (generated with closed analytic formulae as in Section 4.4.2.2) additionally
corroborates the quality of the obtained results.

A quantitative evaluation is reported in Fig. 61, which describes, for every p–th vibra-
tion component, the absolute relative error εp =

∣∣1− fp/f
ref
p

∣∣, in percentage, between
the first three experimentally extracted (fp) and numerically predicted modal frequencies
(frefp ). The non–uniform distribution of the error among the different acceleration com-
ponents follows the same pattern in both the adopted sensing technologies. A noticeable
fluctuation can be observed in the extraction of the third mode, independently from the
specific position or entity of the hanged mass. Such effect can be attributed to the low
energy content of this modal component.

From the comparative analysis, it can be concluded that the performance of the PZT

devices is competitive over their MEMS counterparts, showing approximately equivalent
percentage values in correspondence of the lowest frequencies. Despite some isolated
peaks, concentrated around the most severe perturbation (e.g. more than 6% error for the
second natural frequency when mB is in position x2 and x4), the precision of the PZT

transducers in detecting the most energetic and low–frequency harmonics outperforms
the one obtained from acceleration data. More specifically, the efficiency of the adopted
PZT–driven solution is confirmed by the related errors, averagely below 3.10% and 2.66%,
for the first and second mode, respectively. Such percentages have to be compared to
3.38% and 1.40%, i.e., the relative errors achieved by processing the MEMS signals.

It is worth noting that the computed relative errors are affected by the minimum spec-
tral resolution imposed by the sampling frequency. This resolution is equal to 0.2Hz in
the considered setup, corresponding to a theoretical worst-case variation associated to the
first component of almost 3.70%.
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7.3.3.3 Mode shape–based assessment

Finally, the extraction of mode shapes from PZT signals was precisely investigated, fol-
lowing the processing scheme sketched in Fig. 62. The aim is to reconstruct the first three
mode shapes for each tested configuration. In performing this task, the signal amplitude
recorded by every sensing unit plays a crucial role. This requirement does not apply to
the natural frequencies extraction process, which explores relative differences in spectral
peaks’ alignment rather than in the mutual PSD magnitude. A proper mode shape tuning
procedure (also referred to as scaling) was performed to counteract unavoidable differ-
ences in the transducers’ amplitude response due to intrinsic non–idealities in the sensors’
fabrication, wiring and coupling mechanism. Such a tuning is performed when the struc-
ture is in pristine (zero-time) conditions (superscript N) and, subsequently, evaluated for
on-condition damage assessment in presence of defective configurations (superscript D).

In the zero–time testing, UA acquisitions from ACC and PZT sensor nodes were
repeated under nominal dynamic behaviour3. For each ACC and PZT acquisition,
the first three raw mode shape vectors (Φ(p,uN)

ACC = [Φ
(p,uN)
1,ACC . . . Φ

(Ns,uN)
NS,ACC] and

Φ
(p,uN)
PZT = [Φ

(p,uN)
1,PZT . . . Φ

(p,uN)
Ns,PZT ], u = 1 . . . 3 respectively) were extracted on the ba-

sis of the FDD algorithm (step 1). Then, the actual tuning procedure to determine a set
of scaling factors for the PZT sensors is performed (step 2). The developed procedure
is based on an iterative leave–one–out strategy, according to which UA − 1 time series
were employed for the tuning of the PZT scaling factor and the remaining one for the
validation.

Let us denote with k the excluded data–set at each iteration; the scaling coefficient
α
(p,kN)
i,PZT for the p− th PZT modal coordinate at the individual sampling position i was

computed as:

α
(p,kN)
i,PZT =

1

UA − 1

UA∑
u=1,u̸=k

Φ
(p,uN)
i,ACC

Φ
(p,uN)
i,PZT

(48)

The scaling factors were then used to assemble the estimated mode shape coordinates
Φ̂

(p,kN)
PZT (step 2.a):

Φ̂
(p,kN)
i,PZT = α

(p,kN)
i,PZT Φ

(p,kN)
i,PZT (49)

In the experiments, UA = 5 time series from Ns = 5 acceleration and as many piezoelec-
tric transducers were acquired on the structure in pristine conditions. Thereby, 5 different
sets of tuning factors were derived, the cardinality of each set being equal to the number
of extracted modes.

The validity of such tuning procedure was assessed by computing MAC values (step
2.b) to measure the level of coherence between numerically predicted mode shapes Φ(p,N)

ref

and experimentally scaled PZT mode shapes Φ
(p,kN)
PZT coming from the k− th data–set.

As reported in the first row of Table 19, the MAC percentages obtained by averaging
MAC values achieved for the five different sets of tuning factors are consistently above
90% when the structure is in the pristine (nominal) conditions. The smallest MAC value

3 For the sake of clarity, the notation adopted in this Section has been changed slightly with respect to the one
adopted until this point to indicate mode shapes as well as a different meaning to the quantity N has been
assigned.
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Figure 62: Processing flow adopted for PZT–based damage detection purposes. In the left column,
the zero–time validation in nominal conditions comprising (1) the extraction of both
the ACC and PZT raw mode shapes, (2) the PZT mode shape scaling factors estimation
built on a (2.a) leave–one–out tuning procedure and (2.b) a final structural validation
of the reconstructed PZT mode shapes. Procedures in the right column refer to the
on–condition assessment in damaged configurations, where the previously estimated
tuning factors (step 2.a) are employed to re–scale (step 4) the currently obtained raw
PZT mode shapes (step 3); the comparison with reference values (step 5) is performed
to notify damage alarms in case of occurrence.
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Table 19: Mean values µ and associated standard deviations σ of MAC values obtained in nominal
condition validation and damage detection assessment after applying the proposed PZT
mode shapes tuning procedure.

Φ(1) Φ(2) Φ(3)

µ1 σ1 µ2 σ2 µ3 σ3

Nominal 96.75 1.33 96.56 2.71 94.40 1.57
A @ x1 91.23 2.06 76.07 3.60 41.38 3.24
A @ x2 90.03 2.34 67.78 4.16 73.57 3.28
A @ x3 83.32 2.60 78.44 2.60 72.24 3.17
A @ x4 88.14 2.09 66.42 4.10 38.64 11.24
B @ x1 95.24 0.93 51.32 3.79 49.44 20.72
B @ x2 75.65 1.89 49.94 1.94 13.96 6.24
B @ x3 96.49 0.21 54.64 3.08 96.09 1.01
B @ x4 71.65 2.79 52.04 2.06 90.26 1.92

is obtained for the third mode. This is due to the fact that higher modal components only
comprise a minimal part of the total mechanical energy of the structure, [201]. Alongside,
it is important to underline the robustness of the scaling technique for the PZT signals,
supported by the minimal standard deviations.

The capability to identify damaged conditions by monitoring mode shapes extracted
from PZT acquisitions was then tested under the previously described perturbed con-
figurations (steps 3-5 in Fig. 62). For a specific defective status indicated by the super-
script D, the native modal coordinates estimated from the PZT acquisitions (Φ(p,D)

PZT =

[Φ
(p,D)
1,PZT . . . Φ

(p,D)
Ns,PZT ]) were calculated with the FDD algorithm (step 3), and tuning factors

α
(p,kN)
i,PZT computed in step 2.a were successively applied to scale the currently extracted

mode shapes (step 4). In Fig. 62, this concept is magnified by a noticeable shift in the
modal pattern (blue dashed curve) occurring in the proximity of the simulated defect
position, with respect to the baseline curve (green one) extracted in nominal conditions.
Finally, by estimating MAC indexes with respect to reference modal coordinates (step 5),
the damage detection capability of the system was verified.

Table 19 reports the mean values µp and the associated standard deviations σp of the
MAC related to each set of five modal correlation percentages for the considered defective
conditions. For each case, it is possible to identify at least one mode with MAC correla-
tion degrading beneath 90%. Finally, it must be acknowledged that, notwithstanding two
isolated outliers related to the third mode shapes, the standard deviation of MAC values
is on average less than 4 %.

7.4 conclusions

This Chapter has presented data fusion techniques, eventually running on extreme edge
devices, as a viable solution to partially alleviate the technological limitations of individ-
ual sensing principles and, consequently, permit the development of up–scalable, versa-
tile and non–invasive alternatives for the long–term monitoring of structures in dynamic
regime.

Tilt values, extracted via a simple yet robust sensor data fusion algorithm, which is
supported by an optimized on–board signal processing scheme, have been estimated in
a near–sensor manner accomplishing significant accuracy both in pseudo-static and dy-
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namic conditions. Besides, a physical interpretation of the relationship between vibration
responses acquired by piezoceramic transducers and standard accelerometers disclosed
new possibilities for piezoelectric–driven modal analysis, even in the low–frequency re-
gions: it has been demonstrated that low–cost PZT sensors might be used alongside tra-
ditional MEMS accelerometers to efficiently estimate modal parameters of structures un-
dergoing flexural vibrations while reducing the cost and the weight of the monitoring
instrumentation.

Therefore, the procedures explored in this Chapter offer a twofold means for sensor net-
work optimization: from one side, they extend the structural insight via complementary
measurements, thus increasing the accuracy of the data analytics layer; on the other hand,
they allow for a better exploitation of the available sensing and processing capabilities
of the network, eventually promoting a more affordable and edge–enabled monitoring
approach.
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G W– B A S E D F O R D I G I TA L D ATA T R A N S F E R

abstract

In this Chapter, the basic concepts of guided waves (GWs) as a powerful means to performing
punctual inspection of large structures are reviewed. Then, the discussion is focused on the us-
age of piezoelectric transducers for GWs–based digital data communication systems, in which the
transmitted signals can be used at the same time for probing the inspected structures and for
communicating, wirelessly, the results of the inspection itself.

8.1 introduction

Vibration diagnostics is a non–destructive evaluation technique suitable for global dam-
age characterization, due to the fact that vibrations reflect the structural behavior at a
macroscopic scale. This means that each part of the structure oscillates at the same time
without propagation of the mechanical energy [128]. Nonetheless, when local inspection
is required to identify, localize and classify inner flaws or subtle phenomena occurring in
the internal regions of the structure, vibration analysis might be ineffective.

Conversely, ultrasonic testing based on Guided Waves (GW) offers the opportunity to
perform a punctual inspection of wide areas by leveraging the peculiar capability of
guided elastic waves to be scattered by damages [210] while being confined by the bound-
aries of the mechanical medium in which they propagate [211]. Typically applied for elon-
gated structures, GW testing is more generally used as a tool for monitoring thin–walled
components, i.e., those structures in which the thickness is comparable–to or greater–than
the wavelength of the GW itself.

Conventional GW–based SHM systems commonly comprise a distributed array of trans-
ducers which can be permanently installed on the inspected structure. These devices can
be used either for actively generating or passively sensing the elastic waves: in the former
case, they are connected to external signal generators, whereas the latter functionality
requires data amplification and acquisition systems. Once collected, waveforms are for-
warded to central processing units for further elaboration, during which a set of damage
sensitive features is extracted with the final aim of providing the sought structural bulletin.
However, the dimensions, costs, and weight of the commercial electronic equipments that
are needed to perform the monitoring are typically not compliant with long–term func-
tionalities and permanent installation.

To address these issues, and similarly to what has been done in the vibration diagnos-
tics field, the design of a new generation of embedded microsystems suitable for near–
sensor GW signal processing has recently been fostered. These new smart devices are
characterised by unobtrusive miniaturized circuits integrating all the electronics to per-
form digital signal processing and custom actuation. The same devices are also capable of
exchanging data without the need of additional cables, radio–frequency modules and/or
external bulky instrumentation because the mechanical waveguide itself acts as the com-
munication channel, while GWs are exploited as information carriers. In this perspective,
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Figure 63: Exemplary description of the principles enabling GW–based wireless data transfer in
SHM applications. Beside the punctual structural inspection capabilities peculiar to
GWs, the complementary ability of smart sensors/transducers to on–board process and
generate signals can be exploited for cable–free data sharing among the players of the
SHM network itself.

the transmitted signals, to be readily generated in form of digital pulses corresponding
to mutual digital messages, allow for the pursuit of a twofold purpose: (i) probing the
inspected structures and, after local elaboration executed directly by the sensor board, (ii)
communicating the results of the inspection. Fig. 63 symbolically schematizes these con-
cepts for a representative case consisting of three actuating nodes (TX) and one receiving
node (RX) deployed on a square plate.

This complementary and communication–oriented feature might be crucial when ca-
bled or conventional wireless electromagnetic communication is not viable, too expensive
or prone to fail, for example in underground or underwater applications. It is worth men-
tioning that, whenever possible, it is preferable to transmit only near–sensor processed
information, rather than long time series such as the raw data. In fact, in GW inspections,
pre–processed information may consist of a few scalar values representing damage in-
dicators. In this sense, the GWs–based solutions illustrated in this dissertation pursue a
local/global system optimization effort which has some analogies with what discussed
for vibration–based monitoring systems in Sections 4 and 5.

In the following, the basic properties of one special class of GWs, i.e., Lamb waves1, will
be analysed to provide a consistent description of their peculiar propagation behavior.
This theoretical understanding deserves primary importance for the design of the most
adequate transmission scheme.

1 This is the specific class of GWs exploited for the sake of communication. Henceforth, to simplify the notation,
the acronym GW will be used as a metonymy to indicate such waves.
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Figure 64: Dispersion curves for an aluminum square plate with 1mm thickness: (a) phase velocity
and (b) group velocity.

8.2 fundamentals of lamb waves

GWs can have different nature, depending on the boundary conditions of the structure in
which they propagate. Firstly studied by Sir Horace Lamb, Lamb waves are the particular
form of guided waves which propagate in plates. Two main properties contributed to
their diffusion in the SHM field, namely (i) their inherent capability to travel long distances
with low attenuation and (ii) the concurrent sensitivity to both inner (e.g., delaminations,
disbondings) and surface defects (e.g., corrosion, cracks, impacts) [212].

Nevertheless, albeit showing long–range propagation and sensitivity with respect to
distinct classes of damage, it is paramount to emphasize that Lamb waves can exhibit
complex behavior during propagation, primarily due to their multi–modal nature. In the
GW context, multi–modality means that multiple modes are actuated at the same time and
co–exist in the same frequency interval. For planar structures, these modes are of two
different types: symmetric (S), if the particles show more radial in-plane displacement,
or anti–symmetric (A), if the average motion displacement is out–of–plane, along the
transverse direction. Despite being theoretically infinite, the actual number and nature of
the generated modes vary with the frequency–thickness product: such concept implies
that, since the thickness is prescribed by the chosen structural geometry, it is possible to
adapt the frequency content of the actuated signal such that all high–order modes, apart
from the first symmetric (S0) and anti-symmetric (A0) ones, that exist for all frequency
bands, are cut off. Beside multi–modality, two other factors characterize Lamb waves
propagation: (i) dispersion, i.e., the wave speed is not constant with frequency; (ii) mode
conversion, i.e., symmetric modes may be converted into anti–symmetric ones and vice
versa, especially when the waveguide has some irregularities (e.g. thickness variation).

A useful graphical representation of this propagation pattern is given by the so–called
dispersion curve diagrams in Fig. 64, i.e., plots showing the profile of the phase cp (Fig.
64a) and group cg (Fig. 64b) velocity of the waves as a function of the frequency–thickness
product. cp is the rate at which the individual phase of the wave propagates, whereas cg
represents the propagation rate of the entire wave envelope [213]. In these figures, which
are taken from an aluminum beam with 1mm thickness, multi–modality stems from the
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simultaneous presence of the red and blue curves referred to the symmetric and anti–
symmetric modes, respectively, while dispersion is proven by the non constant trend of
the single curve while moving from lower to higher actuation frequencies2.

In practical cases, where it is necessary to deal with a finite propagation medium, there
are three other forms of complexity: the first concerns the physical interaction of GWs
with the mechanical boundaries, which is responsible for reflections and reverberations,
a phenomenon also known as multi–path interference; the second pertains, instead, to
the mutual interferences in case of multiple active transducers. Finally, the effects of en-
vironmental changes, such as temperature fluctuations, could also alter the propagation
behaviour to a substantial level.

Therefore, the successful implementation of GW–based communication mechanisms
must cope with all the above mentioned detrimental effects. Appropriate encoding strate-
gies are consequently needed to achieve robust and accurate transmission of digital infor-
mation through the mechanical waveguide.

8.3 overview of gws–based data communication systems

The different GWs–based system realizations for digital data transfer can be categorized
on the basis of the adopted modulation mechanism. Modulation is the procedure which
allows to incorporate the information conveyed by a digital message or stream of bits
in one or multiple carrier signals of adequate frequency. It is worth noting that, despite
the different nature of the channel, modulation methods conventionally used for radio
communications can be easily mapped to the GWs–based counterpart. In the literature,
successful data transfer via GWs has been presented across several structures, and the
achieved bit rates lie between tens of bps to hundreds of kbps, reaching a few Mbps for
very short propagation distances. This transmission speed is deemed sufficient for the
prospective application scenarios, where the data payload is given in form of a batch of
damage indicators.

Among the large variety of communication strategies, the scope of this Section is to
offer a systematic overview of state–of–the–art solutions for GW-based communication,
extending what has already been provided in [P18] and [P19]. A selection of already
published works is offered in Table 20, in which details concerning the attained data rate
per transmission distances are explicitly reported in order to perform a thorough analysis
of their performances. For a theoretical analysis of the different modulation techniquess,
readers are referred to [214], while the specific modulation schemes investigated in the
following of the manuscript will be detailed in the next Sections.

Considered as one of the most effective modulation techniques, On–off keying (OOK)
represents an efficient solution for data communication across solid planar media (e.g.,
plates), allowing digital messages to be delivered through the structure with considerable
rate (in excess of 100kbps) after travelling distances in the order of 50 cm. There are two
main reasons enabling the success of this method: (i) its simple bit encoding/decoding
mechanism, according with which a digital one is represented by the transmission of
a pulse signal while omitting it encodes a binary zero, and (ii) its easy realization via
low–power and low–cost electronics for GW inspection. Therefore, it is usually applied in
combination with frequency multiplexing techniques to allow concurrent transmissions

2 Considering that the thickness is constant, an increase in frequency–thickness product actually corresponds
to an increment in the central frequency of the actuation signal



8.3 overview of gws–based data communication systems 147

from multiple users operating in different, well–separated bands of the spectrum. For
example, in [216], the impact of structural damage on the communication quality employ-
ing OOK in presence of multi–modal Lamb waves has been studied numerically as well
as experimentally. In [217], successful transmission of digital data by using the same OOK

scheme has also been demonstrated for two spatially separated planar waveguides. A
correlation–based OOK approach has further been tested in rather complex technical com-
ponents, such as a composite helicopter rotor blade and a sandwich panel [218]. In [219],
wireless delivery of encoded information through a glass–fiber reinforced polymer planar
waveguide has been studied by a combination of time–domain OOK and FDM schemes.
A recent research work also includes a medical application: in [250], the transmission
of fracture–related information is discussed, where data from a transducer fixed to the
surface of a bone is sent to an acoustic receiver located externally on the skin surface. In
[251], OOK and its variants have been tested utilizing a variety of solid channels, including
blocks, plates, and pipes.

Moreover, a low–rate communication approach using chirped OOK has also been inves-
tigated for communicating digital data across a cylindrical structure [223]. In this case,
chirp signals are employed in place of pure sinusoidal bursts to increase the SNR in the
acquired signal and, thus, maximize the probability of bit recovery at the receiving side.

Despite the promising results, the frequency multiplexing strategies reported above are
not advantageous in terms of spectral efficiency, since they might require large guard
bands between the different modulation frequencies, necessary to minimize the probabil-
ity of mutual interference. As such, researchers started to investigate Orthogonal Fre-
quency Division Multiplexing (OFDM), a technique that can achieve higher data rates
thanks to the exploitation of densely arranged and closely orthogonal sub–carriers. Typi-
cally applied for data transmission through thin walls, bit–rates up and in excess of 1M
achieved via OFDM are really promising for GW–based digital data transfer. However, it
is important to underline that these high–rate performances are largely due to the very
short communication distances involved in the application scenario (see [226]–[228]), a
quantity which amounts to less than 10 cm. Proof is the fact that, when tested on longer
propagation channels, bit–rates comparable to the ones scored by standard frequency
multiplexing have been measured [225], [229].

Relevant research concerns the combination of Pulse Position Modulation, where the
time delay between pulses bears information, and time reversal processing [237], which
is able to compensate for dispersion and multiple wave modes. Such approach has
been deployed for ultrasonic information transmission through one–dimensional waveg-
uides [235], [252] consisting of multi–wire cables, steel pipes and bars, reaching a satisfy-
ing performance in the order of 500 bps for 4m communication distance.

More recently, novel investigations have been conducted aiming at overcoming one of
the most critical issues in presence of multi–actuating/receiving nodes, namely crosstalks
between active transducers. To this end, node–to–node communication across a metallic
plate has been simulated numerically in [240], where single–mode Lamb waves have been
employed for parallel transmission of encoded information from multiple piezoceramic
transducers by combining phase modulation (i.e., Code Division Multiplexing) with soft-
ware codeword–based multiplexing. To counteract the detrimental dispersive behavior,
dispersion compensation techniques have been applied to the measured signals before
decoding the transmitted information. Additional calculations have been performed to
investigate the aforementioned communication scheme in a tapered waveguide [239] and
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Figure 65: Performance comparison of GWs–based communications systems

proof–of–principle (PoP) experiments with/without dispersion compensation have been
carried out for an aluminum plate in [253]. Noteworthy, validation of digital commu-
nications based on code multiplexing with real–field data is still missing and, thus, it
represents an open field of research.

The list of explored techniques also comprises Pulse Amplitude Modulation (PAM) [242],
in which the digital message is encoded in the amplitude of the transmitted pulses, and
Frequency Shift Keying (FSK) or multitone FSK [243], [244], the latter making use of one
or multiple frequency tones alternated, in time, depending on the binary information to
be transmitted. Furthermore, particular attention deserves the application of amplitude
(Amplitude Shift Keying (ASK)) or phase modulations, the latter being either Binary Phase
Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK), which offer a simple means
for bit encoding via progressive shifts in the phase of the modulation signal. The reported
transmission rates range from dozens to hundreds of kbps, depending on the travelled
distance.

For the sake of global evaluation and aiming at offering an immediate graphical un-
derstanding about the performances of the currently available solutions for GW–based
data communication, the distance/rate performance plot displayed in Fig. 65 has been ex-
tracted from Table 20. As can be observed, performances scales with the communication
distance and, consequently, with the dimensions of the structure to be monitored. More
specifically, it is worth noticing that, even if OFDM is very effective for through–wall com-
munication, i.e. for distances below 10 cm, the trivial OOK or its amplitude/phase variants
are more competitive when moving to planar waveguides characterized by communica-
tion distances below 1m. Alongside, the focusing effect of time reversal demonstrated to
be a robust and performative strategy for longer transmission channels (even more than
10m) that are demanded in case of pipes or industrial cables and, thus, are inherently
affected by a more pronounced dispersive behavior.
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Table 20: State–of–the–art of the most significant techniques employed for GWs–based digital data
communication with highlighted characteristics and reported performances (column "C"
indicates whether compensation procedures are encompassed).

Technique Characteristics
Tested setup & performance

C Scenario Dist
Bit-
rate
[kbps]

Ref

FDM/OOK

– Impulse response estimation: tone-burst
excitation from TX to RX

– Bit encoding: 1→ pulse transmission, 0
→ pulse omission

– Matched filter: cross–correlation
between received signal and impulse
response

– Bit decoding: cross–correlation
thresholding and PP: 1← value above
threshold, 1← value below threshold

✗ Exp: aluminum plate 0.5m 100 [215]

✗ Exp: aluminum plate 0.25m 120 [216]

✗
Exp: two bridged aluminum
plates

0.5m 60 [217]

✗

Exp: helicopter blade seg-
ment, small–scale grouted
joint of wind plant, sand-
wich structure

0.3m 158.3 [218]

✗ Exp: CFRP plate 0.4m 112 [219]

✗ Exp: aluminum plate 0.6m 100 [220]

✗ Exp: glass plate 1m 1.5 [221]

Chirp/OOK
Analogous to FDM/OOK, but employing
chirp signals in actuation

✗ Exp: cylindrical bridge 53m - [222]

✗ Exp: cylindrical pipe 4.8m 0.1
[223],
[224]

OFDM
Discrete multi–carrier modulation to
counteract multi–path fading

✗ Exp: drill string 0.3m 0.2 [225]

✓ Exp: steel barrier 0.04m 1 M [226]

✗ Exp: steel wall 0.06m
17.37
M

[227]

✗ Exp: naval bulkhead 0.06m 14 M [228]

✗ Exp: aluminum bar 0.32m 200 [229]

TR-PPM

– Impulse response estimation: tone-burst
excitation from TX to RX

– Bit encoding via time–reversed channel
response: 1→ transmission of time
reversed signal delayed in time, 0→
transmission of time reversed signal
without delay in time

– Matched filter between received signal
and impulse response

– Bit decoding: non coherent energy
detector

✗ Exp: multi–conductor cable 30m 0.47 [230]

✓
Exp: carbon steel pipe, stain-
less steel pipe

0.04m 100
[231]–
[233]

✗ Exp: galvanized steel pipe 3m 0.067 [234]

✗ Exp: multi–wire cable 4m 0.5
[235],
[236]

✗
Exp: carbon steel pipe speci-
men

1.5m 100 [237]

✗ Exp: flat aluminum bar 0.3m 20 [238]

CDM – Sender–specific codeword
– Multiple transmitters at the same time

without interference

✓ PoP: tapereed steel rod 2m - [239]

✓ PoP: aluminum plate 0.3m - [240]

✓ Exp: aluminum plate 0.5m - [241]

PAM
Pre–distortion filter to suppress echoes and
destructive interferences at the receiver

✓ Exp: steel pipe 0.64m 5 M [242]

FSK,MFSK
Different combinations of multiple carrier
frequencies to exploit full bandwidth

✓ Exp: shipping container 2.16m 0.36 [243]

✓ Exp: gas pipe 1.1m - [244]

ASK, BPSK,
QPSK

Simple modulation approach

✗ Exp: aluminum plate 0.3m 100
[245],
[246]

✗ Exp: aluminum bar 0.5m 12.5 [247]

✗ Exp: aluminum plate 0.3m 181.82 [248]

✗ Exp: stainless steel plate 0.02m 1 M [249]
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abstract

This Chapter demonstrates the use of GWs for multiple–in and multiple–out (MIMO) data com-
munications basing on an edge implementation of the Frequency Division Multiplexing technique
combined with square–wave excitation. The proposed solution enables the parallel emission from
multiple, low–voltage, distributed nodes without interference thanks to a spectrum–based encod-
ing procedure. Wireless exchange of encoded information across a metallic plate and a stiffened
carbon–fiber reinforced plastics structure is investigated to verify the attainable transmission rates.

The content of this Chapter is based upon the research works [P18]–[P20]:

"Low-Power MIMO Guided-Wave Communication" by Kexel, C., Testoni, N.,
Zonzini F., Moll, J., and De Marchi L. In IEEE Access, vol. 8, pp. 217425-217436,
2020. ©2020 IEEE
"Guided-wave MIMO communication on a composite panel for SHM applica-
tions", by Zonzini, F., De Marchi, L., Testoni, N., Kexel, C. and Moll, J. In Proc.
SPIE 11381, Health Monitoring of Structural and Biological Systems IX, 1138136 (8
May 2020).
"A Structural–Aware Frequency Division Multiplexing Technique for Acous-
tic Data Communication in SHM Applications", by Zonzini, F., De Marchi, L.,
Testoni, N., Kexel, C. and Moll, J. In Rizzo P., Milazzo A. (eds) European Workshop
on Structural Health Monitoring. EWSHM 2020, Lecture Notes in Civil Engineer-
ing, vol 127. Springer, Cham.1

from which part of the text is drawn.

9.1 introduction

Multiple–In Multiple–Out (MIMO) systems are adopted when multiple users are active at
the same time and communicate to several nodes in listening mode. MIMO is beneficial to
increase the reliability/robustness of the communication with multiple links. Secondly, it
enables increasing the amount of information that can be delivered in each time interval
by using simultaneous transmission. To achieve such task while avoiding - or, at least,
minimizing - unavoidable mutual disturbances between adjacent transmitters, either time
division or frequency division multiplexing techniques are required.

The first scenario divides the time axis in different slots, one per transmitting node,
allowing only one sensor at a time to take full control of the channel bandwidth. Despite
its simplicity, this multiplexing scheme is inapplicable in dense sensor networks, since the

1 Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Lecture
Notes in Civil Engineering, A Structural-aware Frequency Division Multiplexing Technique for Acoustic
Data Communication in SHM Applications, ©2021.
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implied latency might become incompatible with the admissible duty–cycles. Conversely,
the rationale behind Frequency Division Multiplexing (FDM) is to allocate a specific fre-
quency band to each emitter of the network for communicating, in parallel, at multiple
carrier frequencies. In this case, all the nodes of the network are active simultaneously
and, thus, specific policies need to be put in place to counteract operative interferences
and regulate access to the shared communication channel.

9.2 physics–informed carrier frequency selection

The explored FDM approach assumes carrier–related information to be sent in the form of
rectangular digital pulses, actuated as square–wave excitation sequences. This actuation
mechanism has been preferred over more sophisticated techniques to be compatible with
the self–generation functionalities of custom signals that are available in embedded low–
cost transducers.

Driven by this paradigm, a novel on–off keying modulation mechanism has firstly been
proposed in [P20] by assigning to every device in transmission a unique set of carrier fre-
quencies, each of them in a one–to–one correspondence with one delivered bit. As such,
transmitting at a certain frequency encodes the binary value ’1’, while omitting transmis-
sion at this frequency represents the binary value ’0’. Therefore, the entire message that
a single node can transmit derives from the linear superposition of several single carrier
excitations. Correspondingly, the decoding procedure at the receiving node can be simply
accomplished by probing for the absence or presence of a particular carrier frequency
within the spectral content of the acquired signals. If the intensity in the surrounding
of the carrier is higher than the noise level, then the value ’1’ is considered, otherwise
the binary value ’0’ is assumed. The aforementioned superposition can either be realized
mathematically when a single actuator emits the already–completed superposition, or it
can be realized physically by a multi–channel actuator that is fed independently by mul-
tiple single–carrier signals.

To summarize, the complete FDM–based communication system so far designed in-
cludes the following three phases: (1) actuation, performed by TX nodes which send a
specific digital message encapsulated in form of elastic waves, (2) propagation, i.e., the
excited GWs travel along the mechanical waveguide and (3) decoding, charged to the RX
nodes which passively collects and analyse the input signals by sensing its spectral con-
tent.

To maximize the probability of correct reconstruction and ease the decoding process
at the receiving side, the selection of the optimal carriers plays a crucial role. As far as
GWs–based digital communication systems are considered, this step becomes even more
crucial since elastic waves are inherently subjected to a dispersive propagation pattern.
Hence, a carrier frequency selection procedure has been specifically suggested in [P19] to
maximize the energetic content of each transducer–related message.

In case of GW–based communication system, a reasonable means to address all these
issues is to exploit the physical bandwidth of the mechanical waveguide itself, namely
its eigenmodes, since the associated frequency bands represent the topmost energetic
channels and, thus, suffer from minor dissipation while propagating. In this sense, the
selection procedure is physics–informed. Noteworthy, this choice has the additional and
non–negligible benefit of reducing the power consumption of the electronics since less
energy is required in actuation to travel the same distance.
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Two different approaches were found to be compatible with energy efficient data com-
munication, which will be referred to as model–assisted and empirical approach, respec-
tively:

• Model–assisted approach: this carrier selection method encompasses the exploitation
of numerical or analytical models to predict the eigenmodes of the mechanical
waveguides of the structure. This solution is applicable whenever the structural, me-
chanical, and geometrical properties are very well known and easy to be modeled
via software.

• Empirical approach: this strategy requires empirical data gathered at the network
start up, during a preliminary calibration phase, to estimate the carriers experimen-
tally. In this case, a couple of TX–RX nodes equipped with embedded signal process-
ing functionalities is sufficient. More specifically, the method consists in transmitting,
repeatedly, pseudo–random digital sequences from the active TX node to the passive
RX transducer: since the spectral profile of a pseudo–random signal, namely the in-
jected signals in this case, is approximately white in the frequency band of interest,
this means that the spectral content of the received signals tends to coincide with the
transfer function of the structure itself. The most energetic peak–related frequencies
appearing in this spectrum can be taken as proxies of the structural eigenmodes.

9.2.1 Joint optimization of the square–wave excitation-sequence length

The switching actuation is computationally advantageous but responsible for the gener-
ation of odd–numbered harmonics besides the fundamental one, the presence of which
must be considered by tackling both their vicinity to the carrier and their spectral intensity,
since they might constitute an additional source of interference.

To cope with this issue, the highest carrier frequency must lie below the second har-
monic of the lowest carrier and it is, in turn, completely determined by the square–wave
excitation–sequence length. Thus, an appropriate tuning of this parameter is of the utmost
importance to limit the effect of the spurious components: the optimization procedure pre-
sented in [P20] specifically tries to solve this problem and can be summarized as follows.

Let’s assume K transmission channels are active, each k-th communication link is char-
acterized by a sequence length Lk defined by the number of times one rectangular pulse
of duration tk and dubbed pulse width is repeated. Hence, Lk coincides with the number
of excitation cycles of a conventional tone–burst if sinusoidal actuation would have been
considered. Assuming that waveforms are produced with a constant duty cycle of 50%,
the total excitation-sequence duration is Tk = 2tk · Lk.

Two fundamental hypotheses can then be introduced, namely:

1. two distinct sequences Lh, Lk possess identical duration T 2, a crucial condition to be
guaranteed for communication scenarios where a global clock or synchronization
mechanism is desired;

2. the distance between two successive carrier frequencies is constant, which is neces-
sary to prevent the optimization problem to be overdetermined.

2 Since Th = Tk∀h, k, the index is dropped and the time duration is simply referred to as T .
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Hence, fk =
Fs

T
Lk holds, where Fs is the sample rate. Since Fs and T are constant quan-

tities common to all the communication links, it can be deduced that the k–th carrier
frequency is uniquely derived once Lk is determined. To this end, the optimal set of
excitation–sequence length can be estimated as those values corresponding to the min-
imum sequence duration T concurrently allowing for the minimization of the maximal
sequence length LK related to the highest harmonic.

Among the multiple sets of excitation–sequence lengths satisfying this condition, the
one allowing the associated carrier frequencies to be proximal to the numerically esti-
mated or experimentally retrieved eigenmodes can be finally selected.

9.3 experimental validation

Hereinafter, the experimental results obtained for the near–sensor implementation of the
investigated FDM technique are presented, pursuing the following three objectives:

1. Assess how the selection of the proper set of carrier frequencies may impact on the
quality of the received signals, while exploring different mechanical waveguides. Ac-
cording with the spectrum–driven reconstruction procedure, rigorous quantification
of this aspect has been achieved by computing the inactive/inactive ratio

rk =
SIAk
SAk

, k ∈ 1, . . . K (50)

which evaluates the ratio between the spectral intensities at the carrier peak values
when the k–th channel is inactive (SIAk ) over the ones measured in active (SAk ) con-
figuration. The lower the rk, the higher the carrier identification capability becomes
and, thus, the quality of the reconstructed bit value. The rationale for exploiting
this metric is that, when the optimal set of structural–driven carriers is selected,
the spectral efficiency increases and a lower value of the spectral ratio should be
computed.

2. Investigate the bit reconstruction performance as a function of the excitation–
sequence length. The Bit–error rate (BER)

BER =
NErr

Nbit
=

∑Nbit

i=1 bi ⊕ b̂i

Nbit
(51)

has been taken as figure–of–merit to quantify the bit recovery accuracy between
the total number of transmitted (Nbit) and mis–classified (Nerr) bits for a generic
channel; ⊕ represents the bit–wise xor operator. For the implemented FDM scheme,
a proper spectral threshold is required to discriminate between the logic value ’1’
and ’0’ and, thus, to count falsely classified bits.

3. Evaluate the robustness of the bit–reconstruction method with respect to structural
complexities and/or irregular designs, where anisotropy, strong attenuation and
mode conversion might play a crucial role.
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(a) CFRP setup [©2021 Springer] (b) Profile of the CFRP stiffener
[©2021 Springer]

(c) Aluminum plate setup [©2020
IEEE]

Figure 66: Experimental setup and relative communication distances: top (a) and (b) lateral view
of the CFRP with highlighted stiffener geometry; top view of the aluminum plate.

9.3.1 Materials and methods

Two geometrically equal square plates (1000mm wide and 3mm thick), one is a metallic
component made of aluminum (Al, Fig. 66c) and the other one a stiffened Carbon–fiber
reinforced plastics (CFRP) (Fig. 66a), were instrumented with a small MIMO communication
network of ISSLab piezoelectric sensor nodes. While the geometry of the metallic plate is
regular, two stiffener elements are placed in longitudinal direction in the CFRP structure,
at a distance of 150mm from the left and right border, respectively (see Fig. 66b).

The network comprises a couple of ISSLab transmitter nodes (TX1 and TX2) and two
receiver nodes (RX1 and RX2) arranged in a 20 cm squared configuration. Indeed, owing
to the three–channel connectivity offered by a single sensor board and the presence of
all the circuitry necessary for the low–voltage excitation and acquisition of the electric
signals, these devices served as ideal prototyping boards for MIMO scenarios in a compact
and energy efficient manner. To fully exploit the multi–drop capabilities of these sensors,
a custom sensing unit consisting of a single multi–channel PZT disc with three active
regions [254], as the one introduced in Section 7.3.2.1, was connected to the three different
connectors of the sensor node.

The sensor nodes were configured as follows. Two channels for each transmitter node
were used to excite as many different carrier frequencies by means of rectangular digital
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pulses, while receiver nodes were programmed to simultaneously acquire 3000 samples
at a sample rate of 500kHz (i.e., acquisition window of 6ms).

9.3.2 Carrier frequency selection

In this experiment, linear superposition of effects was leveraged to inject in the struc-
tures up to four different signals at a time, spanning 24 = 16 different bit combinations
(i.e., 16 possible damage–related messages). Each test was repeated 10 times to assess the
robustness against noise and jitter. The burst excitation–sequence length were, instead,
estimated by solving the combinatorial problem in [P20], yielding to Lk = {10, 12, 15, 18}

as candidate set of optimal excitation–sequence lengths.
As a general outcome, by exploiting the amplification stage embedded into the ISSLab

receiver nodes and carefully choosing the transmitted carrier frequencies, a peak–to–peak
voltage of 387mV was measured in the received signal in correspondence of an actuation
peak–to–peak voltage of 3.3V. The amplitude of the excited pulses exactly corresponds to
the aforementioned voltage value. In the absence of any transmitted signal, the maximum
peak–to–peak voltage of the received signals was 6.03mV.

9.3.2.1 Aluminum plate

The isotropic nature of the aluminum material made the development of a numerical
model an affordable task. Therefore, a model–assisted approach implemented via the
COMSOL® software package was employed for the computation of the eigenmodes of
the plate. This simulation returned λ1 = 9.8 kHz, λ2 = 14.3 kHz, λ3 = 18.1 kHz as the
first three mechanical wavemodes. Knowing this, the approach described in Section 9.2.1
led to these four carrier frequencies: fA1,1 = 9.89 kHz, fA1,2 = 14.82 kHz, fA2,1 = 11.85 kHz,
fA2,2 = 17.78 kHz. In the above notation, the subscript n,k stands for transmitting node n ∈
{TX1,TX2} and channel number k, respectively.

9.3.2.2 CFRP structure

Since the inherent complexity of the CFRP structure makes the numerical study of the
eigenmodes a challenging and time-consuming task, an empirical approach was con-
versely followed in this case. More specifically, exploiting the advantageous capability
of the developed circuitry to generate custom signals, pseudo-random digital sequences
were repeatedly transmitted by means of an active transducer operating at a symbol rate
Fsym = 200kHz and recorded by a passive transducer operating at a sampling frequency
Fs = 2MHz. The latter value was chosen to be sufficiently flat in the frequency band
of 0-100kHz, ensuring an oversampling factor of ten compliant with a Nyquist spectral
window of 1MHz. Assuming the same burst–excitation lengths mentioned before, the av-
erage spectrum obtained from 99 pseudo–random noise repetitions revealed the best suit-
able set of carrier frequencies to be located at fC1,1 = 10.70 kHz, fC1,2 = 12.84 kHz, fC2,1 =

16.00 kHz, fC2,2 = 19.25 kHz.
To demonstrate how communication performances may deteriorate as a consequence

of non adequate transmission channels, additional tests were performed for the CFRP

component, in which the sensors in actuation were configured via the same set of carrier
frequencies estimated for the aluminum setup. For the sake of clarity, the labels ’Non Opt’
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Table 21: Comparison of normalized spectral intensity [V2/Hz] that is accumulated in a bin (width
2 kHz) around the carrier frequencies at both receivers. Besides the metallic (Al) plate,
two sets of communication channels are considered for the CFRP element, one for the
optimal (Opt) and one for the non optimal (Non Opt) set of carrier frequencies. [©2021
Springer]

Al CFRP Non Opt CFRP Opt
f1,1 f2,1 f1,2 f2,2 f1,1 f2,1 f1,2 f2,2 f1,1 f2,1 f1,2 f2,2

SIAk 0.09 0.08 0.12 0.07 0.04 0.05 0.08 0.23 0.01 0.02 0.03 0.01
SAk 0.63 0.55 0.43 1.00 0.07 0.06 0.14 0.52 0.06 0.16 0.41 0.21
rk 0.14 0.15 0.29 0.07 0.52 0.76 0.57 0.43 0.17 0.02 0.07 0.05

and ’Opt’ will be employed in the following result section to indicate the two distinct
cases.

9.3.2.3 Results

Obtained rk values are reported in Table 21, which compares the spectral intensity accu-
mulated in a frequency bin of 2 kHz around each carrier at both receivers [P19].

As a general remark, the analysis illustrates that sharp discrimination can be achieved
between active and inactive channels only if a physics–informed set of carrier frequencies
is selected. This is demonstrated by very well pronounced spectral amplitudes character-
ized by a low inactive–active ratio below 0.5 for both the Al plate and the CFRP configured
on their relative set of best carriers. Conversely, the same condition does not apply for the
CFRP when a bad choice of the carriers is assumed, as proven by rk values consistently
above or in the proximity of 0.5.

For the sake of a comparative analysis between the two different structures, Fig. 67
depicts exemplary spectra of the normalized intensity of the GWs arriving at the receiv-
ing nodes (the intensity recorded at RX1 and RX2 are summed to provide a cumulative
understanding) for a complementary set of messages: 1011 in the first row and 0100 in
the second one. As can be noticed, the intensity received in the CFRP case is reduced as
compared to the aluminum plate due to the stronger attenuation in the waveguide.

Even though the received intensity is lessened in the CFRP panel (as justified by a
comparison of the spectral magnitudes of Fig. 67d-67b opposed to those of Fig. 67a-67c,
the bit reconstruction (in terms of a lower inactive-active ratio in Table 21) can nevertheless
be sharper than in the aluminum plate for certain carrier frequencies (i.e., f1,2).

9.3.3 Impact of structural irregularity

The effects of the stiffening elements on the TX-RX communication link have been ap-
praised for the CFRP test–bed. To this end, besides the sensor setup shown in Fig. 66a
(Conf A), where one receiving and one transmitting node per side are placed with re-
spect to the stiffener element, an alternative sensor configuration (Conf B) was tested,
in which the devices TX2 and RX1 were exchanged. In this setup, the actuators and re-
ceiver positions’ are decoupled with respect to the stiffening element itself such that all
the communication paths encounter the same structural discontinuity. Noteworthy, this
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(a) Aluminum plate: message 0100 (b) CFRP plate: message 0100

(c) Aluminum plate: message 1011 (d) CFRP plate: message 1011

Figure 67: Spectra of the cumulative normalized intensity (arbitrary unit in the vertical axis) in
the received signals and magnification with bold vertical lines indicating the selected
frequency carriers. The transmission of two complementary messages is shown: 0100
and 1011 in the first and second line, respectively, while the column on the left is for
the metallic plate and the one on the right pertains to the CFRP element. [©2020 IEEE]

architectural modification maintains unaltered the mutual communication distances and
also permits the same set of previously estimated carrier frequencies to be reused3.

Results in terms of inactive/active ratio are given in Table 22. In the second case (Conf
B), the cumulative average spectrum between the two receivers was considered, since the

3 Note that the frequency transfer function of the mechanical structure does not depend on the sensor arrange-
ment. Moreover, Conf A already takes into account the presence of obstructed communication channels, i.e.,
RX1-TX2, RX2-TX1.
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Table 22: Comparison of normalized spectral intensity [V2/Hz] that is accumulated in a bin (width
2 kHz) around the carrier frequencies at both receivers for the CFRP plate in two different
configurations: setup A with receivers attached on two opposite sides with respect to the
stiffener; setup B for receivers on the same side. [©2021 Springer]

Conf B Conf A: RX1 Conf A: RX2
f1,1 f2,1 f1,2 f2,2 f1,1 f2,1 f1,2 f2,2 f1,1 f2,1 f1,2 f2,2

SIAk 0.06 0.02 0.04 0.03 0.02 0.05 0.02 0.01 0.01 0.02 0.03 0.01
SAk 0.12 0.14 0.29 0.40 0.03 0.64 0.06 0.31 0.06 0.16 0.41 0.21
rk 0.50 0.14 0.14 0.08 0.69 0.09 0.33 0.03 0.17 0.02 0.07 0.05

position of the transmitter nodes is identical with respect to the stiffener. Conversely, the
first sensor arrangement (Conf A) required the analysis to be performed independently
to properly evaluate critical communication channels disturbed by the stiffener element.

As a general remark, the reported performance values corroborate the digital commu-
nication capability of the system, as witnessed by inactive–active ratio always below 0.5
apart from the isolated case of frequency f1,1. Two additional considerations are neces-
sary. The first concerns the impact of the geometrical discontinuity, which hampers the
direct communication path. Prove is the fact that an order of magnitude in the ratio exists
among line–of–sight and obstructed communication distances. Secondly, the attenuation
is not uniformly distributed between the chosen carriers; this result may be reasonably
addressed to their different energy content as a consequence of higher proximity to the
real eigenmodes of the structures.

9.3.4 Impact of excitation–sequence length on the bit reconstruction accuracy

Bit reconstruction, namely the discrimination between a communication link that is on
versus a link that is off, is another crucial functionality to be assessed also against varying
length of the square-wave excitation signal [P20]. To investigate these aspect, an entire
signal length of 6ms was initially assumed: this duration corresponds to a data rate Fg of
0.17 kbps per frequency, if one follows the approach to encode a bit in the time domain
through temporal activation or deactivation of a certain carrier. This means that, if a
carrier frequency of 9.88 kHz is chosen and the excitation length is 6, the actuation of
one bit solely spans 0.607ms. Increasing the data rate by reducing the processed signal
duration, accordingly deteriorates bit reconstruction, because each bit is contaminated
with the signal intensity stemming from the late signal content of the previous bits.

In the computational analysis of the BER versus the excitation–sequence length, the
processed signal duration was reduced to 1ms, 2ms and 3ms and the spectral intensity
around each carrier was contaminated artificially with the late signal content of the pre-
ceding bits. For each receiving node, each of its channels and also each carrier, a subset
of 3200 combinations of preceding bits was sampled randomly from the available experi-
mental data which contain all possible active/inactive channel combinations.

In Fig. 68a, an average BER calculated from the four measured carriers is given as a
function of the sequence length (horizontal axis) and data rate per frequency (3 different
curves; see legend). It can be observed that, especially for the higher data rates, the BER
increases as the excitation length increases, because the prolonged excitation creates an
additional overlapping contribution into subsequent bits. Nevertheless, the graph shows
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(a) (b)

Figure 68: Average BER as a function of excitation–sequence length and data rate per frequency
for the (a) aluminum and (b) CFRP structure. [©2020 IEEE]

that, in both structures, error–free communication is possible at a data rate of 0.17 kbps
per carrier.

Basing on the empirically determined set of carriers, the length–dependent BER analysis
was carried out also for the CFRP structure (see Fig. 68b). Above a data rate of 0.17 kbps, the
BER increases abruptly for all excitation lengths. When compared to the aluminum case,
the BER does not exhibit such a significant dependence on the data rate, because those
upper three curves lie rather close to one another. Despite its complexity, for the highest
and second highest data rate (1.00 kbps and 0.17 kbps), the CFRP performs similarly or
sometimes better than the isotropic metal plate.

To summarize, for the considered frameworks, the implemented FDM technique can be
efficiently used for digital communication up to a data rate of 0.17 kbps, which is com-
pliant with the considered SHM scenario, where the transmitting nodes should exchange
only small piece of information, i.e., numerical values or damage indicators. Moreover, it
is worth considering that such a data rate was achieved with a minimal power consump-
tion of 224mV, which is a considerable gain with respect to the common energy drawn
by electromagnetic–based data communication systems. As a final comment, it is worth
stressing that the indicated data rates represent data rates per frequency, which means
that the actual data rates may be escalated by increasing the number of utilized carrier
frequencies.

9.4 conclusions

The parallel transmission of information across structural components using FDM is dis-
cussed in this Chapter, allowing for communication of multiple transmitting nodes with
a satisfying data rate of 0.17 kbps. The presented approach relies on the transmission of
digital messages actuated in form of square–wave sequences, since these can be read-
ily realized with energy–aware hardware. A specific procedure for the estimation of the
optimal excitation–sequence length was proposed to ensure reliable communication and
avoid interferences. Finally, the importance of adopting a physics–informed methodology
for the selection of the proper carrier frequencies, as well as the possible presence of
mechanical irregularities in the propagation path, were also investigated.
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D I R E C T S P R E A D S P E C T R U M M O D U L AT I O N A N D D I S P E R S I O N
C O M P E N S AT I O N F O R G W S – B A S E D C O M M U N I C AT I O N

abstract

The objective of this Chapter is to overcome the mutual interference between active transmitters
by resorting to Code Division Multiplexing (CDM) techniques which grant the best comprise
between channel availability while transmitting and defect resolution while performing structural
inspection. Moreover, a simple yet effective dispersion compensation algorithm is also encompassed
in order to counteract the detrimental effects due to multi–path fading and those associated to
dispersion and multi–modal propagation. A preliminary experimental campaign conducted on a
slender aluminum beam validates the feasibility of the approach.

The content of this Chapter is based upon the research work [P21]:

"Direct Spread Spectrum Modulation and Dispersion Compensation for
Guided Wave–based Communication Systems" by Zonzini F., De Marchi L.,
Testoni, N. and Marzani, A. In 2019 IEEE International Ultrasonics Symposium
(IUS), 2019, pp. 2500-2503. ©2019 IEEE

from which part of the text is drawn.

10.1 introduction

An effective GW-based communication system should tackle two main challenge: the for-
mer involves the requirement of advanced multiplexing strategies to limit crosstalk, the
latter aims at compensating the intrinsic dispersive nature of elastic waves. As discussed
in Section 9.1, the majority of the works demonstrating successful application of GWs–
based communication systems substantially deals with time or frequency–division mul-
tiplexing schemes, which intrinsically imply a trade-off between the channel availability
and the desired defect resolution. Alternatively, a recent and ready–to–be–investigated re-
search direction concerns the adoption of Code Division Multiplexing (CDM) modulation
schemes [241], [255], [256], whose main benefits stem from the full bandwidth allocated
to each actuator throughout time. This is achieved via software by encapsulating each
transmitter–related message via a unique coding sequence, or codeword, which ensures,
in principle, perfect reconstruction after the decoding phase.,

An additional important aspect in GWs–based systems is related to the complicated
propagation pattern experienced by the elastic waves. Indeed, it is worth recalling that
Lamb waves are characterized by a multi–modal propagation profile, additionally sub-
jected to beam spreading and dispersive phenomena exhibited as changes in group and
phase velocity. These variations primarily derive from physical and in-operation working
conditions even if the boundaries of the interrogated component may also induce multiple
reflections in the recorded signals. Therefore, suitable mechanism capable of compensat-
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ing such drifts are required for the efficient transmission of the encoded packets beyond
the mere advantages of the modulation technique.

In this Chapter, the advantages of a CDM encoding mechanism for GWs–based digital
communications are exploited, in conjunction with a spectrum–driven dispersion com-
pensation algorithm to be applied in the post–processing phase, at the receiving side, to
partially alleviate propagation–related drawbacks.

10.2 dedicated processing flow for cdm–based and dispersion compen-
sated transmission with gws

The dedicated processing flow necessary to implement the proposed CDM–based and
dispersion–compensated communication system are introduced is schematized in Fig. 69.

10.2.1 Direct Spread Spectrum pulse coding

The adoption of ad–hoc encoding procedures is fundamental to preserve orthogonality
between active transducers and consequently reduce their mutual interference. On top of
that, a suitable CDM solution is provided by Direct Spread Spectrum (DSS) modulation.

As detailed in the yellow box of Fig. 69, given a sender–specific binary stream bn gen-
erated at a data rate Fg (step 1), DSS encodes each bit with a sequence of L pseudo–noise
(PN) chips produced at a chipping frequency Fch = LFg [257] (step 2.b). The sequences
are generated such that the orthogonality property is preserved, i.e., the cross–correlation
between two different PN code is null. Thereby, the modulating effect of the PN code
spreads the energy of the transmitted signal over a substantially wider spectral band
(step 2.a), increasing the equivalent bit–rate proportionally to the spreading factor L [258].
The resulting signal sn to be transmitted consists of a phase–modulated sequence of bits
actuated as an elastic wave. At the receiving node, after a mixture signal is acquired and
purposely processed to compensate dispersion (step 3), the demodulation step can be
performed by means of a matched filter [256].

In more detail, the received signal is firstly demodulated via correlation with a har-
monic component tuned at the bit rate (step 4). Then, chip–wise integration (step 5) is
necessary to transform the continuous signal in a digital stream of bits s̃

(i)
n . Once bits

are converted, DSS demodulation takes place (step 6) by multiplication with the sender–
specific chipping sequence; the demodulated stream is then passed to a sign detector block
(step 7) to evaluate the polarity of the corresponding bits and the complete bit stream b̂n

can finally be recovered.
Consequently, choosing the proper noise–like carrier code plays a crucial role to achieve

ideally zero disturbance among different transmitting users. A general rule–of–thumb
should prefer the adoption of highly incorrelated sequences. In these cases, guarantees
exist that, after de–spreading, the structural information sent by each actuator is protected
[259] and can be correctly reconstructed. As demonstrated for classical CDM–oriented wire-
less communication systems, Gold, Kasami or Walsh codes are among the most effective
strategies [260] to satisfy this requirement.
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Figure 69: Overview of the processing flow adopted for CDM–oriented communication systems
exploiting elastic waves. Beside modulation and demodulation steps which are per-
formed according to classical DSS modulation principles, a compensation procedure is
inserted to account for the detrimental effects of dispersion.

10.2.2 Dispersion compensation

Let sn(t, 0) and sn(t, d) describe, respectively, the coded waveform exciting the n–th
piezoelectric transducer and the undamped M wave mode received at a distance d, trav-
eling in a waveguide with uniform cross-section ρ and characterized by a wave group
dispersion curve cMg (f, ρ). The relation in the frequency domain between the two signals
is:

Sn(f, d) = Sn(f, 0) e
−i2π

∫
τM
d (α)dα (52)

with τMd (f) = d
cM
g (f,ρ)

indicating the group delay.
The detrimental effects of the scattering phenomena act as a non-linear frequency term

in equation (52), hindering the efficacy of the demodulating process independently from
the adopted communication scheme. Accordingly, post-multiplying the phase spectrum
of the received signal by an opposite term −τMd (f), namely

Sn(f, d)
comp = Sn(f, d) e

i2π
∫
τM
d (α)dα (53)

might be considered as a simple, though effective counteracting solution.
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Figure 70: Experimental setup for CDM communication tests over a slender aluminum beam. Five
different inter-communicating distances were considered, whereas the amplitude of the
actuated signal was regulated by means of a waveform generator.

10.3 experimental validation

An experimental proof–of–concept of the joint CDM–based and dispersion–compensated
GWs–based communication system is discussed in this Section for the representative case
of a slender aluminum beam.

10.3.1 Materials and methods

The validation was performed on a 2000x35x2 mm thin aluminum beam instrumented
with two commercial sensors (P-876 DuraAct Patch Transducers) glued on its surface
and deployed in a transmitter–receiver (TX-RX) configuration. As shown in Fig. 70, the
electronic equipment also comprised a waveform generator connected to the actuator
node and operating at a data rate Fg = 189kbps. This carrier frequency for the ultrasound
wave was experimentally determined during a preliminary analysis, in which successive
sinusoidal signals, tuned on different frequency tones, were sent through the mechanical
waveguide. In compliance with the Lissajous method [261], the frequency to be selected
belongs to the configuration revealing the best input-output linear relationship, that is
the frequency which carries most of the energy of the structure. Consequently, this choice
minimizes the intrinsic wave attenuation.

The communication tests were instead executed by transmitting random packets of
100 spreaded bits encoded by Kasami sequences of length L = 26 − 1, thus ensuring
good cross–correlation properties. Hence, modulated signals were sent according to an
equivalent chipping rate Fch ≈ 12Mbps and finally sampled by means of an oscilloscope
operating at 25MHz. Demodulation was achieved by matched filtering the received data
compensated for dispersion, once wave group dispersion curves were computed with the
Semi–Analytical Finite Element method [262].

In detail, two main issues were addressed during the experimental campaign, analyzing
how the energy of the actuated pulses and the inter-communication distances might affect
the quality of the delivered information; BER was employed as a quantitative measure of
these performances. To achieve this purpose, the transmission range was almost uniformly
moved from 15 cm to 185 cm, while fixing the position of the RX device at one edge of the
beam. Simultaneously, the amplitude of the pulsed signal was gradually increased from
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Figure 71: BER trends for the CDM–based and dispersion compensated communication scenario
as functions of input voltages and distances. [©2019 IEEE]

0.5V to 20.0V, nearly doubling the level of the provided input at each step. To summarize,
a total amount of five distances and six different voltages were globally investigated.

10.3.2 Results

Coherently with the kind of experiments, the first instance to be considered concerns
the influence of the transmission range on the quality of the decoded signals. Results
depicted in Fig. 71 pinpoint an almost linear dependency between BER percentages and
communication distances. On the other hand, it is worth noticing that the error in signal
reconstruction is extremely sensitive to the amplitude of the actuated pulses, BER values
obeying to a nearly inverse proportionality as input energy drops below a minimum
spatially–dependent threshold.

Performing a cumulative evaluation, the coherence of the obtained outcomes is theoret-
ically supported by the linear dependency, in spectral domain, between the amplitude of
the acquired signal and the energy of the transmitted one (see Equation (52)). As such, it
is reasonable to witness an exponential deterioration in the performances of the system
as the supplied voltage decreases. Fig. 72a confirms this experimental evidence being the
SNR noticeably lower for low–level amplitude signals; hence, detecting the incident wave
front becomes more difficult and, accordingly, it becomes more complicated to discern
among meaningful information and noise.

Conversely, the exponential decay appearing in Equation (52) relates the spatial term
to the amplitude of the wave mode via a non–linear operator, meaning that it is not
possible to analytically derive or predict the correspondent effect on the quality of the
digital communication. Moreover, the scenario in which communication quality worsens
the longer the transmitting range does not hold for every inspected distance, as proven
by reading the graph at constantly generated pulse magnitude.

For the sake of clarity, Fig. 72b reveals that, for 1V input signals, a transmission range
of 65 cm is not suitable due to the reduced SNR, which justifies the corresponding out–
of–order BER. A feasible explanation for this evidence may be found in the detrimental
interaction of the guided wave with the physical boundaries. Such interfering sources
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Figure 72: Received signals related to the transmission of a CDM–modulated single bit while (a)
decreasing the amplitude of the actuated pulses with fixed communication distance
of 105 cm and (b) increasing the inter-communication distance at a constant supplied
voltage of 1V.

can cause reflections and consequent destructive signal superimposition, which might be
non negligible especially for a thin and tight structure like that considered. Therefore,
certain TX-RX positions are intrinsically more favorable with respect to the mechanical
and dispersion characteristics of the structure under test. It follows that, if the best system
configuration is chosen, wider communication ranges can be covered with a lower input
energy, without impinging upon the accuracy of the delivered information.

10.4 conclusions

This Chapter presented the mapping of the classical CDM modulating technique to GWs-
based communication systems, precisely exploiting a spectral spreading technique which
is beneficial in presence of multiple actuating nodes, since it reduces the mutual spectral
interference among them. Additionally, in order to counteract the detrimental impact of
dispersion resulting from beam spreading and reflections, a compensation procedure was
encompassed before demodulating the received signals. An experimental validation of
the proposed modulating scheme has been presented for a slender aluminum beam. Re-
sults proved that, when the proper network configurations are selected, even low–voltage
power supply could be applied to travel long distances.
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L O W– D E P T H T I M E R E V E R S A L A N D P U L S E P O S I T I O N
M O D U L AT I O N T E C H N I Q U E F O R U LT R A S O N I C C O M M U N I C AT I O N

abstract

A strategy based on the the Time Reversal (TR) method is investigated in this Chapter to coun-
terbalance the effects of reverberations and multi–path fading inherent to the dispersive nature
of GWs, simultaneously compensating the operative interference between active transducers. This
communication scheme is implemented in an original fashion to be compatible with the low—depth
synthesis capabilities of low–cost switching amplifiers. An experimental investigation conducted
for a simulated metallic plate suggested that a data rate up to tenth of kbps can be reached even by
exploiting highly digitized waveforms without losing the original information content.

The content of this Chapter is based upon the research works [P22]:

"Low Depth Time Reversal Modulation Technique for Ultrasonic Guided
Waves-based Communications" by Zonzini F., Testoni, N., Marzani, A. and
De Marchi L. In 2020 IEEE International Ultrasonics Symposium (IUS), 2020, pp.
1-4. ©2020 IEEE

from which part of the text is drawn.

11.1 introduction

As already discussed, the physical and operative shortcomings related to the peculiar
propagation behavior of Lamb waves have to be properly evaluated. Strategies which try
to tackle this task substantially set the compensation procedure aside from the practical
communication mechanism, since they are commonly performed in a post–processing
phase via advanced signal processing, such as [263], [264] to cite seminal works in the
field. These techniques usually require the communication channel to be precisely mod-
eled, a condition which is difficult to met for practical use cases, where the structural
parameters are not known a-priori and/or need to be estimated from the retrieved data.
Conversely, the Time reversal (TR) alternative [265] is considered in this Chapter, due to
its intrinsically combined transmission–compensation approach. This latter method takes
advantage of the channel time–invariance to concurrently suppress both the detrimen-
tal effects of dispersion and the non–coherent disturbances among active transducers.
Whenever the channel reciprocity condition applies, namely the time reversal operation is
invariant with respect to the physical processes at the basis of GWs propagation, the for-
ward and successive backward transmission of a broadband ultrasonic signal travelling
along the same acoustic channel can be received at the original source location in a highly
focused manner [266].

Additionally, it is important to underline that, in their basic definition, communication
systems built on the TR method are not suited for MIMO scenarios, but rather require a
Multiple–In Single–Out (MISO) sensor configuration, i.e., a multiple–output sensor array
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Figure 73: Proposed four stages low–depth TR–PPM scheme. [©2020 IEEE]

Algorithm 2 Max–based quantization algorithm

Input: pk
r (t), Nlev, α

1: Vk,M
r = max{|pk

r (t)|}

2: ∆Vk = 2α
Vk,M
r

Nlev − 1
3:

4: for all i ∈ [0, . . . ,Nlev − 1] do
5: Vk

th(i) = Vk,M
r − i∆Vk

6: end for
7: for all n ∈ [0, . . . ,N] do
8: in,th = min

i
{pk

r (t) − Vk
th(i)}

9: pk
q(tn) = Vk

th(in,th)

10: end for
Output: pk

q(t)

communicates with one intended receiver sensor; in these terms, TR implicitly requires
tranceiver nodes, capable of both receiving or transmitting data.

The approach proposed in this manuscript is original with respect to alternative so-
lutions presented in the literature [267], [268], because it is built on a novel low–depth
synthesis of the time–reversed waveforms. Such perspective favors implementations of
the methods on low–cost switching amplifiers, as those typically embedded in extreme
edge devices for GWs–driven inspection.

11.2 detailing the low–depth tr-pulse position modulation scheme

A four stage and low–depth TR technique for hardware–oriented TR has firstly been pro-
posed in [P22] to cope with the typical computing and power resources available in
cost–effective smart transducers. The overall processing flow is schematically depicted
in Fig. 73.

Let’s assume that an array of K transmitting nodes TXk is used to transmit the same
digital message (e.g., a damage indicator) to a common receiving node RX; the commu-
nication scheme involves the subsequent phases, which are organized in the two–way
handshake mechanism in Fig. 74:
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1. Step 1: Channel sounding (RX → TXk): a probe signal p(t) of duration Tp is broad-
casted from the intended RX device to every TXk node to probe for the correspond-
ing k–th communication channel hk(t) (from point 1 to point 2.A in Fig. 74). Among
the traditionally employed pivot signals, Gaussian pulses, chirp signals, rectangular
or saw–tooth waves can be listed.

2. Step 2: Low–depth quantization (TXk): locally performed by each transmitting
node, a thresholding procedure is applied to the channel–operated signal
pk
r (t) = p(t) ∗ hk(t) in compliance with the low–level pulse generation capabil-

ities of embedded ultrasound transmitters. Two different algorithms are proposed
to tackle this task, yielding the quantized signal p(k)

q (t). The first one, named Max–
based (step 2.A), is shown in Algorithm 2: it requires as inputs pk

r (t), the number
of desired quantization levels Nlev, and the scaling factor α, i.e., a parameter intro-
duced to adapt the thresholding function to the maximum registered input voltage.
The second one is named after as PDF–based (step 2.B), and simply computes the
Probability Density Function (PDF) of pk

r (t), binning it according to the prescribed
number of levels.

3. Step 3: Retransmission (TXk → RX): this phase is composed of two successive steps.
Once the time-reversed version of the signal pk

qTR(t) = pk
q(−t) is computed (step

3.A), the Pulse Position Modulation (PPM) technique (step 3.B) [269] is applied for the
actual transmission of the digital information content (from point 2.D to point 3.A
in Fig. 74). PPM is a modulation procedure in which a specific bit bi

1 is encoded as
a sequence of Ng pulses, eventually delayed by a quantity ∆ depending on whether
bi = 1 or bi = 0 has to be transmitted (∆ ⩾ Tp has to be satisfied to ensure a correct
bit reconstruction [268]). In case the complete message constitute of i = {1, . . . ,Nbit}

symbols to be sent at a data rate Fg = 1/Tg (Tg being the symbol time), the Low–
depth Time Reversal (LDTR)–PPM signal is formalized as:

gk(t) =

Nbit∑
i=1

γkpk
qTR(t− iTgNg − bi∆) (54)

where γk =

√√√√ ∫+∞
−∞ |p(t)|2 dt∫+∞

−∞ |pk
qTR(t)|

2 dt
indicates an energy normalization coefficient en-

suring that every bit carries the same energy [268] and can be easily computed at
the TX side since the energy of pk(t) is a deterministic quantity. This quantity is
known in advanced after the probe signal and its duration have been defined.

Worthy to be observed, this is the actual point where the benefits of a multi–user
TR process come to play. Indeed, it has been thoroughly demonstrated that TR acts
as a focusing operator that converts each bit–related LDTR–PPM waveform into a
compressed impulsive signal with a prominent peak located at the center of the
aggregated channel impulse response [266]. As a result, the energies hidden in sev-
eral TX–RX communication paths add coherently and, as an immediate byproduct,
inter–transmitter interference is automatically filtered out.

1 Differently from the previous Chapters in which bn was used to indicate an entire sequence of bits related
to one specific actuator/channel, here the quantity bi is used to indicate in a more general form to indicate
one out of the total Nbit inside each bn stream of bit.
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Figure 74: Details of the two–way handshake LDTR–PPM communication scheme extending the
description provided in Fig. 73. The channel index is dropped to simplify notation.

4. Step 4: Decoding (RX): the starting time τ0 for demodulation coincides with the
temporal position of the peak value produced as output of a symbol–by–symbol
sliding correlation filter. Hence, the received signal gr(t) =

∑K
k=1 g

k(t) ∗ hk(t) is
obtained by combining all the elements of the TX array and then by matching it
with a pre–selected template rr(t) = pqTR(t), namely
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Figure 75: LDTR–PPM communication: simulated experimental setup with underlined communi-
cation distances.

τ0 = max
τ∈{0,Tg}

{
Rr(τ) =

∫Tg

0

rr(τ)gr(t− τ)dτ

}
(55)

Finally, a non–coherent energy detector is encompassed for the purpose of bit recon-
struction. Each initial bit b̂i can be straightforwardly reconstructed by comparing the
two energy quantities E0,i =

∫Tp/2

−Tp/2
g2r(t− τ0 − iTg)dt and E1,i =

∫Tp/2

−Tp/2
g2r(t−

τ0 − iTg −∆)dt: in case E0,i ⩾ E1,i, bi = 0 is detected; otherwise the corresponding
bit is assumed equal to 1.

11.3 experimental validation

In view of future ISSLab advancements in which the design of a new generation of in-
tegrated receiver–transmitter sensor nodes will be pursued, a preliminary estimation of
the communication performances of the devised low–depth solution is performed via
synthetic signals generated in MATLAB® environment. A purposely coded ray–tracing
algorithm has been exploited, which is capable of (i) taking into consideration the re-
flections, up to the fourth order, due to interference with the boundaries of the physical
medium and (ii) modelling the dispersion and multi–modal propagation behavior of the
actuated Lamb waves via analytical formulae.

11.3.1 Materials and Methods

The validation of the proposed LDTR–PPM communication strategy was simulated on a
1000x1000x3 mm 1050A aluminum square plate in which a network of K = 3 transmitting
nodes and one RX device is arranged as schematically depicted in Fig. 75. This structure
was selected to be the numerical companion of the laboratory metallic structure described
in Section 9.3.
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The well–known Gaussian modulated pulse p(t) = Ae
−
(
t−t0
Tp

)2
cos(2πFct), Fc be-

ing the modulating tone, was considered as the reference signal for channel probing,
whose parameters A = 3.3V, Fc = 250kHz, Tp = 1/Fc and t0 = Tp/2 were assumed
to mimic real–world system implementations [266]. As far as the TR–PPM scheme is per-
tained, Nbit = 1000 independent and identically distributed random bits were supposed
to be sent through the mechanical wave–guide, each of them consisting of Ng = 1 pulse.
Moreover, the transmission rate Fg was varied in the interval [10, 20, 30] kbps, whereas
the time shift for PPM was chosen to be ∆ = Tg/4. Finally, all signals were acquired at an
equivalent sampling frequency of 2MHz.

Moving to the quantization phase, a number of output voltage levels Nlev = 5 was
chosen to replicate the typical analog–to–digital synthesis capabilities of commercial off–
the–shelf low–cost ultrasonic emitters (e.g. [270], [271]). A return–to–zero logic is assumed
during quantization, which clamps the intermediate output threshold voltage at zero.
Furthermore, in the particular case of the Max–based procedure, three values for the
scaling factor α were tested, i.e., α1 = 0.4, α2 = 0.7 and α3 = 1. In that way, it was possible
to quantify the distortion effects introduced by the mere low–level signal synthesis.

11.3.2 Results

In the result session, both the impact of the quantization procedure and the range of
admissible bit rates compatible with a satisfying BER were appraised.

11.3.2.1 Low-depth quantization

Different low–depth versions of the probe signal received at node TX1 are displayed in
Fig. 76, superimposed to the quantization–free waveform pr(t).

By analysing the shape of the produced signals it is possible to state that, the higher
the α value of the Max–based algorithm, the lower the level of resemblance between the
two initial (red curve) and quantized data (coloured curves). More in detail, the highest
divergences affect the first signal arrivals (i.e., line–of–sight communication links), which
are more concentrated in time but less energetic and, hence, tend to be masked by the
high–order components caused by the physical interaction with the boundaries of the
interrogated structure.

11.3.2.2 Bit recovery performance

The signal reconstruction capability was assessed via computation of the average BER
obtained from five different transmission tests (see Fig. 77).

A global trend common to all the considered scenarios is observed, corresponding to an
abrupt increase in BER percentages as Fg reaches 30 kbps. Another fundamental result is
worthy of consideration, that is the good level of superimposition in BER curves between
quantization–free and low–depth synthesized signal waveforms. Indeed, for transmission
rates up to 20 kbps, the error introduced by the quantization process worsens by less than
2.1 percentage points with respect to the same implementation in case the original signals
would have been transmitted. Comparing the effect of the thresholding functions, the
highest fitting characterizes the Max–based strategy with α1 = 0.4. Such an outcome is
reasonable given the capability of the corresponding output voltage thresholds to preserve
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Figure 76: TR–PPM. Low–depth thresholded version of the received Gaussian probe signal pr(t)
travelling along the communication link TX3–RX for different quantization functions.
[©2020 IEEE]

the signal content hidden within the first signal arrival (see Fig. 76a). Therefore, it is
numerically shown that, in case a proper quantization strategy is selected, the LDTR–PPM

communication performances are very competitive to those obtained via the classical TR–
PPM implementation, even for significant symbol rates.

11.3.2.3 Bit recovery vs probe signal

To better corroborate the feasibility of the proposed LDTR–PPM technique, further commu-
nication scenarios were evaluated taking into account the effect of various probe signals on
the quality of the recovered stream of bits. To this purpose, three additional finite–length
pulses, with duration identical to one chosen for the Gaussian probe, were considered:
the rectangular pulse, whose two–level nature is inherently apt at being implemented
in hardware with minimal complexity and does not require any additional quantization
step; two triangular–shaped pulses, i.e., the standard triangular pulse and the saw–tooth
pulse. The two latter are continuous signals whose amplitude increases linearly: as such,
a PDF–based quantization procedure could be the preferential choice.
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Figure 77: LDTR–PPM. Average BER for increasing bit rate and varying thresholding procedures
with Gaussian probe signal. [©2020 IEEE]

Moreover, non–impulsive chirp signals were deemed worthy of investigation for their
capability to convey higher energy to the receiving point. This property comes from the
fact that a chirp signal consists of a sequence of burst waves whose frequency content
varies in time. Thus, it is capable of injecting in the structure a higher spectral content
due to the prolonged interval of actuation time. Two different variants were taken into
consideration: the linear up–chirp, in which the phase of the bursts increments linearly
and it is quantized via the PDF–based algorithm, and the pseudo–chirp, which corre-
sponds to the digitized version of the former due to the fact that the output values can
assume only two values (and, analogously to the rectangular pulse, does not require quan-
tization). The interval swept by the frequency content of the chirp signals has been varied
between 50 kHz and 150kHz, with a central frequency of 100kHz, for a total probing time
of 50µs.

Comparative results for the impulsive signals exploiting the same structural configuration
introduced above are given in tabular form (see Table 23). As a primary evidence, all the
considered probe signals reach perfect bit reconstruction for a data rate of 10 kbps: this
outcome highlights the potential of the investigated methodology, whose performance is
at least two orders of magnitude (in the simulated setting) higher than the one obtained
for the FDM alternative. Secondly, the computed bit recovery capability presents a uni-
form distribution, i.e., percentage errors below 3% for 20 kbps and an abrupt increment
at 30 kbps, irrespective of the probing signal and the quantization procedure. Finally, it
is worth pinpointing that the discrepancy between non quantized and quantized signal
synthesis is very narrow, the highly digitized versions working even better in some cases.

On the other hand, for the chirp–like signals, different values of the bit–rate were tested.
In fact, in order the LDTR–PPM method to be applicable, ∆ =

Tg

D∆
⩾ Tp holds, imposing

Fg ⩽ 1
D∆Tp

. By selecting D∆ = 2, 3, 4, namely Fg = {5, 6.7, 10} kbps, the BER percentages
in Table 24 were estimated. In this case, the condition of null error for the bit rate of
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Table 23: LDTR–PPM technique vs varying impulsive probe signals: BER percentages are included
for increasing bit–rate.

Probe signal Quantization Symbol rate
10 kbps 20 kbps 30 kbps

Gaussian

No quantization 0.0 1.2 11.1
Max–based (α1) 0.0 0.8 12.5
Max–based (α2) 0.0 1.7 11.7
Max–based (α3) 0.0 3.1 14.3

PDF–based 0.0 2.0 13.0
Rectangular - 0.0 2.3 11.7

Saw–tooth No quantization 0.0 2.7 12.2
PDF–based 0.0 3.0 13.4

Triangular No quantization 0.0 1.9 13.0
PDF–based 0.0 2.8 14.7

Table 24: LDTR–PPM technique vs chirp–like probe signals: BER percentages are included for
increasing bit–rate.

Probe signal Quantization Symbol rate
5 kbps 6.7 kbps 10 kbps

Linear chirp No quantization 0.0 0.0 0.3
PDF–based 0.0 0.0 0.2

Pseudo–chirp - 0.0 0.0 0.3

10 kbps is no longer satisfied, even if the BER, for both signals and independently from
the quantization stage, remains stably beneath 0.3%.

11.4 conclusions

This Chapter focused on the implementation of a low–depth synthesis of the TR–PPM com-
munication method, which is beneficial in that it allows for a concurrent transmission–
compensation functionality. Experimental simulation performed by simulating the com-
munication behavior over a metallic aluminum plate demonstrated that, independently
from the probe signal and the quantization algorithm, error–free signal reconstruction
is achievable with a data rate up to tens of kbps; hence, the obtained results support
the possibility to apply this technique as a competitive candidate for GWs–based digital
communications.
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F R E Q U E N C Y S T E E R A B L E A C O U S T I C T R A N S D U C E R S A N D
Q U A D R AT U R E A M P L I T U D E M O D U L AT I O N

abstract

This Chapter is devoted to a numerical investigation of the Quadrature Amplitude Modulation
(QAM) technique for GWs–based communication. Differently from the standard software/digital
implementation of this scheme, multiplexing is achieved via the spatial multiplexing capability of
frequency steerable acoustic transducers.

The content of this Chapter is based upon the research work [P23]:

"Quadrature Amplitude Modulation for Acoustic Data Communication in
Ultrasonic Structural Health Monitoring Systems" by Reyes, M.O., Moll, J.,
Zonzini, F., Mohammadgholiha, M. and De Marchi L. In Proceedings of the
ASME 2021 48th Annual Review of Progress in Quantitative Nondestructive Evalu-
ation QNDE, vol. 85529, 2021 (pp 1-7).

from which part of the text is drawn.

12.1 introduction

In GW systems, simple hardware solutions can be achieved by using shaped transducers
featuring inherent directional capabilities. A noticeable example of this kind of devices
is provided by the so–called Frequency steerable acoustic transducers (FSAT)s: they are
based on a spatial filtering effect which is dependent on the angle of propagation of the
generated and sensed elastic waves, so that the beam–steering is controlled by the spectral
content of the transmitted and acquired signals [272]. The frequency–related directivity
of the FSATs can be fruitfully applied in GWs–based communications to implement a spa-
tial multiplexing strategy, similar to the solutions which are currently investigated in 5G
communications [273].

Besides the promising communication–related functionalities of the sensing layer, a
proper modulation scheme is still necessary to codify the content of the transmitted mes-
sage. A compelling alternative to the previously discussed methodologies is provided by
Quadrature Amplitude Modulation (QAM), i.e., a modulation technique that offers effi-
cient usage of the channel bandwidth combining together two amplitude signals into a
single stream of bits. QAM presents a second, interesting benefit, which is a better capabil-
ity to tolerate poor noise levels [274].

The contribution of this Chapter is to pair the conventional QAM scheme with the built–
in spatial multiplexing capabilities of FSAT device to realize, in hardware, the sought fre-
quency directivity. The combination of QAM and FSAT technology paves the way to future
sensor network realizations in which autonomous tranceivers [275], suitable to be inte-
grated directly on the structure, can perform damage inspection and digital data commu-
nication in a very compact and efficient manner.

177
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Figure 78: Block diagram of the adopted QAM–based communication framework, specifically
modelling the effects of wave dispersion. A schematic representation of the FEM model
used to validate the frequency directivity of FSATs is also enclosed.

12.2 qam signal processing for gws propagation in isotropic plates

QAM is a modulation mechanism that modifies both the amplitude and the phase of
the signal to be transmitted, while holding the same frequency throughout time. This
technique exploits sinusoidal tones as modulating waveforms; as such, the first step in
the direction of implementing a QAM–based communication scheme is the selection of
the carrier frequency Fc. Note that a proper choice of this parameter is of the utmost
importance for GWs propagation, since numerous modes may be excited [276] depending
on the operative frequency range (see Section 8).

Notwithstanding the methodological aspects of the QAM technique itself, which repli-
cate the conventional electromagnetic–based implementation, a dedicated signal process-
ing flow has been required, in this case, to efficiently manipulate the dispersive behavior
of Lamb waves and investigate the spatial multiplexing capabilities of FSATs when com-
bined with this modulation technique.

The adopted workflow is clarified in Fig. 78 and is based upon the four–step procedure
described hereinafter:

1. Step 1: QAM coding and transmission:

In the first stage, QAM is used to map the digital sequence of bits into a number
of symbols Nsym dictated by the selected number of binary digits, e.g., 16-QAM
indicates that up to 16 different symbols can be generated if log2(16) = 4 bits are
used to represent a single piece of information.

Every symbols is converted into a sinusoidal signal of identical frequency content
but characterized by a specific amplitude An and phase ϕn (step 1.a). In mathemat-
ical terms, one symbol reads as:
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sn(t) = Ancos(2πFct+ϕn) = Ane
(i2πFct+ϕn) (56)

which can be rewritten in an equivalent phasor form, yielding sn = Ane
iϕn . Both

two formulations admit a geometrical interpretation in the complex plane, uniquely
determined by two components (step 1.b): the in–phase component In lying on the
real axis, and the in–quadrature component Qn along the imaginary axis, with a
phase shift of 90° between them. Such representation is also referred to as constella-
tion diagram, [277] owing to the fact that it represents all the possible complex–valued
pair of coordinates that a symbol can assume, i.e., it corresponds to the alphabet of
binary values dictated by the selected number of digits per symbol. QAM could be
easily escalated to a higher–order constellation using more symbols: from one side,
this allows for the transmission of more bits per symbol; on the other hand, it com-
plicates the propagation environment since, by adding more points in the same area,
the symbols will be closer together and, therefore, they will be more susceptible to
disturbances. In the representative case depicted in Fig. 78, an 8–bit word 0100111

is considered: with 16-QAM, it is mapped into two symbols of four bits each (i.e.,
0100 and 1111), corresponding to two different points of the constellation diagram.

After separation in its I/Q components, the symbol is ready to be “mounted” over
the carrier by means of a sinusoidal signal (step 1.c): a cosine waveform for the
in–phase component, namely sIn(t) = Incos(2πFct), and a sine waveform for the
quadrature companion component, i.e., sQn

(t) = Qnsin(2πFct). These signals are
then mixed together in a train of symbols s

QAM
n (t) = sIn(t) + sQn

(t). After modu-
lation, multiple modulated symbols can be combined in sequence and dispatched
through the same channel by means of a piezoelectric transceiver converting the
electric signal into mechanical displacements. Let’s call with s

QAM
n (t, 0) the actu-

ated signal.

2. Step 2: Wave propagation modelling:

GWs travel a communication distance d prior than reaching the receiver node. While
propagating, they undergo well–known detrimental phenomena which need to be
properly modeled for the effective evaluation of the investigated communication
scheme. Prior than pairing QAM with the spatial multiplexing capability of FSATs,
a preliminary proof–of–concept has been encompassed by means of an analytical
wave propagation model: the objective of this phase is to probe for the actual suit-
ability of QAM itself for GWs–based communications. To this end, a first numeri-
cal model, indicated with label A in Fig. 78, was designed: it exploits the same
spectrum–based procedure already presented in Section 10.2 and simulates the dis-
persive GWs propagation behavior by resorting to a numerical derivation of the
dispersion curves characteristics; indeed, by knowing them, Eq. (52) can be applied
to retrieve the spectrum of the received message yielding the propagated and dis-
persed QAM signal s

QAM
n (t, d). After this first numerical verification via a plane

wave model, a second numerical model was built (case B), in which the sought spa-
tial multiplexing capability of FSATs to cope with the same goal were specifically
investigated in view of future hardware prototyping phases.

In this case, a FEM designed with the COMSOL® libraries was employed, since this
software provides a very powerful tool for the simulation of the mechanical and
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electrical response of piezoelectric–transducers. As displayed in the bottom right
part of Fig. 78, the latter coincides with the dual–color spiral shaped FSAT printed
on a piezoelectric layer, while an aluminum plate with dimensions of 500mm ×
500mm and thickness of 1mm has been considered as propagation medium. In
this case, the GW–operated signal was retrieved from the out–of–plane displacement
generated by the FSAT when s

QAM
n (t, 0) is provided as input to the FEM.

3. Step 3: Reception and synchronization:

Prior than entering the true demodulation procedure, the exact instant for demod-
ulation needs to be retrieved. This can be easily achieved by cross–correlating the
received message with a synchronization sequence ssyn(t) agreed in advance by
the transmitter and the receiver. srn(t) is used in step 3 of Fig. 78 to indicate the
synchronized version of the received signal.

4. Step 4: QAM decoding:

The synchronized message is then demodulated, again by resorting to the same
sinusoidal signals in quadrature used at the encoding side, to separate the imaginary
and real components srIn(t) and srQn

(t). The high frequency content of the signal
needs also to be removed, and this can be achieved with help of a low pass filter
(LPF), returning the sought Ir and Qr. These two latter quantities are plugged as
input to the demapping block (performing the opposite operations entailed by the
mapping block) and a reconstructed version of the bit chain, b̂n, is finally returned.

12.3 experimental validation

12.3.1 Materials and Methods

The aluminum isotropic plate already mentioned in Section 12.2 was considered for vali-
dation purposes by imposing a plate thickness of 1mm to be consistent between the two
numerical models. The communication distance was set equal to d = 200mm.

A 64–QAM modulation scheme (i.e., log2 64 = 6 bits per symbol) was selected and a
message consisting of a stream of 48 bits packed into Nsym = 48/6 = 8 symbols was gen-
erated at a symbol rate of 8 ksym/s, corresponding to a bit–rate of 48 kbps. An oversam-
pling factor of 50x was assumed for the sampling frequency to ease the synchronization
process and be compliant with the Nyquist’s band.

The configuration of the QAM parameters was completed by selecting two different
carrier frequencies: Fc,1 = 130kHz and Fc,2 = 150kHz. These values were deemed com-
pliant with the analysed test–bed, for which the bandwidth 50-500 kHz represents a suit-
able choice for actuation: indeed, within this interval, only the first symmetric and anti-
symmetric modes S0 and A0 are excited. This band was determined by analysis of the
corresponding dispersion curves.

As far as the model simulating the FSAT is concerned, the radiation patterns for these
two carriers (when the corresponding QAM–modulated signals are provided as input to
the model) are displayed in the left hand side of Fig. 79. To create these plots, the out–
of–plane displacement fields were generated and extracted over a circle with a radius d

around the transducer. The preferential radiation directions are clearly visible in Fig. 79,
in both representations and for both actuation frequencies.
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(a) 130kHz (b) 150kHz

Figure 79: Radiation pattern and wavefield snapshot for (a) 130kHz and (b) 150kHz carrier fre-
quency obtained with FEM simulation of the FSAT.

The quality of the results was judged both qualitatively and quantitatively: firstly, by
visually analyzing the level of superposition between the original and the reconstructed
constellation diagram, and then by computing the corresponding Root Mean Square Error
(RMSE):

RMSE =

√∑Nsym

n=1 [(In − Irn)
2 + (Qn −Qr

n)
2]

Nsym
(57)

12.3.2 Results

The effectiveness of the explored communication framework was tested both in ideal
propagation environments were the only source of non–ideality is the one associated to
the GW behavior, and secondly, by adding the effects of external noise sources.

12.3.2.1 Bit reconstruction in noise free conditions

In Figure 80a and Figure 80b, the results of the analytical plane wave model and the ones
related to the simulated FSAT are presented, respectively, imposing a carrier frequency
equal to Fc,2. In the top left panel, the actuation signal (blue) and the received signal prior
than synchronization (red), are illustrated. From the chart related to the plane wave model,
it is possible to identify some "glitches" generated at every phase/symbol change, while
similar disturbances are considerably reduced for the FEM case. This is due to the spatial
filtering effect of the FSAT that cancels out most of these undesired effects on the signal.
In the bottom left charts, instead, the spectrum of the received signal is computed, in
which a sharp peak arises at the selected carrier frequency with both modelling strategies.
On the right hand side of the same figure, the recovered symbols are plotted in form
of a constellation diagram: as can be observed, the error affecting FSAT–driven results is
noticeably lower to the one associated with the analytical counterpart. This evidence is
corroborated by a better level of agreement between the numerical QAM constellation and
the one reconstructed after FEM simulations, and further proven by RMSE values of 0.2743
and 0.0751, respectively, for the two models. Noteworthy, these results are independent
from the selection of the specific carrier frequency, as proven by very similar performances
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(a) Analytical model

(b) FEM FSAT

Figure 80: Simulation results for QAM with 150kHz carrier frequency. Top left: normalized trans-
mitted (blue) and received (red) signals for 8 bit symbols. Bottom left: FFT of the re-
ceived signal. Right: original (blue circular markers) and demapped (red star) symbol
constellation.
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Table 25: RMSE values as a function of decreasing SNRs for QAM data communication (carrier
frequency equal to 130kHz (first column block) and 150kHz (second column block).

130kHz 150kHz
SNR Analytical model FEM - FSAT Analytical model FEM - FSAT∞ 0.2320 0.2150 0.2743 0.0751

13.98dB 0.2466 0.2284 0.2793 0.0838
7.96dB 0.2613 0.3112 0.2789 0.1500
4.44dB 0.3448 0.2626 0.3099 0.2108
1.94dB 0.3174 0.3170 0.2981 0.1969
0dB 0.3838 0.3604 0.3149 0.2270

obtained for the selection of Fc,1 = 130kHz (Fig. 81a and 81b): in this case, the RMSE value
amounts to 0.2320 and 0.2150 for the analytical and FEM simulation, respectively.

The reported results not only prove the suitability of QAM as modulation strategy for
GWs–based digital communications, which is corroborated by the good level of agree-
ment returned by the analytical simulation: more importantly, they demonstrate how QAM

could be realized with custom hardware solutions as the one provided by FSATs directly
attached to the structure, performing even better than the expected analytical predictions.

12.3.2.2 Bit reconstruction in noisy conditions

Besides the analysis of the GW propagation behavior, the perturbations due to noisy chan-
nels were evaluated by adding a weighted amount of noise to the received signal (prior
than synchronization), proportional to the maximum recorded amplitude. To this end,
simulations were repeated starting from the noise–free configurations discussed before
(SNR = ∞) and continually increasing the percentage of noise level down to SNR = 0dB;
the remaining system parameters were left unchanged. More specifically, the correspond-
ing percentage of noise was progressively increased from 0% to 100% at integer steps of
20 points per time.

Results for the 0dB case are depicted in Fig. 82, where, in the time domain, it is no
longer possible to identify any symbol or visible shape of the original signal. Nevertheless,
the QAM–based communication system is capable of successfully recovering the transmit-
ted payload with a minor increase in the RMSE, both in the analytical and in the FEM

wave propagation models; this outcome is proven by values reported in Table 25.
Focusing on the 150kHz carrier (second column block), the reported error slightly in-

creases while reaching more unfavourable propagation settings. However, such increment
is not equally effecting both models. Indeed, if the analytical simulation shows a maxi-
mum deviation around 0.04 points, in the FEM analysis the difference is fourfold (i.e.,
0.0751 vs 0.2270). Despite this loss of accuracy, it should be specified that the point–wise
constellation superposition always achieves a significant level of accuracy, the FEM model
being always more performative than the analytical solution, even under the most signif-
icant noise levels. A similar error distribution can be noticed also for the 130kHz carrier
component (first column block). In this case, the deviation is averagely higher for both
models, showing minor differences among them.
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(a) Analytical model

(b) FEM FSAT

Figure 81: Simulation results for QAM with 130kHz carrier frequency. Top left: normalized trans-
mitted (blue) and received (red) signals for 8 bit symbols. Bottom left: FFT of the re-
ceived signal. Right: original (blue circular markers) and demapped (red star) symbol
constellation.
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(a) Analytical model

(b) FEM FSAT

Figure 82: Simulation results for QAM with 150kHz carrier frequency and SNR = 0dB. Top left:
normalized transmitted (blue) and received (red) signals for 8 bit symbols. Bottom left:
FFT of the received signal. Right: original (blue circular markers) and demapped (red
star) symbol constellation.
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12.4 conclusions

In this Chapter, the effectiveness of QAM for ultrasonic data communication has been
examined, with particular emphasis on its implementation in hardware enabled by the
spatial multiplexing capability of FSATs. Numerical simulations aided by purposely de-
veloped wave dispersion models, one purely analytical and the other one emulating the
actual FSAT behavior, were performed and framed within a QAM–based communication
scenario driven by GWs. A good superposition between the expected and the retrieved
constellation diagrams was reported, even in very noisy communication scenarios. The
obtained results demonstrate that the inherent frequency directivity of FSATs combined
with the robust communication scheme offered by QAM could represent a valuable step
forward towards the design of a next generation of autonomous systems for SHM.



Part III

E N H A N C I N G A C O U S T I C E M I S S I O N – B A S E D M O N I T O R I N G
V I A D E E P L E A R N I N G





13
A RT I F I C I A L I N T E L L I G E N C E A L G O R I T H M S F O R T I M E O F
A R R I VA L E S T I M AT I O N I N A C O U S T I C E M I S S I O N S I G N A L S

abstract

Estimating the time of arrival in acoustic signals is an essential step in diagnostic techniques based
on acoustic emissions. To address this task while overcoming the limitations of reference statistical
methods classically applied in the field, the current Chapter tries to offer a solution based on AI.
Two Deep Learning models will be presented: one is built on a standard Convolutional Neural
Network, while the second one implements a Capsule Neural Network architecture, which is an
emerging model capable of preserving the hierarchical relationships between features. Experimental
results will be conducted in the framework of a metallic square plate.

The content of this Chapter is based upon the research work [P24]:

"Deep Learning Approaches for Robust Time of Arrival Estimation in Acoustic
Emission Monitoring" by Zonzini, F., Bogomolov, D., Dhamija, T., Testoni, N.,
De Marchi, L. and Marzani, A. In Sensors, vol. 22, no. 3, pp. 1-22, January 2022.

from which part of the text is drawn.

13.1 introduction

Among the non–destructive testing techniques for SHM systems, the method based on AE

is one of the most effective for the structural assessment of civil and industrial plants,
enabling for the identification of weaknesses in structures such as pipelines and heat
exchangers, vessels and storage tanks, columns and reactors, etc. AE monitoring is based
on the control of the acoustic activity of the target structure [278], primarily the one
provoked by the growth of cracking phenomena. Indeed, it is well known that, when an
acoustic event occurs as a consequence of cracks, disbondings or delaminations induced
by inner and/or external flaws, acoustic waves are generated, which propagates in the
physical medium. One of the main advantages of AE relies on the possibility to localize
such sources by passively capturing the induced acoustic response of the structure. It
is, therefore, from the extraction of a batch of representative acoustic features, typically
defined on a time domain basis, and their evolution over time, that potential dangerous
defects can be detected at an early stage of degradation and preventive alarms can be
issued [279].

One of the most important parameters to be extracted from an acoustic signal consists
of the Time of Arrival (ToA), also known as onset time, namely the time taken by the
induced wave to travel from its origin to the acquisition point. ToA, when estimated on
multiple sensing positions, inherently provides a simple, yet effective means for signal
source location. The literature about these localization methods is quite vast and compre-
hends, among the others, approaches based on geometrical or angular relationships, such
as the ones built on the angle of arrival or the Difference Time of Arrival (DToA) [280].

189
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Alternative methods are based on the estimation of the signal energy [281], but this pa-
rameter is typically very sensitive to environmental and operational factors (e.g., inperfect
coupling between the AE transducers and the structure) which hamper their exploitation
for long–term integrity evaluation.

AE testing is typically implemented with long inspection intervals by purposely in-
creasing the mechanical load applied to the structure [282]1. However, more recently,
a new approach has emerged, in which AE monitoring is performed in real time, via
the permanent placement of AE equipment on the monitored structure and by detecting
the emissions generated during the normal load cycles. Despite the advantages in terms
of responsiveness and preventive detection, the adoption of the latter approach is chal-
lenged by the difficulty in accurately identifying weak AE events in noisy environments,
particularly at the early stages of defect growth [283]. Indeed, permanently installed AE

systems must counteract the corruption of noise generated by operational processes, such
as vibrations of rotating machinery (e.g., a pump unit or an engine), responsible for extra
disturbances [284], and of unpredictable noise sources, such as electromagnetic interfer-
ence and ambient noise in the vicinity of the monitoring system [285], [286].

The less favorable SNRs, which characterize real-time monitoring acquisitions, may pre-
vent the accurate tracking of AE features, and in particular of the ToA. Statistical algo-
rithms for onset time determination have proven their effectiveness even at high SNRs, but
the noise factors mentioned above significantly affect the reproducibility and accuracy of
ToA estimation results. Consequently, the implementation of reliable methods for signal
detection, moreover robust to noise, is still an open research field.

13.1.1 The problem of ToA estimation: from statistical methods to machine learning

By computing the similarity between two signals, Cross–Correlation (X-Corr) can be used
as a powerful tool for the estimation of the time disalignment of two time series. In prac-
tical AE scenarios, where the monitoring network constitutes of a passive mesh of trans-
ducers and the true excitation source is unknown, X-Corr offers a means for DToA quan-
tification among pair of receivers rather than a measure of the actual ToA, and proved its
effectiveness for the characterization of AE signals in multiple environments [287]. How-
ever, X-Corr is highly susceptible to minor perturbations in the statistical properties of the
input signals (e.g., residual noise sources superposed to the actual information content).

Striving to cope with these issues, Akaike Information Criterion (AIC) approaches the
task of ToA identification as a pure statistical problem based on the second order statistics
of the input signal. In essence, AIC leverages the concept of signal entropy to probe for
the presence of abrupt changes in the statistical distribution of the observed signal. For
a discrete signal with N samples, this is achieved by computing, for each sample [k], the
quantity:

AIC[k] = k logσ2
y[1:k]

+ (N− k− 1) logσ2
y[k+1:N] (58)

which is a logarithmic measure of the cumulative variance of the preceding (y[1 : k]) and
successive (y[k+ 1 : N) signal window with respect to the current sample index k. In other

1 https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=celex:32014L0068, https://ec.europa.eu/

docsroom/documents/41641

https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=celex:32014L0068
https://ec.europa.eu/docsroom/documents/41641
https://ec.europa.eu/docsroom/documents/41641
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words, AIC splits the full waveform into a k dimensional and N− k dimensional smaller
vectors, respectively spanned by the first N and the last N − k samples, and describes
the level of similarity between them. The rationale is that, in correspondence of a sharp
change in the signal profile, such as the one associated with the arrival of the incoming
wave–front generated by the acoustic source, the divergence between the pre and post
signal variances increases to a large extent, generating a minimum in the overall AIC

function. The instant of time aligned with this minimum is the sought ToA.
Notably, this method can provide reliable outcomes when the processed signal presents

two clearly distinct regions, e.g., an high–entropy portion where dominates uncorrelated
noise, and a low–entropy segment where the acoustic signal is present [288]. Nevertheless,
as discussed in [289], this might not be the case for AE monitoring scenarios, in which
the mere attenuation due to signal propagation, which is responsible for low–amplitude
received waveforms, is further hindered by additive operative noise, demanding for more
advanced data processing solutions.

Led by the constantly increasing success of AI in learning complex patterns hidden
within signals, interesting AI solutions to tackle ToA estimation were proposed, with par-
ticular emphasis on the seismology field. Indeed, in geology, ToA of pressure waves trav-
elling through the Earth’s crust is of crucial importance, because it permits the thorough
characterization of incipient earthquakes or micro–seismic events and, consequently, to
predict their time, magnitude and location. Hence, a close analogy exists between the two
application domains and, by virtue of this similarity, solutions tested in seismology can
be adopted also for AE signal processing.

Literature works about AI in seismic analysis is very recent and includes, among the
seminal examples, a template–based artificial neural network for earthquake phase detec-
tion [290], while [291] proposed an unsupervised fuzzy clustering logic for ToA recognition
in micro–seismic waves. Another example worthy of attention was examined in the work
by Zachary E. Ross [292], where the ToA of pressure waves in seismograms was considered
as a pattern recognition problem on top of which a DL model was trained. The importance
of this work is that it is based on a fully agnostic approach, in which time picking is turned
into a pure black–box model by processing data directly in the time domain without any
additional pre-processing. Considered among the most powerful architectures for deep
and ultra–deep learning, PhaseNet and UNet [293] were also investigated as alternative
methods for seismic arrival time picking, reporting outstanding results. A comprehensive
list of the most recent trends in this direction can be found in [294].

Therefore, the objective of the novel methods proposed henceforth is (i) to build accu-
rate AI models capable of handling highly perturbed AE signal properties and (ii) to test
them in operative SHM frameworks, such as acoustic source localization purposes.

13.2 dl models for toa estimation

Two different NN models were implemented for the purpose of ToA estimation.

13.2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a class of artificial neural networks that can ex-
tract relevant information from raw data and retains it in the form of weights and biases
of the corresponding layers: the learnt parameters are then used to make classification
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and/or predictions as soon as new signal instances are available. A general CNN archi-
tecture consists of two main stages, i.e., feature extraction and classification, which are com-
pletely described by the following architectural blocks:

• Convolutional layers: these elements are in charge of feature extraction from input
data, which are passed in a tensor form of dimensions Nin. A convolutional layer
runs dot products between the input data and a specific set of weights (or mask),
which are stored as taps of a corresponding filter, also known as kernel. This filter is
recursively applied to subsequent portions, or patches, of the input data by means
of a sliding filter mask which is shifted by a constant quantity called stride (Nstride).
To do so, the dimension of the kernel, Nks, has to be considerably lower than the
length of the original input signal.

To increase the learning capability of the network, more than one filter is employed
in a single convolutional layer: if Nfilter is the number of total different kernels per
layer, Nfilter different maps of the the same input data are provided in output via
a proper activation function. A convolutional layer is, thus, completely determined
by the tuple of values: (Nin, Nfilter, Nks, Nstride).

Multiple convolutional layers are usually stacked one after the other, and this en-
ables each layer of the network to identify different properties of the input in a
comprehensive manner. Low–level features are captured at the end of the first set
of convolution operations, while the remaining high–level features can be inferred
from the subsequent convolutional layers. The typology of the convolutional layer
is dictated, in turn, by the dimensions of the manipulated data. In the case of ToA

estimation, where the problem is intrinsically mono–dimensional and thought to be
performed on a sensor–wise basis, 1D convolutional (Conv1D) layers are necessary.

• Pooling layers: "to pool" means merge; and this is what the pooling layer is actually
in charge of. Indeed, not only the number of points in each feature map returned
at the end of a single convolutional block might be extremely huge, but also many
of them only capture minor details about the pattern hidden within data; thus, they
can be neglected. Therefore, in order to shrink the computational complexity and
the spatial size of the convolved features, the benefit of the pooling layer is to pro-
vide a distilled version of each feature map. Different pooling strategies have been
proposed for the sake of dimension reduction: max pooling (MaxPool), which only
preserves the maximum value in a specific patch of the feature map; average pooling
(AvgPool), which extracts a single scalar as the average of the points falling in the
same feature patch.

• Dense layers: once manifold representations of the input have been processed via
a combination of convolutional operations, the sought pattern hidden within the
computed feature maps finally remains to be learned. This is achieved by means of
dense fully–connected (FC) layers, i.e., feed–forward layers with neurons that have
full connections to all activations delivered by the previous layer.

Firstly, the feature maps provided by the last pooling layer are flattened, namely
unrolled in a uni–dimensional vector of appropriate dimension; then, the associated
values are used as input of a standard artificial neural network, which acts either
as a classifier or a regressor depending on the desired task. For the ToA estimation
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Figure 83: Proposed small CNN for ToA estimation from 5000–long time series. The quantities
reported in the blue and pink boxes indicate the dimensions of the output features of
the corresponding layer.

problem at hand, in which we are interested in predicting one single value coinci-
dent with the sought onset time, a regressor form has been chosen by forcing one
single neuron in the output layer of the last fully–connected block.

13.2.1.1 Large CNN model

The first CNN architecture considered in this work is schematically represented in Fig-
ure 83 and is devised for ToA retrieval from 5000–long time series. As can be seen,
five (5000/22l,Nfilter,10,2) Conv1D layers (l ∈ {0, . . . , 4} being the layer index), with
Nfilter ∈ {50, 100, 150, 200, 250} and ReLU activation function, are stacked in cascade and
followed by a MaxPool layer with compression factor equal to 2. A global average pool-
ing layer (Global AvgPool) has also been included at the end of the convolutional block to
force the regressor behavior of the network: Global AvgPool yields one single feature map
out of the 250 different representations at the end of the last AvgPool layer. This single
map is then passed to a first FC layer having 1024 neurons activated by ReLU; ToA can
finally be retrieved from the output layer consisting of a 1× 1 FC layer with one neuron
and linear activation. It is worth saying that the so far designed CNN model is character-
ized by 1,259,299 parameters requiring a minimum memory space of at least 1.5MB even
in quantized form: the Adam optimizer [295] with learning rate of 0.001 and loss weight
equal to 1 has been used for training such parameters, while the model was trained for
15 epochs.

13.2.1.2 Small CNN model

It must be emphasized the fact that, in order to be applicable in real edge/extreme edge
computing scenarios, the devised algorithmic solutions must cope with the limited pro-
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Figure 84: Proposed small CNN for ToA estimation. The quantities reported in the blue and pink
boxes indicate the dimensions of the output features of the corresponding layer.

cessing capabilities of resource–constrained devices. However, converting the previously
described CNN model into a TinyML format is not practicable due to the excessive amount
of memory (and, in turn, of computational power) it requires. For this reason, a distilled
version of the preceding model has been derived as displayed in Fig. 84, in which the five
convolutional layers have been substituted with four smaller size Cov1D+MaxPool layers
with 16, 32, 64 and 64 filters while leaving unaltered all the remaining parameters. The
dimensions of the GlobalAvg layer were changed accordingly. In this lighter version, only
134,481 parameters need to be learned, for a total memory occupancy of nearly 150kB af-
ter conversion to embedded programming format, which leads to a complexity reduction
of more than 10x, while making the model compatible with the above-mentioned memory
constraints of edge devices. Hereinafter, to differentiate the two models, this smaller one
will be called as "small CNN".

Notably, the model reduction of both the number of convolutional layers and filters
per layer has been preferred over other pruning strategy, given its proven advantages
in terms of algorithmic complexity and memory footprint, as well as for its robustness
against model over-parametrization [296] and better generalization to out-of-distribution
data.

13.2.2 Capsule Neural Network

Despite their outstanding performances, CNNs might be ineffective under the following
circumstances [297]: (i) the observed data pattern presents shifts/rotations, since CNNs are
phase and shift invariant; (ii) the spatial relationship between the feature maps is an im-
portant indicator of the data distribution, since CNNs do not exploit spatial dependencies;
(iii) the loss of information introduced by the pooling layers is unacceptable, especially
for very deep model where pooling is mandatory.
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Very recently released in the field of AI [298], Capsule Neural Network (CapsNet) rep-
resent a powerful competitor to convolutional architectures for classification tasks. Three
main reasons can be mentioned. Firstly, CapsNet transforms basic feature maps in corre-
lated feature maps via the novel concept of capsule unit: this correlation–based approach
implies preservation of spatial dependencies between data. Secondly, albeit disregarding
the pooling layer, it is capable of correct prediction even when trained on fewer data.
Thirdly, its vector–based output allows for robust classification performances by mak-
ing use of simpler network architectures. This latter aspect deserves particular attention
in view of TinyML implementations, owing to the fact that CapsNet actually offers a first
means for knowledge distillation, which is performed directly at an architectural level via
novel machine learning operators, rather than being executed at a coding/firmware level,
where most of the effort is usually spent.

Successful application of CapsNet for micro–seismic phase picking were accounted in
[297], showing great performances for earthquake signal characterization. Inspired by
this first attempt, an AE–oriented variant of CapsNet is proposed in this manuscript to cope
with ToA prediction.

In its general form, the block diagram of a CapsNet architecture nests a capsule repre-
sentation in cascade to standard convolutional without pooling between them, to learn,
in a lossless way, novel representations from the generated feature maps. More formally,
it consists of the following two elements:

• Primary capsule: this layer performs convolution aggregation via the so–called capsule
unit ui (i ∈ {1, . . . ,NPC} being the capsule index), corresponding to multiple combi-
nations of the feature maps retrieved at the end of the convolution process. In their
working principles, primary capsules provide an alternative form of convolutional
layers: the main difference is that, in this case, a vector–based output is computed
rather than working with unitary depth. As such, a convolution–based processing
is performed by each capsule, which is driven by an appropriate set of kernels and
relative stride.

• Digit capsule: at this point, the agreement among different capsules has to be esti-
mated so that it is possible to preserve the spatial dependency between those block
representations with highest relevance. This concept is mathematically encoded via
the weight opinion matrix Wij, with j ∈ {1, . . . ,Nclass} being the number of classes,
each with vector–based output of dimension NDC. Hence, every capsule is judged
by means of Nclass opinions uj|i, also called local digit capsules, to be computed
as:

uj|i = Wijui (59)

From these local representations, a further level of feature combination is added in a
spatially–dependent manner, by following the routing–by–agreement protocol [299].
This procedure, also called dynamic routing, introduces the concept of agreement,
i.e., how much the individual digit capsules agree with the combined one. The level
of agreement is numerically quantified by the weight routing matrix Rij via the
coupling coefficient
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cij =
eRij∑Nclass

c=1 eRic

(60)

As such, the final digit capsule sj is given by sj =
∑

i cijuj|i. As in traditional
convolutional layer, activation is required to ensure that digit capsules with low
opinions shrunk to zero, since they do not convey meaningful information. However,
the vector–based output of the capsules requires ad–hoc functions to fulfill this task:
the squashing function

vj =
||sj||

2

1+ ||sj||2
sj

||sj||2
(61)

was purposely proposed in [298] to address this task, where sj and vj are the input
and output of the j–th convolutionally–operated capsule. The quantity uj|i · vj fi-
nally yields the actual measure of agreement, i.e., the higher this product, the more
preference is awarded to the corresponding primary capsule ui. At this point, an
iterative algorithm can be called to update the routing matrix, until the desired level
of agreement is reached and the sought Nclass ×NDC digit capsule block can be
derived, which serves as output layer for the entire neural network. Finally, it is suf-
ficient to calculate the ℓ2 norm of each of the Nclass rows to obtain a corresponding
value of the output probability associated to each single class.

For AE–related problems, just two classes can be considered, i.e., noise and AE signals:
in this case, an high value of the output probability pAE for class "AE signal" indicates
that the input instance is most likely to contain a true AE event, whereas low values can
be seen as indicators of noisy input.

An overview of the proposed CapsNet architecture for AE signal processing has been
graphically summarized in the left hand side of Fig. 85. The initial convolutional block
consists of two Conv1D layers without pooling, activated by ReLU and with dimensions
(500,64,9,2) and (250,128,9,2), respectively. At the output of the convolutional layer, 128
feature maps of 125 samples each are computed: these feature maps are passed to the
primary capsule layer. Here, 78 primary capsules of 8 feature maps each are created,
and then processed via capsule–oriented convolution operations via kernels of size 9 and
stride equal to 3. Dynamic routing is then performed, yielding to Nclass different digit
capsules with vector size equal to 8. A last stage in which the ℓ2 norm is applied to each
row of the the digit capsule block returns the two desired class probabilities (noise and
AE).

In terms of model complexity, the proposed CapsNet architecture requires 301,952 param-
eters and allocates a memory space of 375kB, a quantity which is 4.2x lower and 2.25x
bigger to the ones estimated for the original and small CNN, respectively. Once again,
Adam optimizer (with a learning rate of 0.001) was used for training the model for 15
epochs.

13.2.2.1 ToA retrieval from CapsNet

Determining ToA with CapsNet is a two–step process. Indeed, in its definition, CapsNet acts
a classifier for the input batch of data, meaning that it can only predict whether the
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current instance is most likely to contain low–entropy signal content (high probability) or
rather noisy data (low probability). Therefore, a dedicated logic has been implemented
to extract one single time value out of the class probability distribution. Hereinafter, the
entire processing flow, encompassing both CapsNet and the time retrieval logic, will be
named after as CapsNet–driven ToA estimator (CapsNetToA).

To this end, an approach similar to the one suggested in [297] is adopted. The idea is to
split the entire waveform of 5000 samples into smaller and overlapped windows, each of
them identified by a unique time stamp taken as the central value of the corresponding
time span. For every segment, a probability value is returned; the cumulative trend in the
probability distribution can be easily obtained by concatenating, in time, the predictions
related to subsequent windows.

The rationale is that the probability curve is expected to assume low value until the
signal statistics do not change. Then, when the first window containing the wave arrival
is processed, the curve increases progressively, reaching its maximum (in the ideal case,
unitary probability) for the exact window centered on the actual ToA.

On a first attempt, one may resort to statistical tools such as PP or thresholding func-
tions to retrieve ToA as the first peak probability value. However, such simple approach
might suffer from several drawbacks, which can be listed as follows: it presents poor gen-
eralization capabilities, in the sense that the selection of a threshold or benchmark value
is strictly application- and environmental-dependent; as such, it badly conjugates with
the critical variability of AE scenarios. The second reason relates to the impossibility of
accurately retrieving very early onset times, i.e., the ones below or almost equal to the
window length, for which the true peak probability value is unavoidably missed. In this
case, in fact, all the initial windows will output nearly unitary value and, thus, a criterion
based on the leading peak selection will unavoidably estimate ToA from secondary signal
arrivals.
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Conversely, ML solutions can inherently handle all these sources of complexities in a
very efficient and user–transparent way. For this reason, a second NN block has been
stacked in cascade to CapsNet to retrieve ToA from the output probability history yielded
at the end of the capsule processing. It is worth observing that, in ToA terms, the problem
is exactly analogous to the one faced to estimate ToA via CNN when working directly
with time series data. The main difference between the two processing frameworks is that,
for this second scenario aided by CapsNet, probability functions are available as inputs.
Coherently, in the novel approach proposed in this manuscript and which is novel with
respect to the one in [297], it is suggested to employ the same small CNN as "ToA logical
retrieval" block (see Fig. 85) in a completely agnostic and general–purpose manner.

The parameters of CapsNetToA were configured as follows. Assuming an operative sam-
pling frequency of 2MHz, the selection of a window size of 500 samples with stride equal
to 10 imposed a lower bound of 5µs to the ToA resolution These values are compliant with
the time resolution admitted for the prospective applications, where ToA usually settles
around hundreds of microseconds.

13.3 experimental validation : a numerical framework

The effectiveness of the designed models was tested within the framework of the metallic
plate already exploited in the previous Chapters for GWs communications. Firstly, a pre-
liminary phase of dataset generation was performed to train the models, whose accuracy
in prediction was then assessed by comparison with ground truth labels. This preliminary
validation is of critical importance to validate the robustness of the NN solutions in com-
parison with reference statistical methods, especially to observe how performances can
scale with respect to noise levels.

13.3.1 Dataset generation

As is widely recognized, DL models requires a large amount of data to be trained on to
avoid erroneous predictions. Moreover, since we are dealing with prediction problems,
the same data need to be labelled. However, labeling a massive amount of experimental
data is, unfortunately, practically unfeasible. Alternatively, analytical simulations could be
adopted to rapidly generate the labelled dataset. In particular, a consistent yet represen-
tative dataset was created via the ray–tracing algorithm introduced in Section 10.3 under
the fundamental hypothesis that acoustic emissions travel along the mechanical medium
in form of GWs, for which the propagation pattern through the mechanical medium is
well known, and a numerical simulator can be efficiently adopted. As far as the target
structure is considered, the square aluminum plate of Section 11.3 was taken as refer-
ence, while a Gaussian modulated pulse with central frequency of 250kHz was assumed
to simulate the effect of acoustic sources: in this frequency range, only the A0 and S0
modes characterize the propagation behavior, a condition which is desired to minimize
the detrimental effect of multi-modality.

Every time series constituted of 5000 samples acquired at a theoretical sampling fre-
quency of 2MHz: these quantities were chosen to be compatible with commercial off–the–
shelf sensors for AE monitoring. More in detail, the signal generation procedure followed
the subsequent steps:
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1. Travelling distance selection: theoretically, the number of possible propagation dis-
tances between the AE location and the receiving point is infinite. However, by ex-
ploiting the symmetrical design of the structure ensured by its isotropic nature, the
number of useful configurations can be reduced to a large extent. A square area
of 5 x 5 positions circumscribed to the top east corner of the plate was allocated
to AE receivers, while a total amount of 10 x 5 AE actuation points were uniformly
distributed in the left half of the plate. For a wave speed cg of 5371m/s retrieved
from the dispersion curve diagrams of this plate, the chosen sampling grid imposes
a maximum and minimum theoretical onset time of 185ms (i.e., 370 time samples)
and 4.68µs (i.e., 9 time samples) for the farthest and shortest distance, respectively.

2. Noise level variation: since the primary objective of the proposed NN alternatives
is to surpass the poor estimation capabilities of reference statistical methods in pres-
ence of noise, this aspect deserved particular attention. To cope with it, a Gaussian
noise signal of increasing magnitude was progressively added to the acoustic wave,
by sweeping the SNR from 30dB down to 0dB in steps of 1dB. Despite the fact that
the nature of the background noise of real AE signals can indeed differ [300], ad-
ditive white stationary noise (such as the one generated by electronic components)
can be considered as the main source of SNR degradation and, consequently, was
used to simulate noisy AE scenarios in this study.

3. Pre–trigger window variation: in real AE equipment, the starting time for data log-
ging is triggered by the incoming wave, e.g., once it exceeds a predefined energy
threshold. However, being capable of acquiring also the moments leading up to the
acoustic event is of vital importance for appropriate AE signal characterization. As
such, sensors are generally programmed to preserve memory of the pre–trigger sig-
nal history by reserving it a specific portion of the data buffer. This quantity, known
as pre–trigger window, might vary largely from hundreds to thousands of samples,
depending on both the application scenario and the employed electronics.

Although representing a deterministic parameter that does not strictly depend on
the physical phenomenon at the basis of acoustic wave propagation, the pre–trigger
time actually plays a crucial role during the learning stage. This observation means
that, theoretically, a one–to–one correspondence should exist between one model
and one pre–trigger window. This aspect not only requires time and extra comput-
ing effort, due to the fact that a new training phase must be entailed whenever a
change in the network configuration occurs, but it is also not viable in practical sce-
narios. Therefore, a data augmentation procedure has been encompassed to favor
the generalization capability of the neural network models.

To this end, acoustic signals were initially generated with a fixed pre–trigger win-
dow of 500 samples, that represents a reasonable choice for typical scenarios. Then,
one time-lagged version of each signal was derived by adding randomly from 500
to 2000 samples to the initial pre-trigger window. Since the total number of samples
in the time history is limited to 5000, these forward shifts required additional Npre

samples to be concatenated with the initial portion of the signal, while disregarding
the final N−Npre ones: to avoid both discontinuities and alterations in the statisti-
cal properties, the extra portion of the signal to be added was generated in form of
a white noise term drawn from a Gaussian distribution, whose variance was taken
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Figure 86: Example of synthetic signals generated with the ray–tracing algorithm.

to be coincident with the one estimated for the first 400 samples in the original pre-
trigger window. Another batch of data was also generated, comprising signals with
an increased pre-trigger time beyond 2500 samples, and was entirely used during
the testing phase in order to probe how the neural networks could behave with
respect to unforeseen delays in the signal.

4. Label generation: when Lamb waves are to be characterized, it is difficult to give an
unambiguous definition of their ToA due to dispersion and multi-modality. For this
reason, rather than adopting a labeling approach based on the propagation theory,
a different strategy was undertaken in this work. In particular, we exploited the fact
that AIC inherently provides very accurate ToA estimations when the SNR is high.
As such, the label attached to each time series was taken from the output yielded by
AIC when applied to noise-free signals.

A total amount of Ninst = 60000 signals was generated via exhaustive combination of
all the possible configurations between propagation distance, noise level and pre–trigger
window: 80% of them were used for training, 10% for validation, and the remaining
10% for testing. Each time series has then been normalized and mean–removed. Some
exemplary signals collected at the end of the dataset generation phase are plotted in
Figure 86.

13.3.2 Performance metrics

Since "true" labels are available, the simplest methodology to assess the accuracy of the
models is to quantify the error between the predicted and the actual ToAs. This strategy is
efficient since it allows also to probe the accuracy of AIC in noisy scenarios: indeed, once
applied to noise–corrupted variants of the same data, AIC predictions might deteriorate
proportionally to the level of added perturbations.

Therefore, the RMSE was computed as accuracy indicator. Differently form the definition
provided in Eq. (57) which has been specialized there to deal with complex values, its
canonical expression:

RMSE =

√∑Ntest

i=1 (ToAi − ˆToAi)2

Ntest
(62)
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Figure 87: RMSE error for ToA estimation on synthetic test dataset for varying SNRs. (left) Pre–
trigger window used for training (i.e., pre–trigger window lower than 2500 samples)
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was resorted to for ToA characterization: ToAi is the true value, ˆToAi is the current pre-
diction and Ntest is the number of instances used during testing.

13.3.3 Results

ToA estimation results for test data with pre–trigger window below 2500 (i.e., the one used
for training) are displayed in the left panel of Fig. 87: they are given in terms of RMSE (log
scale) as a function of increasing SNR. From this figure, two different trends in the reported
errors are evident: indeed, if the NN models present a maximum deviation below 11µs,
the error profile of AIC is inversely proportional to the noise level affecting the signal;
moreover, AIC is characterized by a slowly decaying trend with smoother profile. The
performances of the four approaches are in the same order of magnitude only for a SNR

equal to 30dB, i.e., as discussed before, in those conditions in which the signal statistics
are well defined and easy to be identified even via conventional processing tools.

Secondly, in the comparison between the AI approaches, the original CNN shows an
almost stable error around 4.5µs, irrespective from the specific SNR apart from a negligible
increment in case of very unfavorable noise levels. It is worth noting that the distillation
operation (small CNN) is less performative for SNR below 5dB but very effective for all the
remaining SNRs. Finally, the curve error of CapsNetToA is similar to the one discussed for
small CNN, with slightly higher errors at high SNRs.

A graphical depiction of the output collected from the different approaches is displayed
in Fig. 88, which shows a zoom in the 0.1-0.4ms window with drawn star markers indi-
cating the predictions obtained from AIC (blue), CNN (orange), CapsNetToA (red) and small
CNN (green), superimposed to the true label (yellow diamond). As can be observed, the
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Figure 88: ToA predictions for AIC (blue), CNN (orange), CapsNetToA (red) and small CNN
(green) with synthetic dataset: (left column) SNR = 30dB and (right column) SNR =
10dB, with second row depicting a magnified region of the time interval where ToA is
located.

estimates are considerably accurate in the left panel (SNR = 30dB) for all the methods,
while AIC completely fails in the case of important noise levels (same signal, but SNR =
10dB) depicted in the right–hand side.

The performance achieved by varying the pre–trigger windows are reported in the
right hand side of Figure 87. As can be seen, no change is observable for AIC, owing to
its time invariance. Conversely, an abrupt loss of accuracy affects the biggest CNN model,
whose RMSE error maintains the same profile at the expenses of a 20x increase in the
magnitude. Such behavior can be attributed to over–parametrization problems as well as
to poor generalization capabilities of the CNN due to the huge amount of parameters to be
learned with respect to the actual amount of instances used in the training phase and the
complexity of the problem at hand. In more detail, this is due to the fact that the number
of learnable parameters largely exceeds the total amount of training instances. Besides, a
second reason for such difference in CNN performances consists in potential overfitting,
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i.e., over–adaptation to the training dataset leading to a lack of capability to generalize
during testing. Consequently, the biggest CNN model may not adequately capture the ToA

information.
Conversely, as shown in Fig. 87, the smallest CNN model is not prone to overfitting and

over–parametrization, thanks to its more appropriate balancing between the number of
trainable parameters and available data. Therefore, the distilled model is capable of gener-
alizing from the trend hidden within training data, which is actually the expected goal of
the neural network, rather than memorizing the training data itself, as happens with the
largest CNN. Proof is the fact that the small CNN model is still capable of providing coher-
ent results, once again showing the best results among all the considered methods. For
these reasons, only the small CNN model and CapsNetToA will be taken into consideration
in the following analyses, due to their better performances in terms of memory footprint,
accuracy and generalization with respect to the length of the pre–trigger window.

Finally, the computational complexity of the designed NN models has also been evalu-
ated in terms on execution time in order to assess their actual portability on edge devices.
To this end, when tested on a 1.8GHz dual core Intel® core i-5 processor, the average in-
ference time for a single signal has been measured equal to 8.63ms, 4.79ms and 39.61ms
for CNN, small CNN and CapsNetToA (comprehensive, in this case, of both CapsNet and
the time retrieval logic), respectively. As can be observed, the computational time nearly
halves while moving from the biggest to the smallest CNN, while CapsNetToA shows the
longest execution time. This is due to the fact that this architecture requires the ToA out-
put probability curve to be reconstructed from several overlapped windows of the input
signal, an operation which imposes CapsNet to be executed multiple times. For the specific
CapsNet design considered in this work, 1200 sliding windows need to be processed, each
of them asking for nearly 30µs. Note that such amount of time can be reduced either by
reducing the number of windows or by changing the length of the window itself. In line
with these results, it is worth saying that, even if the performance might scale when the
same algorithms are deployed on embedded devices depending on the frequency clock
of the featured processor, the above reported execution times are compatible with the
near–sensor implementation of the investigated models.

13.4 experimental validation : toa for acoustic source localization

In this Section, experimental data for a laboratory aluminum plate are exploited to assess
the suitability of the trained models to cope with acoustic source localization problems.

13.4.1 Materials

The exploited numerical simulator implicitly models the mechanical behavior of the com-
panion laboratory plate presented in Section 9.3. Therefore, the trained models returned
at the end of the preliminary validation phase were employed for localization purposes
with real–field data.

It is worth recalling that, for the considered scenario, acoustic waves are actuated in
form of guided elastic waves via a tone burst of 2 cycles, central frequency of 250kHz
and nominal amplitude of 0.6Vpp by means of an arbitrary waveform generator Agilent
33220A: its output was passed through a gated power amplifier RITEC GA-2500A (100x
signal magnification) and then connected to an actuator, a Murata piezoelectric ceramic
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Figure 89: Sensor deployment on a metallic laboratory plate for the sake of AE source localization.

disc. As schematically drawn in Fig. 89, three of these discs (S1, S2, S3) were installed at
three different corners of the plate and connected to one ISSLab piezoelectric sensor node,
which is in charge of data collection.

13.4.2 Methods

13.4.2.1 Objectives and testing procedures

Three different kinds of experiments were performed, pursuing two main objectives: (i)
assess the time picking performance against operative disturbances responsible for impor-
tant noise levels; (ii) evaluate the suitability of the devised neural network architectures
to deal with source localization. Three different experiments were conducted:

1. Drill experiments: to mimic the effect of noisy environments, a power drill was inten-
tionally activated in the proximity of the structure while collecting signals generated
by impact excitation in correspondence of point 5. In order to perform a consistent
statistical characterization, experiments were repeated 30 times by progressively in-
creasing the pre–trigger window from 1000 to 1500 at integer steps of 50 samples.

2. Additive white Gaussian noise experiments (AWGN): these tests share the same logic of
the drill experiments, but a different source of noise was used in this case. In particu-
lar, an arbitrary white noise waveform actuated via a second piezoelectric transducer
located in the upper right part the plate has been considered for better reproducibil-
ity. As before, experiments were repeated 30 times for varying pre–trigger windows,
keeping point 5 for excitation.

3. Localization experiments: nine different points were selected for actuation (indicated in
Fig. 89), which are uniformly spaced in a square area with length equal to 0.3m. For
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the objective is to estimate the AE–to–sensor distance d and its relative direction θ.

each point, experiments were repeated three times with a constant sample window
of 5000 samples, pre–trigger window of 1500 samples and sample rate equal to
2MHz.

13.4.2.2 Localization algorithm

To achieve successful object localization in 2D environments, a minimum network density
of three sensing elements with known position has to be deployed on the monitored
structure. Among the various strategies, the triangulation method proposed in [301] has
been leveraged for its geometrical simplicity, straightforward application in combination
with ToA estimation and well–proven functioning for isotropic/homogeneous structures,
as the one offered by the considered test–bed.

A graphical rendering of the triangulation problem is pinpointed in Fig. 90, where a
toy plate is supposed to be instrumented with a network of three sensors, namely S1, S2
and S3. If S2 serves as a reference sensor for the network, θ1 and θ3 represent the relative
orientation of sensor S1 and S3 with respect to an horizontal axis passing for S2 and
aligned along the longitudinal dimension of the plate; similarly, D12 and D32 indicate the
spatial distance between the two pairs of sensors with respect to S2.

Now, if an acoustic event occurs at a generic point of the structure, the triangulation
algorithm aims at retrieving the set of polar coordinates (d, θ) uniquely identifying the
acoustic source in the space. d = d2 corresponds to the sought S2–AE distance, while
θ2 = θ indicates which, among all the possible directions, the acoustic signal comes
from. Once generated, the acoustic wave propagates in the structure and strikes the three
sensors in three different instants of time due to the different AE–to–sensor distance: by
application of any of the ToA estimation strategies investigated before, a guess of these
onset times can be formulated. Let’s denote them as ToA1, ToA2 and ToA3 for S1, S2 and
S3, respectively. Unfortunately, these quantities do not coincide with the physical time
ti = di/cg taken by the wave to travel the corresponding distances di at a wave speed
cg; they rather represent a cumulative sum between ti and the event actuation time T0,
which is common to all the sensors but not known to the system.
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Thus, even if geometrically well–posed, the estimation of d from the mere knowledge
of ToA2 is not practicable. However, by computing the time difference of arrival out of
the absolute ToA between the reference sensor S2 and the two remaining nodes, the T0–
independent quantities

δt32 = ToA3 − ToA2 = (t3 + T0) − (t2 + T0) = t3 − t2

δt12 = ToA1 − ToA2 = (t1 + T0) − (t2 + T0) = t1 − t2

can be obtained for sensor pairs S2–S3 and S2–S1, respectively: more importantly, they
coincide with the physical differences between the true wave propagation times. Analo-
gously, the spatial difference between the travelled distances can be formulated as:

δd32 = d3 − d = cgδt32

δd12 = d1 − d = cgδt12

The mathematical problem can thus be solved by means of the linear system:

d3 = d+ cgδt32

d1 = d+ cgδt12

(63)

which is, in this form, not solvable since three unknowns but only two equations are avail-
able. To overcome this issue, it is sufficient to apply simple trigonometric relationships to
the geometrical scheme of Fig. 90: in particular, the Carnot’s theorem states that:

d2
3 = d2 +D2

32 − 2dd32 cos(θ3 − θ) (64a)

d2
1 = d2 +D2

12 − 2dd12 cos(θ− θ1) (64b)

Hence, by taking the square power of both sides of Eq. (63) and plugging Eq. (64a)
and Eq. (64b) in its first and second row, respectively, the system can be rewritten only in
terms of d and θ, which are the sought output of the localization process:

d = 1
2

D2
32−c2

gδt
2
32

cgδt32+D32 cos(θ3−θ)

d = 1
2

D2
12−c2

gδt
2
12

cgδt12+D12 cos(θ−θ1)

(65)

Algebraic manipulation of the system in Eq. (65) yields the auxiliary solving equation
for cos θ to coincide with:

r sin(θ+ θa) = K (66)

with
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G =
D2

32 − c2gδt
2
32

D2
12 − c2gδt

2
12

g1 = GD12 cos θ1 −D32 cos θ3
g2 = GD12 sin θ1 −D32 sin θ3

K = −cg(Gδt12 − δt32)

r =
√

g21 + g22

θa = tan−1

(
g1
g2

)
Finally, d can be computed back from the system in Eq. (65). By knowing θ and d, the

estimated AE source position P̂(x̂P; ŷp) can be easily derived as

x̂P = xS2
+ d · cos θ

ŷP = yS2
+ d · sin θ

(67)

where xS2
and yS2

represents the 2D coordinates of the reference sensor S2.

13.4.2.3 Performance evaluation procedure

All the quantities appearing in Eq. (66), apart from δt12 and δt32, are deterministic once
the sensor network configuration has been defined. As such, achieving good localiza-
tion capability is, inversely, a synonym of accurate onset time estimation and offers, in
these terms, a powerful means to assessing the quality of the time picking activity of
the devised NN models. Note that, in this operative setting where no synchronization is
present between the actuation and the reception components of the monitoring network,
no possibility exists to define a true ground truth due to the uncertainties implied by the
experimental setting.

In the first stage of experimental verification, focused has been posed to the mere time
detection capability of the devised NNs while disregarding additional sources of errors
(e.g., imperfect estimation of the true wave speed) and avoid their propagation through
the mathematical steps necessary to solve Eq. (66). Therefore, a preliminary analysis has
been carried out to estimate the pure DToA: to this end, the predicted δ̂t12 and δ̂t32 values
were compared with their theoretical expectations, given by physical relationships, and
their absolute difference was computed.

Four ToA estimators were considered for this purpose: beside the three NN models
trained on the synthetic data, AIC and X-Corr were also applied from the pool of con-
ventional statistical approaches. For each of the three experiments, results were globally
judged in terms of mean value µ and standard deviation σ describing the statistical dis-
tribution of the absolute errors for DToA estimation coming from multiple realizations of
the same test.

Finally, since the objective was to demonstrate the superior ability of NN models to
cope with ToA estimation problems, for which AIC is currently recognized as a benchmark
solution in the field, results were formatted in a more readable fashion by computing the
mean and standard deviation ratios
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Figure 91: Ratios in the mean (Rµ) and standard deviation (Rσ) of the absolute errors for ToA
estimation in the framework of the laboratory metallic plate: (a) drill, (b) AWGN and
(c) localization experiments.

Rµ =
µx

µAIC
(68a)

Rσ =
σx

σAIC
(68b)

between AIC–driven scores (subscript AIC) and the ones returned by all the remaining
methods (subscript x): a ratio higher than one indicates that AIC performs averagely better,
and vice versa for ratios inferior to the unitary value.

13.4.3 Results

Results in terms of Rµ and Rσ are displayed in Fig. 91 for each of the three different
types of experiments: drill, AWGN and localization are provided in Fig. 91a, 91b and 91c,
respectively. Read by row, each entry is associated, from top to the bottom, to small CNN,
CapsNetToA and X-Corr.

As a primary observation, X-Corr shows the worst accuracy levels in all the different
settings, especially for localization tests. On the other hand, albeit CapsNet and small CNN

proving high effectiveness in some estimations, their performances are not always supe-
rior to the ones of AIC. Nevertheless, despite this aspect which is mostly related to the
different effect of induced noise with respect to the Gaussian assumption adopted for
dataset generation, the consistency of these models is corroborated by a lower standard
deviation.

Given these preliminary analyses, the Euclidean distance dp = |P− P̂| between the true
P(xP;yp) and estimated P̂(x̂P; ŷp) AE position returned by Eq. (67) was computed in a
final stage of the validation procedure to assess the accuracy in source localization task.
To precisely evaluate the effect of noise, and following the testing procedure described in
Section 13.3, white Gaussian noise has been added to the gathered time series by sweep-
ing the SNR in the interval 2-20 dB at integer steps of 4dB. In this way, it was possible to
investigate how the same model could perform in remarkably harsher propagating envi-
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Figure 92: Absolute errors for acoustic signal localization on a laboratory metallic plate under
various noise levels.

ronments, as they could appear in real AE scenarios subject to varying but not predictable
noisy conditions.

Outcomes from localization experiments are drawn in Fig. 92: for each excitation point,
three markers are included, corresponding to as many tests in this configuration. Addi-
tionally, it is worth specifying that points indicating a constant error of dP = 1m have
been included to identify all those cases in which the estimated coordinates are not com-
patible with the physical solutions for the structure at hand (i.e., negative or larger than
1.41m distances, which is the maximum propagation length for this plate). Besides, Fig. 93
provides an example of time domain signals for excitation point 5 in two different noisy
conditions: 20dB on the left column and 8dB on the right, with magnified ToA values in
the second row.

First of all, one remark is worthy of attention, which is related to the difference in the
experimental signals with respect to the synthetic ones employed for training (see compar-
ison between Figure 86 and Figure 93). In fact, in the real setting, the effects of the sensor
transfer function as well as the detrimental ones due to attenuation, multiple reflections
and propagation in the physical medium might lead the envelope of the acquired signals
to vary in a significant way. As such, being capable of obtaining an accurate prediction
on real signals starting from a simulated dataset can be seen as a more severe test to be
passed.

Going deeper into the results, the NN methods provide more consistent estimates, irre-
spective of the single excitation point and just showing a minor increment starting from
SNR = 4dB, where the errors increase up to 30 cm for 2dB, which represents a challenging
working condition for AE equipment. Conversely, dP reduces to a large extent in all the
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Figure 93: ToA predictions for AIC (blue), CapsNetToA (red) and small CNN (green) for excitation
point 5: (left column) SNR = 20dB and (right column) SNR = 8dB, with second row
depicting a magnified region of the time interval where ToA is located.

remaining noisy configurations, the CapsNetToA model being the most accurate estimator
with an average error of 5 cm, followed by small CNN, whose average error is less than
8 cm.

Moreover, it is possible to observe that the quite similar localization pattern shown
by small CNN, which tends to worse the lower the SNR, is a consequence of the noise
generation procedure, according with which the same signal, but with different additive
noise, are processed. For the same reason, even if less pronounced, an analogous trend
characterizes also AIC and CapsNetToA.

The slightly better performances of CapsNetToA with respect to small CNN can be at-
tributed to the superior generalization capability of the first solution, which better handles
the discrepancy between the actuated pulse and the synthetic one used during training.
This generalization capability is a very desirable property in practical scenarios, where
the actuated pulse is unknown.
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Moreover, the same plots show that, despite AIC being highly performative in low noise
conditions, as proven by a maximum deviation of 7 cm for the 20dB configuration, the
introduction of high noise levels leads AIC to completely fail (dP = 1m) in multiple
positions (e.g., P1,P2,P3).

The above considerations confirm the trends already reported in Fig. 87, showing that
AIC remains a robust and competitive strategy for AE signal characterization for relatively
low noise values affecting data, whose drawbacks in dealing with poor SNRs can be over-
come via AI approaches, which can still achieve a satisfactory level of precision in the
identification of the acoustic source.

13.5 conclusions

In this Chapter, NN models were proposed to deal with the problem of ToA estimation in
AE–monitoring: two CNNs of different complexity and one CapsNetToA model combining
the advantages of CNN and CapsNet. The capabilities of these DL–driven methods was
measured both with synthetic and experimental data, showing an average accuracy 10x
higher to the one achievable with conventional alternatives, which systematically fail in
presence of significant noise levels.





14
C O N C L U S I O N S , O N G O I N G R E S E A R C H A N D F U T U R E O U T L O O K S

In this dissertation, novel signal processing techniques have been introduced, discussed
and implemented, under the cap of the edge processing paradigm as a means to optimiz-
ing the underlying sensing, communication and data management layers of SHM systems.
Such research effort has been conducted by investigating both horizontal aspects common
to multiple monitoring applications, and the specificities of the individual problems.

Hereinafter, the main contributions described in the three parts of this Thesis will be
briefly recalled and further commented in a comprehensive manner.

14.1 main conclusions of part i

In Part i, novel signal processing techniques aimed at solving open issues in vibration
diagnostics have been proposed with the ultimate goal of pursuing a joint HW–SW opti-
mization of the dedicated monitoring architecture. In particular, starting from the sensing
up to the structural diagnostic layer, the mutually interrelated findings discussed in this
Thesis can be summarized as follows:

❑ The sensor network implementation can be tackled with a divide–and–conquer strat-
egy based on clustered architectures, which are the backbone of the full–scale im-
provement of the monitoring process, thanks to the flexible allocation of the com-
puting and power resources. Such solution presents two additional benefits: firstly,
thanks to local processing capabilities, it permits to reduce the network congestion
in comparison to centralized alternatives. Secondly, the cluster–based characteriza-
tion procedure offers a preliminary means for defect localization by probing for local
anomalies in the estimated structural parameters.

❑ Clustered architectures are intrinsically compliant with the deployment of heteroge-
neous sensor networks, in which the advantages of individual sensing technologies
can be combined. In particular, the possibility to process and merge acceleration
data and angular velocities on smart sensor boards has been demonstrated for the
retrieval of tilt angles. Furthermore, a cost–effective vibration analysis method has
been disclosed via the the development of a processing flow fusing together inertial
signals with mechanical displacements recorded by low–cost and minimally inva-
sive piezoelectric discs.

❑ Graph Signal Processing may pave the way to a versatile strategy for sensor clus-
tering on very large and complex structural geometries. This is due to the fact that
GSP allows for the proper reconstruction of global structural parameters even in
presence of non–overlapped clusters of sensors. This implies a more flexible sensor
deployment, reduced wiring, and minimal sensor density.

❑ Data compression techniques running on extreme edge devices represent a viable
solution to cope with both local and global sensor network optimization. Being
capable of performing a near–sensor compression allows to: (i) conveniently exploit

213
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the limited storage resources of the sensor nodes, (ii) lower the transmission time
and the related power consumption and, consequently, (iii) extend sensor life–cycle.

❑ Among the possible compression strategies, the low computational cost of the Com-
pressed Sensing encoder combined with a model–based adaptation approach can
be used for efficient data reduction at the extreme edge of the monitoring network
without affecting the quality of the reconstructed structural features.

❑ System Identification can be successfully applied for network load reduction. This
technique achieves massive compression levels, which are at least one order of
magnitude higher to the ones attainable by conventional alternatives. Moreover, it
has been demonstrated how an efficient management of the available computation-
al/memory resources, in conjunction with advanced linear algebra operators, can
significantly shrink the computational cost involved by SysId and make it suitable
for near–sensor embodiment. A comprehensive cost–benefit analysis has revealed
that, despite the higher algorithmic cost, the proposed extreme-edge implementa-
tion of SysId is, in terms of energy, one forth less onerous than standard compression
methods.

❑ In essence, SysId is a means to perform the features extraction task at the extreme
edge. This is the fundamental difference with CS-schemes which are based on a lossy
recovery of the acquired time series in central processing units, where feature ex-
traction and inference can be run. Quite interestingly, among the features extracted
with SysId, those typical of the operational modal analysis, i.e., peak frequencies and
mode shapes, are included. This paves the way to future monitoring opportunities,
in which even the inference process is brought at the extreme edge.

❑ It has been proven that a one–class classifier neural network provides an effective
tool to deal with structural anomaly detection. In particular, when fed with damage
sensitive features, (e.g., frequency–related parameters in the case of vibration diag-
nostics) and temperature data, these algorithms are suitable to monitor, in a com-
pletely automatic way, the non linear and non predictable – via standard methodolo-
gies – influence of environmental and operational factors on the nominal vibration
response, providing remarkable classification performance.

❑ A TinyML approach for vibration–based structural inference can be adopted by lever-
aging the on–board digital signal processing functionalities made available by smart
sensors. The possibility to perform the structural assessment at the edge between the
physical and the digital world not only can accelerate the diagnostic process, but can
further reduce the energy consumption and the network congestion.

❑ Relying on the previous results, a comprehensive framework for the structural as-
sessment of vibrating structures has been investigated by proving the feasibility to
combine all the investigated means for network optimization at the different stack
of the SHM chain: from data compression up to TinyML–enabled structural inference,
in conjuction with feature extraction at the extreme edge.
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14.2 main conclusions of part ii

In Part ii, it was shown how, by exploiting the near–sensor processing functionality of in-
telligent sensors, it is possible to implement efficient ultrasound communication schemes
by actuating and sensing, with piezoelectric transducers, guided elastic waves that can
travel across media impenetrable to electromagnetic waves. It is worth noting that the
same sensor network can be used also for structural inspection by tracking anomalous
echoes.

Different modulation techniques were considered to tackle the additional complexities
induced by the guided propagation, such as multi-path interference, multi-modality and
dispersion. More specifically, the following results have been attained:

❑ Frequency Division Multiplexing realized via binary excitation can be readily inte-
grated in low–power edge devices, equipped with minimal digital signal processing
functionalities, for the implementation of multiple–in multiple–out communications
at the sensor level. With the proper tuning of the carrier frequency, a data rate in the
order of hundreds of kbps has been achieved, even when the waveguide is highly
irregular.

❑ Code Division Multiplexing is a viable option when a large number of piezo-
transducers is simultaneously firing, as typically happens for beamforming pur-
poses. This is due to the possibility to encode transducer–specific messages via a
unique codeword by means of a SW manipulation of the generated signals. Further-
more, the standard scheme at the basis of CDM has been extended by including an
additional processing step, necessary to counteract the dispersive propagation be-
havior of elastic waves and, in turn, enhance the quality of the decoded information.
An equivalent transmission rate of hundreds of kbps turned out to be feasible with
this mechanism.

❑ Rather than performing dispersion compensation in a post–processing phase, a low–
depth variant of the Time Reversal transmission technique has been proposed. The
implemented method is compatible with the limited signal synthesis capabilities of
low–cost pulsers. TR is combined with pulse position modulation and, by virtue of
the channel reciprocity, allows for a direct suppression of inter–sensor interferences
while filtering out also the effects of reverberation and reflection. In the dissertation,
it has been shown that the adoption of a dedicated quantization mechanism can
speed up the communication rate to tens of kbps.

❑ Finally, the spatial multiplexing capability of frequency steerable acoustic transduc-
ers has been paired with Quadrature Amplitude Modulation to implement a tech-
nique similar to those explored by modern 5G communications. Such approach
yields to three main advantages. Firstly, it can theoretically achieve very interest-
ing transmission rates, exceeding tens of kbps. Secondly, it is very robust against
noise corruption. Lastly, it is based on minimally invasive transducers which can be
integrated on the structure.

For the sake of clarity, Table 26 provides a summary of the investigated techniques
towards the implementation of GWs–based communications. A comparative analysis is
offered, by examining both the advantages and shortcomings of each solution, as well
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Table 26: Summary of the investigated techniques for GWs–based digital data communication with
highlighted characteristics and reported performances. Column "Top" stands for the sen-
sor network topology they require, whereas column "C" indicates whether compensation
procedures were also encompassed.

Technique
Characteristic Tested setup & performance

Top Pros Cons C Scenario
Bit-
rate

FDM via
square–wave
excitation

Sync.
MIMO

– Readily implementation
with low–cost and low–
power hardware

– Simple spectrum–based
bit reconstruction

– Limited transmission
rate

– Square–wave excitation
length needs to be esti-
mated in advance

✗

Experimental testbed:

– Aluminum plate
with 2 TX and 2
RX node

– CFRP with 2 TX and
2 RX node

0.17
kbps

CDM
Async.
MIMO

– Modulation achieved via
software

– Reduced cross–talk inter-
ference thanks to spread-
ing

– Very dense sensor net-
works with very high
bit–rate

– Carrier frequency selec-
tion

– More complicated sys-
tem realization

– More prone to inter–
symbol interference

✓

Experimental testbed:
slender aluminum
beam with 1 TX and
1 RX

189

kbps

LDTR–PPM
Sync.
MISO

– GW dispersion and
cross–talk inherently
suppressed

– Readily implementation
with low–cost pulsers

– Extension to MIMO is re-
quired

– Tranceivers are required
– Longer time for commu-

nication gating

✓

Simulated testbed:
aluminum plate with
1 TX and 3 RX nodes

10

kbps

QAM+FSAT
Sync.
MIMO

– Spatial multiplexing re-
alized at the hardware
level

– High robustness to sig-
nificant noise levels

– More complicated sys-
tem realization

– Non ideal coupling
✗

Simulated testbed:
aluminum plate with
1 FSAT

48

kbps

as the reported performances during the experimental validation phases. The number of
receivers and transmitters which can be handled is indicated under the column "Top" in
which it is also specified whether the transmission is synchronous or asynchronous.

As a general comment, the performances in terms of available bandwidth vary largely
depending on the employed modulation scheme, with three orders of magnitude in be-
tween the highest (CDM) and lowest (FDM) data rate. Moreover, it is worth discussing the
ease of deployment characterizing each technique. To this end, while the procedure en-
tailed by FDM can be readily implemented in a time and algorithmic efficient manner, the
same condition does not apply also in the other cases, for which the realization of the
entire coding/decoding flow is more complicated and requires ad–hoc post–processing
steps.

Additionally, the importance of applying dispersion compensation procedures must be
highlighted, since the complex propagation pattern experienced by GWs does influence
the quality of the decoded information. In this case, LDTR–PPM deserves particular atten-
tion since it is capable of effectively counteracting both the detrimental effects due to
wave propagation and the ones associated with sensor interference. Conversely, for the
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Figure 94: Comparison between the GWs–based communication strategies implemented in this
work and state–of–the–art companion alternatives.

remaining techniques considered in this work, dedicated procedures to be applied in a
post–processing phase are required to recover from such disturbances.

Finally, Fig. 94 extends the performance plot in Fig. 65 via superposition between the
findings of this work with state–of–the–art solutions already discussed in Table 20. The
following considerations are worthy of attention:

• The proposed CDM approach represents the first experimental validation of spread
spectrum techniques for GW–based communication. Moreover, even if tested on a rel-
atively simple testbed, it allows significant data rates and communication distances
to be achieved.

• The performances of the deployed low–power FDM are comparable to the ones at-
tained by OFDM for the same propagation distances. Furthermore, despite a drop or
nearly three orders of magnitudes is registered with respect to previous works em-
ploying FDM, it is of paramount importance to underline that the specific GW–based
communication system proposed here only exploits low–power MIMO sensor nodes,
which do not require from commercial, bulky electronics.

• The combination of QAM with FSAT discloses new potentials for spatial multiplexing,
a result which has been fostered by the unique frequency directivity of the novel
transducers. As such, the performance of QAM+FSAT are comparatively better to the
ones reported by FDM and LDTR–PPM being equal the communication distance.

14.3 main conclusions of part iii

Part iii of the dissertation has been entirely devoted to the problem of onset time de-
tection, also referred to as ToA, in acoustic emission–based monitoring. This problem is
particularly complex when the signals are affected by non negligible noise sources, either
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deterministic or random. Solutions inspired by the deep learning processing field were
implemented, whose main features and performance are detailed in the following:

❑ Convolutional Neural Networks can efficiently cope with this challenge and, when
properly trained on a consistent and exhaustive batch of data, they do overreach
standard methods. Furthermore, it has been demonstrated how distilled models
could both downsize the complexity of the model to a large extent and prevent
overfitting problems affecting the quality of the results.

❑ Capsule Neural Networks extend the learning capabilities of CNNs by leveraging, in
the learning process itself, the spatial relationships between the learned features. In
addition, they are based on simpler and lighter neural networks which require much
lower computational resources for accurate performance. Via CapsNet, ToA estimation
is split into a two–step process: at first, the component related to the acoustic signal
is discriminated from noise; then, the output is passed to a second block for proper
time retrieval.

❑ The implemented models proved to be very competitive in terms of computational
resources and source localization performances, especially in medium to highly
noisy scenarios, with respect to standard methods, among which the Akaike In-
formation Criterion has been chosen as reference.

14.4 ongoing research activities

This dissertation has explored a novel paradigm in the structural health assessment of
engineered structures that has been enabled by the advent of smart sensors and intelligent
sensor systems, i.e., autonomous structural diagnostics running at the edge with minimal
power and computational resources with respect to server–based computing.

This Section depicts a synthetic overview about the research activities which are cur-
rently in progress.

14.4.1 Objective 1: Tackling open issues

In AE testing, ongoing research is focused on the TinyML implementation of the machine
learning models proposed for ToA estimation. To this end, as anticipated, the small CNN

model yields to a total model size, after conversion to the TFLite format, of nearly 150kB
with negligible loss of performances when tested on the synthetic dataset, i.e., this sensor–
compliant version of the model reported a maximum RMSE of about 5µs, which is still
more accurate than the AIC solutions for all the considered noise levels. Conversely, the
original model size of CapsNetToA (taking into account both CapsNet and the time retrieval
logic) has been estimated to be as large as 375kB: a novel design flow is currently under
investigation to further reduce this number and its related computational time.

In the vibration–based field, the investigation of alternative structural assessment strate-
gies driven by SysId is of the utmmost importance; in this case, the foreseen future devel-
opments are twofold. First of all, the demonstrated TinyML functionalities on the smart
sensors may enable the estimation of SysId via AENN. The second possible development in
SysId aims at overcoming the possible shortcomings of the local–to–global feature combi-
nation procedure and, hence, at being compatible with the retrieval of very faint spectral
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peaks which are not easily identifiable via PP algorithms. To the same end, additional
efforts have been spent to move standard OMA algorithms at the edge. More specifically,
a recent work has focused on the edge coding of the FDD algorithm as a pivotal tool for
centralized modal feature recovery [P25]. A similar perspective concerns the development
of a novel version of the CS–based and TinyML–enabled framework in Fig. 40, in which the
decoder block is omitted and compressed features are passed directly to a neural network
block for the final diagnostic step.

Finally, in ultrasonic communications, the suitability of other modulation schemes to
cope with the peculiar propagation behavior of GWs has to be investigated. Recently, fur-
ther experiments have been conducted in which the working principle of the Orthogonal
FDM was simulated, obtaining a transmission rate of more than 40 ksps in a squared plate
sensorized with four devices. Similar experiments are currently conducted with FSAT pro-
totypes.

14.4.2 Objective 2: Designing a custom monitoring network

Despite serving as an effective, versatile and up–scalable platform for monitoring pur-
poses, an improved version of the ISSLab sensor network employed in the experimental
tests illustrated in this dissertation is currently under development to enhance its memory,
computational and synchronization functionalities. The final aim is to design a new gen-
eration of smart sensor nodes equipped with all the electronics and circuitry necessary to
efficiently collect, on–board elaborate and outsource the locally estimated features. In this
sense, the design of a new generation of sensor nodes has been started with the ultimate
goal of prototyping a highly optimized, yet easily re–configurable, smart device in which
all the presented near–sensor algorithms can be executed.

Besides this, the possibility to implement some of the investigate algorithms in parallel
low–power architectures has to be explored. This is specifically the case of the eS-TSQR-OLS

procedure detailed in Fig. 33, which is inherently suitable for implementation in multi–
core systems.

14.4.3 Objective 3: Testing the processing framework on real scenarios

The validation of the investigated SHM methods in real structures affected by environmen-
tal and operative influences has an invaluable importance for the understanding of the
actual robustness, resilience and effectiveness of the conceived solutions. Thanks to the
research projects currently running at the University of Bologna, there will be opportu-
nity to test the proposed strategies for the monitoring of both civil infrastructures and
industrial plants. In particular, the test cases are related to the condition monitoring of
the railway catenary system, and of large–size storage tanks. The former industrial case
is ideal to test modal analysis solutions. In the latter case, the problem of acoustic source
identification and location is crucial for corrosion monitoring.

14.5 future outlooks

The HW–SW co–design of sensors and systems for SHM is a process in constant develop-
ment due to the stringent requirements for the real–field adoption and the parallel rapid



220 conclusions , ongoing research and future outlooks

evolution of ICT products. As such, the promising technological advancements illustrated
in this manuscript cannot be considered as final solutions, but rather must be intended as
stepping stones for future, additional and more optimized solutions: most of them have
already been mentioned in Section 14.4 and represent an active field of research. Without
claiming to be exhaustive, some other possible improvements are worthy to be mentioned.
For example, GSP could be exploited not only as a means for feature combination at the
end of the characterization step, but specifically for the task of identification.

There is also plenty of room for improvements in the TinyML field. In fact, it is worth con-
sidering that, in the implementation procedure proposed in the dissertation, the training
and testing phase of the NN machine are performed offline on different devices. Despite
its advantages, such an approach poorly scales in time as the inference model needs to be
updated. Consequently, novel frameworks involving model training at the edge should
deserve primary attention in future TinyML realizations: in this direction, promising solu-
tions are currently under investigation by leveraging the continual and reinforced learning
concepts.

Beside the promising results achieved in the signal processing field, only a few research
studies appraise their effective performance in presence of result or instrumentation uncer-
tainties [302], [303], which are likely to affect the long–term assessment process. Moreover,
it should be considered that such aspect becomes even more important in a near–sensor
computing perspective, where the additional uncertainties due to embedded processors,
such as low–depth data quantization and the need for simplified arithmetic operations,
might destructively sum with the data variability induced by external factors (e.g., am-
bient and operational changes). Hence, the appropriate judgment of the true signal pro-
cessing performance must take into consideration these potential drawbacks, since they
might influence the structural bulletin at a large extent. Proof is the fact that, as stated in
the roadmap to quantifying the benefit of SHM [304], the data analysis and interpretation
process and, by extension, the entire monitoring technology (from sensing to data infer-
ence), are assigned maximum importance in the cost function maximizing the benefit of
the SHM system itself. Therefore, future studies will be devoted to the thorough analysis
of this pillar concept, by incorporating in the standard evaluation process novel models
and variables tightly related to current issues in decentralized, edge–enable SHM solutions,
such as result uncertainty due to low data quantization and/or sensor failure.
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T H E I S S L A B S E N S O R N E T W O R K

To be effective, a SHM architecture must rely on the optimal combination of hierarchical
hardware resources (sensor nodes, gateways, edge processors) and the associated soft-
ware infrastructure in charge of data management, data analytics and structural assess-
ment. To address these issues, a low–power, light–weight and small footprint monitoring
network with data–to–cloud capabilities was developed within the Intelligent Sensor Sys-
tem Labs of the University of Bologna [P4], [P26]. The network, referenced throughout
the manuscript as ISSLab network, is designed to be, at the same time, low–cost, scalable,
and easily reconfigurable to be suitable both for short–term and long–term monitoring
tasks.

The architecture is composed of three elements: two compact devices, generally ad-
dressed to as sensor nodes — one interfacing PZT transducers and the other one hosting a 6
DoF IMU — integrating all the peripherals and circuitry necessary to autonomously collect,
pre–process and manage data, and a purposely developed network interface, or gateway,
which orchestrates the single device in a centralized manner and is extensively described
in [P4].

The sensor nodes differ on the basis of the sensing element, which requires ad–hoc
electronics for the proper acquisition and conditioning of the measured signal, while the
network and communication layers are shared. This means that the two types of sensor
nodes can be used either standalone or concurrently deployed on the same structure in
case heterogeneous diagnostic approaches are required.

In the following, emphasis will be posed on the description of the technological fea-
tures of sensor nodes and sensor network interface. Table 27 finally provides a synthetic
overview of the ISSLab network characteristics.

a.0.1 Communication layer

The communication between all the device of the network is achieved via a multi–drop
Sensor Arena Network (SAN) bus, which exploits Data–over–Power (DoP) communication
based on the EIA RS-485 standard. Depending on the supplied power, up to 64 sensor
nodes connected in daisy–chain can be joined simultaneously. At this prototyping stage,
the selection of a wired connection was preferred over a wireless one to design lighter
nodes, which did not require the presence of a battery. The communication protocol can
be effectively used over long distances and in electrically noisy environments (which are
common in several application fields) with an effective maximum data rate of 200kbps.
Data are transmitted sequentially, in packets, by exploiting a proprietary lossless encoding
technique. The reception of each data packet must be acknowledged by the receiver before
the next packet is sent by the transmitter.

During acquisition, signals are collected simultaneously by each sensor node. A unique
time stamp is provided by means of an internal 32–bit high–speed hardware counter,
clocked at 64MHz; once every hour, a 32-bit low-speed software counter is updated.
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Figure 95: Generic four building block architecture of the ISSLab sensor nodes [P4].

Synchronization is another important aspect to be discussed. In the ISSLab network re-
alization, a synchronization algorithm based on a software implementation of the classical
three-way handshake adopted by the RFC 793 Transmission Control Protocol is exploited.
First, the gateway sends a synchronization command addressed to a single node, then the
receiving node responds with a similar command, addressed to the gateway, and, finally,
the gateway sends an acknowledge message to the sensor node. The first two steps allow
the gateway to compute the round trip time (RTT), whereas the last two steps allow the
sensor node to compute the RTT. Several factors contribute to the RTT: the messages’ en-
coding/decoding time, the messages’ transmission time, the delays between the messages’
transmission and reception at the electrical level, and the messages’ processing time. The
messages’ transmission time is already known to the gateway and the sensor nodes since
messages’ length and data rate are known a priori and do not change over time; the sum
of remaining terms, called residual RTT, conversely can change over time and was exper-
imentally estimated to be largely dominated by the messages’ encoding/decoding time:
as such, RTT/2 is considered a good approximation of the propagation delay at the soft-
ware level. Thus, once each node in the network knows its own RTT (RTTi), the gateway
issues a broadcast synchronization command containing its local time T0; following this
last command, each sensor node in the network sets its internal counters to T0+RTTi /2.
By issuing the synchronization command once per acquisition, the divergence between
the sensor nodes’ clocks in the proposed network over 2400 s of observations was 4.7ms
[P16] ©2011 IEEE.

a.0.2 Sensor node architecture

It is worth mentioning that each sensor node, irrespective of the sensing principle it ex-
ploits, is built upon the four building block architecture shown in Fig. 95:
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1. MCU: the core element of the node is an ST Microelectronics STM32F303 MCU pow-
ered at 3.3V that belongs to the family of low–voltage 32 bit mixed–signal processors
with DSP functionalities enabled by a single precision FPU. It integrates 40 kB of RAM

and 256kB of FLASH memory, which are sufficient for data acquisition and signal
pre/post processing. It contains two serial peripheral interfaces (SPI) and a univer-
sal synchronous/asynchronous receiver/transmitter (USART) together with all the
clock generators, shift registers and data buffers necessary to perform input/output
serial data transfers independently of device program execution.

2. Serial RAM: a microchip 23LC1024 128kbit serial RAM device is used to lodge pro-
cessed data samples waiting for further retrieval and expand the limited memory
resources of the MCU, which might be insufficient for advanced signal processing.
It features an unlimited number of read/write cycles and zero write time, allowing
for data rate up to 20Mbps in sequential access mode.

3. Tranceiver (XCVR): an ST Microelectronics ST3485EB 3.3V XCVR for RS-485 and RS-
422 communications is used to interface the MCU to the network bus. It guarantees
12Mbps data rate at a very low–power consumption and it is connected to the SAN

via a mesh of passive components.

4. Low–dropout (LDO): a Texas Instrument LM3480 LDO regulator supplies the entire
node by fixing the output voltage at 3.3V, regulated from the 5.0V power supply
required by the entire SAN bus.

a.0.3 Sensing layer

a.0.3.1 Inertial sensor node

A prototype of the sensor node developed for the purpose of vibration data collection
is displayed in the left hand–side of Table 27. The sensing element constitutes of an ST
Microelectronics LSM6DSL iNEMO IMU, namely a system-in-package device featuring a
3D digital accelerometer and a 3D digital gyroscope realized in MEMS technology.

The most important mechanical features of the linear and angular part are reported
in Table 27 (label ACC and ROT). The inertial node is designed to gather highly accu-
rate acceleration data thanks to a maximum dynamic range programmable from ±2 to
±16 g, coupled with a linear sensitivity of 61µg/LSB and a noise density of 80µg/

√
Hz in

high–performance mode. The angular counterpart operates with a gyroscope sensitivity
of 4.375mdps/LSB, an angular velocity range varying from ±125 to ±2000dps and a noise
level of 4mdps/

√
Hz. Available data rates for both the linear and angular acquisitions are

comprised between 12.5Hz and 6.664kHz, with a flat frequency response in the whole
bandwidth.

The sensor node is equipped with DSP functionalities, such as the execution of basic
frequency–related operations and PP algorithms [P27], or more complex elaboration as
the extraction of tilt angles from the combination of linear and rotational inertial data
[P15].
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Table 27: ISSLab sensor network portrait: electrical and network characteristics common to all the
sensor nodes are included beside the main features of the inertial and piezoelectric sensor
node.

Inertial sensor node Piezoelectric sensor node

Se
ns

or

LSM6DSL ACC ROT
– Three acquisition channels (PZT

connector)
– Embedded pre–amplifier: 9 gain

levels (from x1 to x23)
– Embedded 12 bit rail–to–rail ADC
– Embedded coin–size pre–amplifier

on PZT transducer

Full–scale ± 2 to ± 16 g ± 125 to± 2000 dps

Data–rate 12.5 to 6664 Hz

Sensitivity 61µg/LSB 4.375mdps/LSB

Noise density 80µg/
√

Hz 4mdps/
√

Hz

O
n–

bo
ar

d
D

SP

STM32F303 MCU:

– Memory: 40 kB RAM, 256kB FLASH
– DSP: single–precision FPU for 32–bit data parallelism
– Power: < 40mA @ 64MHz in active mode

✓ Fast Fourier Transform
✓ Tilt angle
✓ Peak Picking

✓ Acoustic features: rise time, energy
count, zero–crossing level

✓ Self–calibration algorithm

N
et

w
or

k

– SAN bus with multi–drop capabilities
– Data–over–Power communication based on the EIA RS–485 standard
– Proprietary lossless encoding technique
– Maximum effective data–rate: 200kbps
– Three–way handshake synchronization protocol: software implementation of TCP
– Synchronization error: 4.7ms

El
ec

tr
ic

al – Low–power consumption: < 40mW in normal operating mode @ 5.0V SAN

– Up to 64 nodes connected in daisy–chain fashion
– Industrial operative range: −40 °C to 85 °C

a.0.3.2 Piezoelectric sensor node

The working principle of the so–called piezoelectric sensor node, firstly described in [305],
is the passive acquisition of bulk and/or guided waves originated by impacts, corrosion,
or other source phenomena which travel along the sensorised structure. This sensor node
features three acquisition channels (PZT connectors) connected to as many piezoelectric
transducers and is equipped with all the analog signal conditioning and digital func-
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Figure 96: PZT transducer (left) with embedded pre–amplifier (right) and the lodging case (mid-
dle).

tionalities necessary for signal filtering and feature extraction. Hence, when the stress
wave energy crosses a certain threshold, the sensor starts to store the signal from the
PZT transducer and autonomously process data on–board. To increase the amplitude of
the incoming signals, each transducer is connected to an embedded programmable gain
amplifier which provides nine different gain levels, from ×1 to ×23. Each analog signal
is then sampled by an embedded 12 bit, rail-to–rail ADC with a programmable sampling
frequency up to 800kHz [P28].

PZT transducers (shown in Fig. 96) correspond to extremely low–cost PZT discs, i.e.,
buzzers whose cost does not exceed a couple of dollars. Each discs integrates and embed-
ded coin–size pre–amplifier.

To fully exploit the advantages of this custom electronics and be compatible with pitch–
catch monitoring configurations, an active variant of the same piezoelectric devices was
designed, too. In this case, high–speed general purpose I/O drivers are used to drive the
PZT transducers for data transmission purposes and make the sensor autonomous for the
generation of custom signals.

a.0.4 Sensor network interface

Similarly to the sensor nodes, the SAN interface presents the four building block archi-
tecture in Fig. 97. An FTDI FT231X Universal Serial Bus (USB) to full handshake UART
integrated circuit is used to provide USB 2.0 connectivity to a smart data relay device
(i.e., a connected PC) with maximum data transfer rates of 3Mbaud. It is operated by
a single supply line taken directly from the USB bus and internally regulated to by in-
tegrated LDOs. A Linear Technology LTC4414 low loss PowerPath™ Controller (PPC) is
used to create a near ideal diode function for power switchover and permits the interface
a highly efficient management of the available power sources, namely the 5.0V, 500mA
USB power supply line. The PPC primarily feeds a medium current LDO, which feeds an
ST Microelectronic ST3485EB RS485/RS422 XCVR, used to interface the UART to the SAN

network. Each interface node is roughly 48mm × 26mm wide, weights less than 10 g, and
consumes 12mA.
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Figure 97: Schematic diagram of the SAN interface (a) and the relative prototype (b).



Face your fear, empty yourself,
trust your own voice, let go of control,

have faith in outcomes, connect with a larger purpose,
derive meaning from the struggle

— Kano Jigoro
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It is 7:01 in the morning of the last day of my Ph.D. when I switched on my PC and Google
advertised me that today is Kano Jigoro anniversary. I do not know him, I am curious. I
discover he his the guru of judo; more importantly, he dispensed several aphorisms.

One of them, in particular, attracts my attention, like the voice of an ancient mariner at
the end of his trip, when he turns back to the moment in which he set sail and rewinds
the film of the adventures encountered while exploring unknown seas. Today I feel like
that boatswain diving into the ocean of my Ph.D. experience, during which I had to face
my fear, have faith in outcomes, connect with a larger purpose.

Every crew needs a captain, and I have been blessed of having Prof. Luca as mentor.
For his patience and never–ending support. For his search of perfectionism and scientific
rigor. For his continuous stimuli and, first among all, for the trust has been deserving me
since the first day. Thank you for holding the helm of my research journey and helping
me finding the compass in the jungle.

Prof. Alessandro Marzani and Nicola Testoni. Your insightful suggestions, your utmost
know–how and unconditioned love for research, have become a great source of inspiration.
I will always be grateful to both of you for having accompanied me throughout this trip.

One special thank goes also to Prof. Eleni Chatzi and Vasilis Dertimanis, who granted
me the exceptional opportunity to join their research group at ETHZ and explore new
approaches to the fascinating world of SHM: your foremost expertise provided invaluable
advancements to my studies.

I would like to send my sincere gratitude to Prof. Guido Masetti, the one who firstly
fueled my passion for research and invited me to join his research group, that day. I would
have never imagined it would have been such an amazing, thorough experience.

All the guys of the ISSLab at the University of Bologna: travelling with you in this
entangled world of human and scientific research has been a great pleasure. In particular,
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roots, all of them have been comfortable musics even in the most difficult days. I will
never forget it.

All the students and the people who boarded in the same ship and I met in my path:
each of you gifted me important pearls of wisdom. Marta, there is no need to mention
that you are the foremost, the one who has always been supporting me in the most fruitful
and critical manner I could have desired.

Finally. My family. My safe harbor. You instilled me the unconditioned passion for
research, the humility and curiosity for the other, for the others, which I deem are pivotal
milestones for whatever kind of Research. Paola. Enrico. Morena. Massimo. Didì. Worthless
to say you have been my lighthouse in the night, in this roller–coaster journey of feelings,
actions, silence; you have been the Dirac Delta of my daily life.
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Now it is 7:20 of the last day of my Ph.D. It’s time to go, with Kano’s words in mind, to
weigh anchor for novel, ready–to–be–discovered destinations. To be continued...
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