Intelligent Sensor Systems for Structural Health Monitoring Applications

Zonzini, Federica (2022) Intelligent Sensor Systems for Structural Health Monitoring Applications, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Monitoraggio e gestione delle strutture e dell'ambiente - sehm2, 34 Ciclo. DOI 10.48676/unibo/amsdottorato/10141.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Creative Commons Attribution Non-commercial No Derivatives 4.0 (CC BY-NC-ND 4.0) .
Download (17MB)


The convergence between the recent developments in sensing technologies, data science, signal processing and advanced modelling has fostered a new paradigm to the Structural Health Monitoring (SHM) of engineered structures, which is the one based on intelligent sensors, i.e., embedded devices capable of stream processing data and/or performing structural inference in a self-contained and near-sensor manner. To efficiently exploit these intelligent sensor units for full-scale structural assessment, a joint effort is required to deal with instrumental aspects related to signal acquisition, conditioning and digitalization, and those pertaining to data management, data analytics and information sharing. In this framework, the main goal of this Thesis is to tackle the multi-faceted nature of the monitoring process, via a full-scale optimization of the hardware and software resources involved by the {SHM} system. The pursuit of this objective has required the investigation of both: i) transversal aspects common to multiple application domains at different abstraction levels (such as knowledge distillation, networking solutions, microsystem {HW} architectures), and ii) the specificities of the monitoring methodologies (vibrations, guided waves, acoustic emission monitoring). The key tools adopted in the proposed monitoring frameworks belong to the embedded signal processing field: namely, graph signal processing, compressed sensing, ARMA System Identification, digital data communication and TinyML.

Tipologia del documento
Tesi di dottorato
Zonzini, Federica
Dottorato di ricerca
Settore disciplinare
Settore concorsuale
Parole chiave
Intelligent Sensor Systems, Structural Health Monitoring, Embedded Signal Processing, Vibration Diagnostics, Guided Waves-based Digital Data Communications, Acoustic Emission Monitoring
Data di discussione
15 Marzo 2022

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi