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Abstract

S
ocial interactions have been the focus of social science research

for a century, but their study has recently been revolutionized by
novel data sources and by ideas and methods from computer science,

network science, and complex systems science. The study of social interactions
is crucial for understanding complex societal behaviours, linking the individual
and collective scales.

Social interactions are naturally represented as graphs or networks, which
have emerged as a unifying mathematical language to understand structural
and dynamical aspects of socio-technical systems. Networks are, however,
highly dimensional objects, especially when considering the scales of real-world
systems and the need to model the temporal dimension. Hence the study of
empirical data from social systems is challenging both from a conceptual and
a computational standpoint. A possible approach to tackling such a challenge
is to use dimensionality reduction techniques that represent network entities
– nodes, edges, sub-graphs – in a low-dimensional feature space, preserving
some desired properties of the original data. Low-dimensional vector space
representations, in particular, also known as network embeddings, have been
extensively studied, also as a way to feed network data to machine learning
algorithms.

Network embeddings were initially developed for static networks and then
extended to incorporate temporal network data. In this Thesis, we focus on
dimensionality reduction techniques for time-resolved social interaction data
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modelled as temporal networks. We introduce and characterize a novel em-
bedding technique that models the temporal and structural similarities of events
rather than nodes. Using empirical data on social interactions, we show that
this representation captures information relevant for the study of dynamical
processes unfolding over the network, such as epidemic spreading. We then
turn to another large-scale dataset on social interactions: a popular Web-based
crowdfunding platform. We show that tensor-based representations of the data
and dimensionality reduction techniques such as tensor factorization allow us
to uncover the structural and temporal aspects of the system and to relate
them to geographic and temporal activity patterns. Based on this, we provide
a comprehensive anatomy of a crowdfunding system.
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L. Bertè, ”Dedicato”, 1979



I
ndex

Abstract 2

Acknowledgments 5

1 Introduction 11

2 Low-dimensional representation of temporal social networks 17
2.1 The quantitative study of social interactions . . . . . . . . . 17
2.2 Networks: a natural representation of social interactions . . . 19
2.3 Time-resolved social networks . . . . . . . . . . . . . . . . . 19
2.4 Low dimensional representation: embedding of time-varying

networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Embeddings for temporal social networks 25
3.1 The computational framework . . . . . . . . . . . . . . . . . 25

3.1.1 Temporal network data . . . . . . . . . . . . . . . . 26
3.1.2 Temporal networks as weighted event graphs . . . . . 27
3.1.3 Neighbourhood sampling strategy . . . . . . . . . . . 29
3.1.4 Embedding of temporal networks . . . . . . . . . . . 30

3.1.4.i Word2Vec: words to vector space . . . . . . 30
3.1.4.ii weg2vec embedding . . . . . . . . . . . . . 31
3.1.4.iii Local properties of the embedding . . . . . 32
3.1.4.iv Tensor decomposition application . . . . . . 34

3.2 Hyper-parameters selection . . . . . . . . . . . . . . . . . . 39
3.2.1 Embedding dimension: the selection . . . . . . . . . . 40
3.2.2 Events context parameters: the selection . . . . . . . 42

3.3 An application: predicting epidemic outcomes . . . . . . . . . 45
3.3.1 Epidemic spreading . . . . . . . . . . . . . . . . . . 46

3.3.1.i SI: Susceptible-Infectious spreading process . 47



8

3.3.1.ii Prediction of epidemic outcomes: results for
empirical temporal networks and randomized
models . . . . . . . . . . . . . . . . . . . . 49

3.3.1.iii Comparison with other methods . . . . . . 54
3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Anatomy of a crowdfunding platform 61
4.1 What is crowdfunding? . . . . . . . . . . . . . . . . . . . . . 62
4.2 Anatomy of a crowdfunding platform: Kiva . . . . . . . . . . 64

4.2.1 History and impact . . . . . . . . . . . . . . . . . . . 64
4.2.2 Academic studies of the Kivas’ system . . . . . . . . 64

4.3 How Kiva works: the platform and the data . . . . . . . . . . 65
4.3.1 Temporal evolution of the platform . . . . . . . . . . 67
4.3.2 Data limitations: from micro-scale to meso-scale level

of analysis . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Micro-mechanisms and macro-processes: the Coleman’s

Boat . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 A perspective change: Field Partners . . . . . . . . . . . . . 75

4.4.1 Field Partners and business models: configurations . . 76
4.5 Representation of the Field Partners interactions . . . . . . . 82

4.5.1 Field Partners temporal network: data selection . . . . 83
4.5.2 Tensor decomposition of the Field Partners temporal

network . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.2.i Tensor rank: the selection . . . . . . . . . . 84
4.5.2.ii Mesoscale structures in the Field Partners tensor 85

4.5.3 Null models in tensor decomposition . . . . . . . . . 86
4.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Conclusions and perspectives 91

6 Appendix - weg2vec: event embedding in temporal networks 97

Figures 109

Tables 112



index 9

Bibliography 114





1
Introduction

S
ocial interactions are the fabric of society. These interactions form

the basis for social structure and culture and therefore are a key
object of social analysis. Historically, the exchange of ideas and the

interactions between different cultures have been at the basis of the evolution
of culture and the structure of human society.

With the growing pervasiveness of digital devices and online social networks,
there has been an enormous increase in data on individual behaviours and social
interactions. Internet, email, and social media have now entered people’s
daily use. From navigating the Web to online purchases, from dating apps to
photo-sharing apps, our everyday life is now instrumented by devices capable
of quantifying and logging most human preferences, choices, and behaviours.

These digital traces of human behaviours have opened new possibilities for
measuring and studying social interactions. They have driven the establishment
and growth of new interdisciplinary research domains bordering with the social
sciences, such as computational social science, making it possible to answer old
research questions using new data sources and study new problems enabled by
access to fine-grained behavioural data. Computational social science [1, 2, 3]
has emerged as a field at the intersection of social sciences and computer
science, embracing novel data sources and tackling social science research
questions with methods originating in computer science and complex systems
science, such as machine learning and agent-based simulations.
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The connectivity brought forth by digital platforms and online social net-
works also changed how information propagates in society, yielding new oppor-
tunities but also unforeseen challenges. On the one hand, people in different
corners of the planet can connect quickly and easily, collaborating on planetary-
scale socio-cultural artefacts such as Wikipedia [4]; on the other hand, this new
connectivity and the governance of digital platforms have been recognized as a
challenge for democratic systems, e.g., by allowing echo chambers, the spread
of misinformation and more. In light of this complexity, knowledge in computa-
tional social science will play an increasing role in policy- and decision-making
at all levels of society. Indeed, data-driven approaches have proved valuable
for policy design [5, 6], early detection of social risk [7, 8], identification of
gaps or biases that affect specific minorities [9], and more.

Many of the novel data sources are relational in nature, as they involve
interactions between individuals. Interactions find their natural representation
in the mathematical representation of graphs or networks. Graphs of social
interactions - social networks - have been intensely studied because of their
capability to encode the structural and dynamical complexity of social interac-
tions and have become the representation underpinning both fundamental and
applied research in socio-technical systems.

The term social network is now established in the current lexicon; however,
the study of social networks is far from new: social networks have been the
focus of social science research for a century [10, 11, 12, 13, 14, 15]. Social
network analysis seeks to understand networks, focusing on their actors and
their relationships. Social network analysis has a long history: its origins lie in
the first studies by Jacob Moreno on ”sociometry” [16] and by Fritz Heider on
the triad equilibrium analysis [17]. With the use of methods from the newborn
graph theory [18], social network analysts acquired new tools for analyzing
structures [19, 20]. Subsequent seminal contributions, such as those by Gra-
novetter [21], established the use of graph concepts to describe the emergent
role structures in social systems. Towards the middle of the XXth century, the
main lines of research in social network analysis have dealt with studying the
sub-structures composing a network and their internal relations [22, 23]. The
convergence of traditional sociology with quantitative research fields has given
life to a fertile and growing interdisciplinary community that uses a common
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language to study the dynamics of social interactions. In 1977 the sociologist
Barry Wellman created the International Network Society of Social Network
Analysts (INSNA) to gather scholars interested in social networks analysis. As
a sign of different communities converging, it is worth remarking that last year,
in 2021, the main INSNA conference, the Sunbelt Conference, was jointly held
– for the first time – together with the Network Science Conference, the flag-
ship conference of the Network Science Society that caters to the computer
science, network science, and complex systems communities.

All networks, in particular social networks, are high-dimensional objects:
the number of relationships we can observe among N individuals scales as N 2,
hierarchical structures are common, and higher-order correlations are increas-
ingly considered important. In many cases of interest, social network data
also have a temporal dimension, greatly adding to its complexity, both from a
methodological and computational standpoint. Networks are thus conceptu-
ally, analytically, and computationally challenging objects of study.

To tackle the aforementioned challenges, dimensionality reduction tech-
niques for network data have come to play an important role. Low-dimensional
representations that preserve specific features or relations of the original data
can help make sense of structures, roles, and similarity relations between nodes
and links and help uncover the relationships between network structure and dy-
namics. Low-dimensional vector-based representation of the network, in par-
ticular, is critical to enable the application of machine learning methods to
predictions or classification tasks based on network data.

The topic of low dimensional representation of networks has gained massive
popularity in the scientific literature. Many of the most recent approaches
involve node, edge, or graph embedding. Initially designed for static networks,
embedding methods have subsequently been extended to temporal networks,
a research area that this Thesis will focus on. Specifically, we will focus on
time-resolved networks of social interactions, represented as temporal networks,
which in turn can be represented as three-way tensors, with one tensor axis
used for the temporal dimension. We will provide an overview of the state of
the art of temporal networks modelling, including node embedding techniques
and tensor decomposition techniques, and we will introduce a new embedding
technique for events in a temporal interaction network. As an application,
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we will test our method on empirical networks of human close-range proximity
interactions. We will further study the relation between low-dimensional vector-
space representation of events in the temporal network and dynamical processes
unfolding over the temporal network, focusing in particular on simple epidemic
processes.

We will then change scale and study human interactions in large-scale, real-
world systems for which time-resolved fine-grained data is available. Specif-
ically, we will study data from a Web-based crowdfunding platform, where
different kinds of actors are at play, and different types of action can occur.

We will provide a first overview of the anatomy of a crowdfunding sys-
tem, studying both temporal evolution and network structure. We will use
tensor-based representations to uncover patterns in the empirical data and
gain insights into the crowdfunding system.

The Thesis is structured as follows:

• In Chapter 2, we will give a general overview of social interactions and
how they have been studied and formalized over the centuries. We
will focus on time-resolved interactions, using time-varying graphs and
tensors to represent them. We will review recent network embedding
techniques, with a particular focus on embeddings for temporal network
data.

• In Chapter 3, we will present the core of our work, which can be here
described as a new method of temporal network embedding for studying
dynamical processes. We use empirical data of time-resolved contacts of
individuals, and we represented them as temporal interactions networks.
We then introduce a weighted event graph representation for temporal
networks, a novel type of high-order description of interactions that al-
lows us to map each event in a vector space in which other events will
be close to it based on these similarity principles. The final result is
the embedding of events of the original temporal network. The tempo-
ral network embedding leads us to an informative representation of the
original temporal network that captures its essential features impacting
the diffusion process. This representation should be as well as compact
as possible to meet computational or interpretative needs. This method
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proves useful to model paradigmatic processes like infectious disease dy-
namics.

• In Chapter 4, we will turn to study a large-scale social system, a web-
based crowdfunding platform, based on real, fine-grained data. We anal-
yse the interactions between borrowers and lenders on this platform,
alongside studying the platform’s trends and evolution. We find that
dimensionality reduction techniques such as Non-Negative Tensor Fac-
torization yields insights into the structure and dynamics of the system.

• Chapter 5 will summarize our work and contributions and illustrate open
challenges and directions for future research.





2
Low-dimensional
representation of
temporal social networks

I
n this Chapter, we will follow the silver thread that connects our

interest in the study of social interactions to an effective represen-
tation of them which allows us to explore, investigate, analyze and

understand the dynamics that regulates human societies.

2.1 The quantitative study of social interactions

In sociology, social interaction is a dynamic, changing sequence of social actions
between individuals or groups. Social structures and cultures are founded
upon social interactions. By interacting with one another, people design rules,
institutions, and systems they seek to live. With symbolic interactionism, the
reality is seen as social, developed interaction with others. Social interactions
can be occasional or routine, dictated by the need to establish a cooperative
or competitive bond; indeed, their study was the common starting point of
sociology, psychology, economics, ethnology, and other social sciences.

Social interactions have been at the center of research in several disciplines
ranging from economics, physics, sociology [24], [25], [26], [27]. Studying
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18 2.1. THE QUANTITATIVE STUDY OF SOCIAL INTERACTIONS

human interactions proved to be necessary to analyze the complexity of society,
the individual or collective behaviour of human beings, and their dynamics.

The main effort in defining the concept of social interaction is due to the
German sociologist Max Weber. By ”social action” (or interaction) [28], we
mean the process in which individuals give meaning to their way of acting
by formulating reciprocal conjectures on the sense that another actor would
attribute to this way of acting, and based on these conjectures, they orient
their attribution of meaning. There is, therefore, a reciprocal attribution of
significance to the interaction between the same actors.

Let us think for a moment about how many connections an individual
can have in his life. Relationships can be emotional or professional; they
can be established and disappear over time. Furthermore, looking back on
Weber’s definition, the interconnection between two individuals brings with it
a recognized common sense that adds a further layer in the understanding and
interpretation of the relationship itself. All these characteristics, added to the
fact that millions of individuals exist in our societies, make the social network
system (this is how the set of all professional, friendship and family ties of an
individual is defined) a complex system.

In physics, complex systems are systems whose behaviour is intrinsically
challenging to model due to the dependencies, competitions, relationships, or
other types of interactions between their parts or between a given system and
its environment. Here complexity is a keyword: in general, the diversity of
concepts and theories that explain social action depends on the complexity of
the interactive processes themselves.

Looking at the social interaction system through the lens of the physics
of complex systems, we cannot fail to mention network science. An intricate
network encodes the interactions between the system’s components behind any
complex system. It is thus of primary importance to develop a deep under-
standing of the networks behind complex systems if we want to understand
them. Here, then, network science comes to our aid.
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2.2 Networks: a natural representation of social interac-
tions

Network science is an academic field that studies complex networks such as
social networks, considering distinct elements or actors represented by nodes
(or vertices) and the connections between the elements or actors as links (or
edges). Network science draws on theories and methods from mathematics,
computer science, statistics, and sociology. The first papers relative to this
topic date back to the mid-18th century, when Euler submitted the problem
of the Seven Bridges of Königsberg [29].

However, we can say that the field has established itself and made remark-
able progress at the end of the last century, with contributions, among others,
by Paul Erdős and Alfréd Rényi [30], Duncan Watts and Steven Strogatz [31],
Albert-László Barabási and Reka Albert [32, 33].

Network science, therefore, responds to the fundamental need in dealing
with social interactions: their representation. Networks are a natural way to
represent them. Moreover, they are a useful tool that allows the formalization
of physical-mathematical concepts or the study of complex dynamics, which
can then be used to answer research questions such as those of social science.
We can model a wide range of systems in nature or society as graphs of
vertices coupled by edges, so through networks. The network structure allows
us to understand the behaviour of dynamic systems. In many cases, however,
the edges are not continuously active. Contacts among people in a real-world
situation, for instance, are a set of instantaneous edges. Like network topology,
the temporal structure of edge activations can affect the dynamics of systems
interacting through the network, from epidemic spreading on the network to
information diffusion. In this context, we will focus on temporal networks [34]
as an invaluable tool to represent and study real-world systems and dynamics.

2.3 Time-resolved social networks

A time-varying network, also known as a temporal network, is a network whose
links are active only at specific points in time. Each link carries information
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on when it is active, along with other possible characteristics such as weight.
As mentioned above, in real systems, the network structure of social inter-

actions may change in time. This kind of network is a thus useful tool to model
a wide variety of real-world interactions. Just think of the importance of includ-
ing time in modelling and analyzing phenomena such as social relationships to
understand the impact and the relevance that may have modelling these types
of interactions through temporal networks [35], [36], [37], [34]. In particular,
temporal networks are useful for understanding and analyzing spreading pro-
cesses, such as epidemics, opinion diffusion, or information spreading [38], [39],
[40]. Information spreading processes are central to human interactions, and
the way information spreads through society has changed significantly over the
past decade with the advent of online social networking.

With temporal networks, indeed, we have a representation that considers
both the time evolution and the network structure of the system under exam.

Using and analyzing them to represent social interactions may yield insights
into the structure of social systems. Many approaches have been proposed
to perform the analysis so far. As we mentioned above, the challenge of
representing the system under exam with an adequate tool is also common
to temporal networks. In fact, in cases where the time scale of topological
changes of the network is not too much slower than the network dynamics,
temporal networks could provide a useful framework. Among these cases,
though we can recall three common representations for time-varying network
data [34], depending on how negligible the time of the individual interactions is
in comparison with the characteristic timescale for the evolution of the network.
We can have contact sequences if the duration of interactions is negligible;
we can represent the network as a set C of contacts. We will have a set C
composed by elements as (i,j,t), where i and j are the nodes and t the time
of their interaction. For the benefit of future discussion, we define the tuple
(i, j, t) as an event. In fact, in the following Chapter 3, we will deal with this
type of contact network. We can then have interval graphs if the duration of
interactions is non-negligible. Each edge in the network will correspond to a
set of intervals over which the edge is active. Time-varying networks can also
be represented as a series of static networks, one for each time step, called
snapshots.
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Understandably, each of the representations mentioned above is closely
linked to the type of system it describes. We propose here: in approaching the
study of the temporal network, how do we manage to capture the important
information? How do we identify its key features that impact the dynamic
processes (such as an epidemic) that take place on top of it? The answer
once again is in the network representation, and below we will talk about
techniques that will help us find compact yet informative representations of
temporal networks.

2.4 Low dimensional representation:
embedding of time-varying networks

Networks are a general language for describing complex systems of interacting
entities, as we explain above. In the real world, a network always contains
complex information, leading to high complexity in computing and analyzing
tasks.

Given the rich real-life applications of network mining and the surge of rep-
resentation learning in recent years, many researches have focused on extracting
network’s relevant structural information. The methods that use graph node
representation in vector space have gained traction from the research commu-
nity. These particular representations are called network embedding and have
become the focal point of increasing research interests in both academic and
industrial domains.

Network embedding aims to transform one network into a low-dimensional
vector space that benefits the downstream network analysis tasks. It is an
effective method to learn low-dimensional representations of nodes, which we
can apply to various real-life applications.

The approach known as data embedding aims to learn data representation
in low dimensional spaces; it is a data-driven method as it encodes data into a
generic representation, independent from downstream machine learning tasks.
The early applications of data embedding focused on text mining [41]. To
understand how a network embedding works, the comparison with the world of
texts and documents embedding applies (see Word2Vec [41]: this embedding



22
2.4. LOW DIMENSIONAL REPRESENTATION: EMBEDDING OF

TIME-VARYING NETWORKS

technique is the one we adopted for our model - see Chapter 3). When embed-
ding a text, every word is projected into a d-dimensional vector space based
on similarity relationships according to the context in which it is inserted (that
is, words with similar contexts will be close to each other in the target vector
space). In the same way, nodes are embedded following a principle of similarity
(i.e., considering their neighbourhood as their context). We can have a visual
explanation of this parallel in Figure 2.1.

Figure 2.1: How does text embedding works (a) in comparison to network
embedding (b). Just as the words close in vector space should be similar in
meaning, the representations of the learned features should reflect the similarity
between the nodes in the network in the representations of the learned features.

These embedding techniques have been mainly used in the past for static
networks [42, 43]. Most common methods use random walk sampling [44,
45] or graph convolution [46, 47] to capture the local structural context of
network nodes. Although significant progress has been made on this problem
in recent years, several critical challenges remain, such as adequately capturing
temporal information in evolving networks. Only recent methods for temporal
networks have been developed, but mainly for tasks such as link prediction,
node classification, and clustering [42, 43, 48, 49, 50].

Last years have seen a surge in graph representation learning for temporal
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networks; literature deals with time incorporation in several ways. Recently a
few dynamical network embedding methods [51, 52, 53, 54] have been devel-
oped to consider dynamical changes in the structure in the learned network
representations. At the base of many methods, there is the modification of
the standard representation of the temporal network, whether it is in the form
of a list of events, a tensor [55], or a supra-adjacency matrix [56]. All of these
methods, like DyANE [56], Online Node2Vec [53], STWalk [51], or the one
proposed by Singer et al. [52] commonly aim to solve a node embedding prob-
lem. They do it by locally sampling the temporal-structural neighbourhood of
nodes to create contexts, which they feed to a Skip-gram learning architecture
borrowed from the text representation literature [41]. As a solution, they build
a sequence of correlated/updated embeddings of network snapshots, which
consider the short-term history of the network backwards in time.

However, managing a high number of hyperparameters for controlling the
sampling random walk process and the embedding itself might be a problem-
atic limitation to get around. Moreover, node embedding may not reflect the
dynamical evolution of temporal interactions. Talking then about a possible
prediction task, taking into account only past and present interactions in the
embedding can crucially limit it. In contrast, the consideration of future inter-
actions can significantly improve this task.

In the next Chapter, we will propose a new temporal network embedding
method that we call weg2vec (weighted event graph to vector) [57], which
aims to tackle all these shortcomings mentioned above. In case of temporal
networks, the recently proposed event graph representation [58, 59] defines a
higher-order description by identifying relations between events (see Section
2.3), which are adjacent, i.e. not simultaneous and share at least one end-
ing node. We can consider event graph representation as a temporal network
extension of the line-graph representation of static networks. It is a useful de-
scription as it can condensate the causality information (that has a big impact
on spreading processes). At the same time, it is a fast and computationally
cheap solution [58] to condense the key features of the temporal network.
We approached the techniques of temporal network embedding, intending to
study good representations of temporal networks, with particular attention to
the modelling of spreading processes.





3
Embeddings
for temporal social
networks

I
n this Chapter we will address the discussion of the temporal network

embedding method seen in Section 2.4, named weg2vec. As seen
above, this method differs from the others introduced in Section 2.4

because it projects events, not nodes, in a low dimensional vector space. This
choice is supported by many reasons, including using a handful of hyperparam-
eters and an efficient description of high-order correlations in the network, an
undoubted advantage in the study of spreading processes.

3.1 The computational framework

In this Section, we will describe to the Reader each step we made in designing
our temporal network embedding method weg2vec. To help to visualize the
methodological approach we followed, we report a schematic presentation of
the methodological backbone of our method in Figure 3.1.

Briefly, we projected our temporal contact networks (see Section 3.1.1)
into weighted event graph (we will treat this topic in more details in Section
3.1.2). We then use this static representation of the network to operate a

25



26 3.1. THE COMPUTATIONAL FRAMEWORK

neighbourhood sampling strategy and sample a set of contexts (if we want
to use the word embedding nomenclature) for each event (see Section 3.1.3
for further details). Finally, we used these contexts as input for Word2Vec
[41], the embedding method we employed to obtain an event embedding of
the original temporal network (see Section 3.1.4 for more details).

Once the embedding has been created, we used it for various tasks that we
will discuss in Section 3.3. The core of our work is undoubtedly the study of
spreading processes on the network, for which we have employed embedding
in a prediction task of the outcome of the epidemic (see Section 3.3.1).

Figure 3.1: Schematic presentation of the methodological approach of our
temporal network embedding method. It takes a temporal network (represented
here as successive time snapshots) (a) and then projects it into a weighted event
graph (b), where nodes are adjacent events. Samples of contexts for each event
are then used as an input to a Skip-gram model to get an embedding of events
from the original network (c).

3.1.1 Temporal network data

To demonstrate the performance of the weg2vec method for the embedding of
events in real networks, we used temporal network datasets from the SocioPat-
terns project [60]. SocioPatterns is an interdisciplinary research collaboration

http://www.sociopatterns.org/
http://www.sociopatterns.org/
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formed in 2008. It presents a collection of data on physical proximity and
face-to-face contacts of individuals in numerous real-world environments across
several countries. We can find another important example in the Reality Min-
ing Project, in which data collected from mobile phones have been employed
to study the structures in the behaviour of both individuals and organizations
[37]. This project joins many other publications and projects in collecting and
studying proximity data, mobility data, and tracking of mobile devices. We
can find an important example in the Reality Mining Project, in which data
collected from mobile phones have been employed to study the structures in
the behaviour of both individuals and organizations [37].

We concentrated on four different settings, a conference [61], hospital [62],
primary school [63] and high school [64], where we could expect particularly
different interaction dynamics and in turn different final outcome of the sim-
ulated spreading process. All the networks here presented are undirected, i.e.,
all the edges are bidirectional. General details of the datasets are summarised
in in Table 3.1.

Network Nodes Events Temporal Interval
conference 113 10457 ∼ 2.5 days
hospital 75 13650 ∼ 4 days
high school 327 36015 ∼ 2 days
primary school 236 35921 ∼ 8 hours ∗

Table 3.1: Main features of the empirical temporal networks we analyze in
our paper.
∗ We concentrated only on certain periods of the high school and primary
school networks in order to have a consistent number of events across all
datasets.

3.1.2 Temporal networks as weighted event graphs

Let us consider a temporal network

GT = (N,ET , T ), (3.1)

where ET denotes a set of events (temporal edges) among nodes in N at
times t ∈ T . As defined in Section 2.3, we refer to an event e = (i, j, t)
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as an interaction between two nodes (i, j) ∈ N ×N at a given timestamp
t ∈ T . The time aggregation of interactions in GT over T maps the underlying
structure into a static graph G = (N,E) defined over the same set of nodes
N , which are connected if they interacted at least once. For simplicity here we
assume that events are undirected and no self events/links exist, i.e. for any
event (i, j, t) or link (i, j), i 6= j.

We define two events e1 = (i, j, t1) and e2 = (k, l, t2) to be adjacent (e1 → e2)
if they share at least one node ({i, j} ∩ {k, l} 6= ∅) and t2 − t1 > 0. The
concept of adjacency if fundamental: it introduces a directed relation be-
tween events, related to an orientation respecting their order in time. Using
this notion we can formally define a static directed network representation
D = (ET , ED) of any temporal network, where original events in ET are de-
fined as nodes and they are connected by directed links eD ∈ ED if they are
adjacent eD = e1 → e2. The obtained network is a weighted and directed
acyclic graph called the weighted event graph, defined earlier in Section 2.4.
We may consider it as a temporal line graph: in graph theory, the line graph
of an undirected graph G is another graph l(G) that represents the adjacencies
between edges of G [65]. To simplify our representation, if a given event has
multiple future adjacent events with the same pair of nodes, we only consider
the earliest one for it.

We have enriched our event graph with link weights that reflect tempo-
ral/structural information coded in the original structure. The first type of
weight we consider is relative to the time difference between events. We de-
fined it as wpath = 1

(1+|t2−t1|) , which is a measure inversely proportional to the
absolute time difference between adjacent events at t1 and t2. This definition
of the weight allows us to include the temporality of interactions such as long
decay in social activities.

We then define a second weight for adjacent events (links of the event
graph) based on the total number of co-occurring events on the underlying
adjacent links in the static network. Specifically, the wco(e1, e2) co-occurrence
weight counts the number of δt-adjacent events in GT appearing on a given
pair of adjacent links l1(i, j) and l2(k, l) in the static graphG. By definition,
the events which correspond to the same links in the underlying networkG
will have the same wco. The temporal network data we analyzed (see Section
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3.1.1) are sequences of snapshots aggregating temporal interactions. In these
systems, we computewco for adjacent links as the number of co-occurrence of
related events within a single snapshot.

As a result of all this process, we finally obtain a static representation for
the temporal network under exam, a weighted event graph. We will therefore
use this static network to define an context for each event (see Section 3.1.3),
which will subsequently serve as input to Word2Vec (see Section 3.1.4).

3.1.3 Neighbourhood sampling strategy

We describe in Section 2.4 the parallel between text embedding and network
embedding. We observed that the process through with nodes are projected in
a low dimensional vector space is equivalent to the one embedding words (see
Figure 2.1).

In the same spirit of text embedding techniques [41] based on the Skip-gram
model, we built an event embedding method, which samples neighbourhoods
for events from the weighted event graph representation to map them to a
lower-dimensional space.

Using again the comparison with texts, we need to assign a context to an
eventek to then project it into a vector space. To do this, as for words we use
their context to embed them, here we sample the local neighbourhood setNk

of an eventek.Nk is the set of its first in- (past) and out- (future) neighbours
(also called its predecessors and successors from now on). The sampling is
done according to probabilities determined by the two types of weights of the
links that connect the actual event to its neighbours. The probabilityp(er)
of picking an eventer from the combined neighbourhood setNk of the central
eventek is given by :

p(er) = αF (wpath(ek, er)) + (1− α)F (wco(ek, er)) (3.2)

whereα is a coefficient between0 and1 scaling the contribution of the two types
of weights andF is a normalised weighted function defined as:

F (w) = w(ek, er)∑
n∈Nk

w(ek, en) · (3.3)
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We samplednb number of random contexts; each of them containss events
- we calls the length of the context. We will show in Section 3.2 how we
selected the hyper-parametersnb,s andα (see Section 3.2.2), alongside with
the embedding dimensiond (see Section 3.2.1).

We want to emphasize that we use as the local neighbourhood of an event
its predecessors and successors. As mentioned in Section 2.4, taking into
account only past and present interactions in the embedding can be a limit for
the performance in embedding prediction tasks. Considering future events in
the neighbourhood of a central event can significantly improve performance in
this regard. It is, however, a clear difference with many examples of temporal
network embedding techniques shown above. As we will see later (see Section
3.3.1.iii), this choice has proved to be successful in some cases regarding the
comparison with other methods.

3.1.4 Embedding of temporal networks

Before discussing the last part of our methodological approach, the embedding,
we would like to give the Reader some intuitions about the embedding method
we used for the analysis, Word2Vec. We will not enter any technical detail,
but it is worth examining it to make the procedure we have followed so far
more straightforwardly.

3.1.4.i Word2Vec: words to vector space

Nobody can deny the importance of words in the evolution of the individual
and, in general, of humankind: we use words to learn, we communicate using
words. With the advent of more and more advanced technologies, the digital
analysis of textual corpus has had more and more success, and with it, the
interest in finding computational methods that allow the understanding of
words and context. The vectorization of words is nothing more than this: the
representation of words as vectors by an algorithm that ”learns” the word itself
starting from its innate meaning and the context in which it is placed.

Word2Vec is based on this concept. Created by Mikolov and his group at
Google in 2013 [41], it represents a set of methods that have a contextual
understanding of a word and are therefore able to map it into a vector rep-
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resentation, extracting features of the word by its context. It uses a neural
network architecture that can predict the context of a word from the word
itself, or vice versa, depending on whether you use the bag-of-word version
(first case) or the Skip-gram version (second case). In this discussion, we will
examine the Skip-gram model, the one we used for our analyses.

In Figure 3.2 we show a simple description of the neural network architec-
ture of Word2Vec. For each word in the corpus under exam, you may have the
context for each word. The word is given as input to the network after being
encoded using the one-hot encoding [66]. If we think of all the n unique words
in the corpus as a n-dimensional vector, the one-hot encoding of the ith word
will be a n-dimensional vector of zeroes except the one in the ith position.

The 1-layer neural network is trained on that: the one-hot vector multiplied
by the weights matrix of the neural network change the hidden layer, which is
then passed to a softmax function. The softmax is applied on the scalar prod-
ucts of pairs of (words, context) that are in turn taken from a one-hot vector
multiplied by the weight matrix. This softmax function returns the likelihood
of observing the input word along with the context words. The algorithm needs
to maximize this likelihood, tuning itself using backpropagation.

When the likelihood mentioned above is maximized, the resulting hid-
den layer is the vector representation of the word we have trained Word2Vec
against.

3.1.4.ii weg2vec embedding

We shed some light on the Word2Vec architecture in the previous Section
because we used it to obtain our final temporal network embedding. Once the
events context is ready, built as described above, we passed it as input to the
Skip-gram model. We thus obtain a projection of all the events into a lower-
dimensional vector space. Each event has now a d− dim vector representation
obtained as shown in Section 3.1.4.i.

As the first glimpse of our compact representation of temporal networks,
we show the embeddings for the four empirical networks used in the analyses
in Figure 3.3. Here each event is represented as a point in the 3-dimensional
embedded space with colour indicating the time at which they occurred in the
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Figure 3.2: Schematic presentation of the Word2Vec neural network. The
neural network trains on the one-hot-encoded word, changing the hidden layer.
It then tunes itself until the probability distribution given by the softmax func-
tion is maximized, using backpropagation. The resulting hidden layer is the
vector representation of the word we trained Word2Vec against.

original temporal network. It is interesting to note how the gradient change
of colours indicates that these embeddings capture the time ordering of the
events in large part.

We will discuss in Section 3.2 how we selected the parameters for the events
contexts; the dimension for the embedding has been chosen here for illustrative
purposes. We can observe how our method already guarantees the ability to
capture the temporal order of events even if at low embedding dimensionality.

We will explain how this compact representation helped us predict the final
outcome of an epidemic. In the following Sections, we would like to present
to the Reader a showcase of the weg2vec embedding properties.

3.1.4.iii Local properties of the embedding

How well is the embedding learning local properties of the temporal networks?
Is it able to capture essential key features as time ordering and structure? We
answered these questions by measuring the correlation between the time dif-
ference observed in the temporal network and the euclidean distance observed
in the embedding among pairs of events.

We selected separately 10000 pairs of linked events and 10000 pairs of
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Figure 3.3: 3-dimensional embeddings of the conference (a), hospital (b),
high school (c) and primary school (d) networks. x,y and z axes indicate
event coordinates, while colour shows the time at which the event occurs.
hyper-parameters were set to α = 0.5, nb = 10 and s = 10.

random events to do this analysis. To assign a Euclidean distance to each
pair of events, we computed the average distance over 10 realizations of the
embedding. We set the context parameters s and nb both to 10 and α to 0.5.
The embedding dimensions were set to their optimal values - we will discuss
about dimensionality selection in Section 3.2.1.

We found that in both cases, for connected and random pairs of events, the
correlations between time difference and euclidean distance are positive. This
means the embedding well captures the time ordering. Besides, the correlation
between linked adjacent events is significantly higher than between randomly
selected pairs of events. These results, shown in Table 3.2, demonstrate that
the embedding also captures the local structure.

To confirm these observations, we made another additional analysis. We
evaluated the median of the distribution of distances among both random and
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linked events for each value of measured time difference. This relation is shown
as a scatter plot in Fig.3.4. There we observe that the centres of the point
clusters are positioned below the diagonal in all the cases. It indicates that the
distances among linked events are smaller than those among random events.

Data
PCCs RE LE

Conference (d=20) 0.36±0.01 0.52±0.02
Hospital (d=14) 0.69±0.02 0.73±0.01
High School (d=26) 0.40±0.02 0.61±0.01
Primary School (d=24) 0.34±0.01 0.59±0.01

Table 3.2: Pearson’s correlation coefficients (PCCs) obtained comparing the
time difference and the euclidean distance among randomly selected pairs (RE)
and pairs of linked (LE) events. We set the context parameters s and nb
both to 10 and α to 0.5. The optimal embedding dimension were chosen as
explained in Section 3.2.1. The results are obtained over 10 realizations of the
embedding for each network.

3.1.4.iv Tensor decomposition application

As an extra application to test the capability of incorporate network information
effectively of our embedding, we show in this Section its employment in a
tensor decomposition analysis. This example will demonstrate the ability of
our embedding in incorporating not only the network temporal features but
also the structural ones.

In the previous Chapter (see Section 2.3), we saw how time networks are an
excellent tool for representing natural systems that evolve. The great advan-
tage of their use is facilitating the study of dynamic processes on the network
and their impact on it. However, there are other possible representations for
time-varying systems with other specific advantages. One of these, which we
will discuss in this Section, is the tensor representation.

As defined in literature [67], an N -rank tensor is an object with N indexes,
which, in general, has the form Ta1...an

. Depending on the rank, we will
have different types of tensors. Speaking of common low-rank tensors, 0-rank
tensors are scalars, 1-rank tensors are vectors, and 2-rank tensors are matrices.
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Figure 3.4: Median of the distribution of distances among random and linked
events in the conference (a), hospital (b), high school (c), and primary school
(d) networks. Each point corresponds to a unique time difference. hyper-
parameters were set to α = 0.5, nb = 10 and s = 10. The optimal embedding
dimension were chosen as explained in Section 3.2.1. The results are obtained
over 10 realizations of the embedding for each network.

In our case, we will treat 3-rank tensor, which represents the time-dependent
adjacency matrix (or, in other terms, time-dependent 2-rank tensor).

Suppose we have n individuals interacting during a time interval T . In the
case of static networks, we can represent the interactions with the so-called
adjacency matrix. The adjacency matrix An timesn is a square matrix n× n
used to represent this finite graph. The matrix element ai,j indicates whether
the pair of nodes i, j is connected (ai,j = 1) or not (ai,j = 0) in the graph.

Because we have a time dependence in our case, we will have a T adjacency
matrices sequence, one for each time t ∈ T . In other terms, for each snapshot
t ∈ T , we will have an adjacency matrix An×n(t) which will contain the infor-
mation of the interactions between the n nodes of the network at that given



36 3.1. THE COMPUTATIONAL FRAMEWORK

instant t. We have thus built a 3-rank tensor whose dimensions are n× n× t
representing our real time-varying system (see Figure 3.5 (a) and (b)).

The tensor representation of a temporal network paves the way for us to
study the temporal network’s topological structure and understand the con-
nections of its temporal component. Just as in static networks, this analysis
is feasible through the use of community detection methods, so for tempo-
ral networks, we can go and trace mesoscale structures that are nothing but
community-activity structures of temporal networks.

It is worth mentioning that exists an important difference between commu-
nity detection and tensor decomposition. On the one hand, community detec-
tion techniques are able to find cohesive groups in static networks. To extend
these methods to temporal networks, we need to consider them as a series
of static snapshots. This temporally-aggregated representation may overlook
essential features of the system. On the other hand, tensor decomposition is
intrinsically temporal and allows to simultaneously identify communities and
to track their activity over time.

The above-mentioned n× n× t tensor can then be factorized into a sum
of r rank-1 tensors, i.e., the number of mesoscale structures we search into
the temporal network.

Tensor decomposition [55, 68] may be seen as a generalization matrix
decomposition, which has found application in statistics, computer vision, lin-
guistics, and many other fields. To test our embedding, here we investigate
the use of a latent factor decomposition technique, the non-negative tensor
factorization. It aims to extract the mesoscale structures of temporal networks
(that we can interpret as community-activity structures). In particular, we fo-
cused on non-negative tensor factorization [69, 70], since it is a powerful tool
for learning representation that leads to more interpretable results and models
[71, 72].

Canonical tensor decomposition of a 3-dimensional tensor aims to write a
tensor T ∈ IRN×N×T in a factorized fashion. In other words, the tensor T can
always be expressed as a sum of rank-1 tensors in the form:

T =
RT∑
r=1

ar · br · cr (3.4)
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i.e., as the sum of outer products of three vectors, where the smallest value of
RT for which such a relation can hold is the rank of the tensor T . Again, the
three vectors ar,br, cr can be re-written as matrices Â ∈ IRN×RT ,B̂ ∈ IRN×RT

and Ĉ ∈ IRT×RT .
This representation help us delineating the factorization we want to imple-

ment. In fact, the non-negative decomposition of the tensor will be represented
in terms of Â, B̂, Ĉ as [[Â, ÂB̂, Ĉ]]. The final goal is to approximate the ten-
sor with a r number of rank-1 tensors (or components) smaller than the rank
of the original tensor - that we will call roriginal. This is equivalent to:

min
{A,B,C}

||T −A,B,C||F (3.5)

subject to the non-negativity condition A > 0,B > 0,C > 0 (3.6)

where A,B,C indicate the approximate decomposition (instead the ˆ no-
tation indicated the exact decomposition), while the notation ||||F stands for
the Frobenius norm defined as: ||M ||2F =

√∑
ijk |mijk|2.

We transformed then the 3-dimensional problem of Equation 3.5 into 2-
dimensional sub-problems by unfolding the tensor T through a process called
matricization. The matricization is an operation which transforms a tensor into
a matrix. In our case, the mode-i matricization consists in linearizing all the
indices of the tensor except i. In our case this yields three modes: X1, X2, X3.
Each element corresponds to one element of the tensor T , i.e., each mode
contains all the values of the original tensor. Thanks to matricization, the
factorization problem can be reframed in terms of individual factorizations
of the three modes. In other words, minimizing the ||T − [[A,B,C]]||F is
equivalent to minimizing the difference between each of the modes and their
respective approximation in terms of [[A,B,C]].

Without entering in the mathematical details (see [55] for more informa-
tion), Equation 3.5 can be rewritten in terms of the three modes. Since we
focus on non-negative factorization (see Equation 3.6), we impose a condition
of non-negativity on all the elements of the three modes.

In the case of temporal networks, the so-called factor matrices A,B,C give
access to different interpretations. A and B provide the community structure
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of the network, while A gives the temporal activity of each community. In
our case, as exposed in Section 3.1.1, we have undirected networks, so their
adjacency matrix represented on each tensor slice is symmetric, and we can
solve the problem imposing A = B in general (see [73] for further details on
this point).

Figure 3.5 (c) shows the final result of the application of the tensor decom-
position on an undirected temporal network. Here are represented the factors
A and C; for undirected networks we can solve the problem imposing A = B.
A’s rows correspond to nodes, while C’s ones to discrete-time intervals; each
row in the two matrices corresponds to one extracted component.

Figure 3.5: Schematic presentation of the tensor decomposition process.
From the temporal network snapshots (a) we derive the tensor representation
of the network (b) and the applying non-negative tensor decomposition to this
object we obtain the factors A and C (c).

We used the core consistency metric to find the optimal number of mesoscale
structures r [74]. It is based on scrutinizing the appropriateness of the struc-
tural model based on the data and the estimated parameters of gradually
augmented models. A model is appropriate if adding other combinations of
the same components does not improve the fit considerably. The core consis-
tency heuristic is used to choose the largest rank according to which the model
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is still sufficiently appropriate. In practice, we operate different tensor decom-
positions for different rank values (ranging from 2 to 20 for all our temporal
networks) to estimate the best value for it.

After having identified the rank r < roriginal through the core component
metric and therefore the tensor decomposition has been performed, we have
finally obtained the factors mentioned above of our tensor for each temporal
network. This technique allowed us to group our events into mesoscale struc-
tures. We now have each link at a given time in our temporal network (so
each event) corresponding to a 1-rank tensor. We can thus assign a mesoscale
structure to each event. The mesoscale structure assigned to each event is the
one for which the corresponding link at the corresponding time has the highest
value.

Figure 3.6 shows the same3-dimensional embedded representations as in
Figure 3.3 but with colours representing the membership to mesoscale struc-
tures detected by the tensor decomposition method applied on the original
temporal network. It is interesting to notice how the distribution of colours is
not random, but similar colours are somewhat grouped in space. It suggests
that our embedding can capture some of these mesoscale structures as well as
incorporate the temporal information as shown in Figure 3.3.

3.2 Hyper-parameters selection

In this Section, we will discuss the hyperparameter selection. We can say that
the small number of parameters allows us to control the embedding straight-
forwardly. As mentioned in Section 2.4, having a lot of parameters to adjust
for the simulations can be a limitation in terms of understanding and tuning
the model. The feature of our embedding method of including a handful of
parameters can tackle this lack.

We will treat separately the discussion on the embedding dimension selec-
tion and the choice for the parameters that control the contexts.
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Figure 3.6: 3-dimensional embeddings of the conference (a), hospital (b),
high school (c) and primary school (d) networks. x,y and z axes indicate
event coordinates, while colour shows the mesoscale structure membership
found using a tensor factorization method, respectively set to find 5 (a), 3 (b),
6 (c) and 10 (d) of these structures. hyper-parameters were set to α = 0.5,
nb = 10 and s = 10.

3.2.1 Embedding dimension: the selection

One of the most crucial hyperparameters of our method is the dimensionality
of the embedding. In choosing the optimal size, we face a significant challenge.
How do we manage to keep the size of the embedding low enough to guarantee
a compact representation of the original temporal network but simultaneously
set it so that the embedding can capture the key features of the network? This
trade-off underlies our embedding size selection criterion. If the dimension
is lower than the optimal value, relevant latent correlations in the temporal
structure may be neglected. If the embedding size is overestimated, on the
contrary, we may obtain a highly redundant embedded space.

We test here the consistency and robustness of our embedding technique
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in terms of this parameter. We guess that by increasing the number of di-
mensions, once the embedding reaches and overpasses the optimal number, it
should incorporate redundant information. Talking about the Euclidean dis-
tance between events, this should not be altered after a certain threshold, so
it should stabilize. We checked this assumption using an entropy measure cap-
turing the fluctuations of pairwise Euclidean distances; we tested it on several
realizations of embedding with the same dimension.

To measure the entropy over the distributions of the euclidean distances
between pairs of event coordinates in each temporal network embedding, we
build 10 embeddings for 50 different dimensions (from 2 to 100 at step 2),
setting α = 0.5. The hyperparameters nb and s were set to 10 and 10 respec-
tively. For each embedding, we then divide our dataset into 10 consecutive
samples of 1000 consecutive events each, both to avoid computing all the pair-
wise distances (which would be very costly computationally) and at the same
time to have a representative set of events.

Specifically, we compute the euclidean distance of each pair of events in
the samples for each of 10 different but same-dimensionality embeddings. We
then bin the distances into k = 10 bins ranging from the global maximum and
the global minimum values over all the possible dimension and realizations of
the embedding for the same network and measure the entropy over these sets
of distances as

H =
∑
k

pk log pk, (3.7)

where pk represents the probability associated with the kth bin. This method
thus provided us an indicator of the stability of the embedding. In Figure
3.7 we show our results. The blue curve represents the entropy values with
respect to the number of embedding dimensions, averaged on the 10 samples
as described above, and the shaded surrounding area shows the variance among
the 10 samples. The vertical dash line corresponds to the dimension at which
the embedding stabilizes. To determine this point, we looked for the best fit
of a horizontal line on the average entropy curve and took the value of the
first interception of the curve with its fit.

As we expected, the entropy decreases as we increase the number of dimen-
sions due to the stabilization of the distribution of pairwise Euclidean distances.
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Figure 3.7: Entropy values with respect to d number of embedding dimensions
for the conference (a), the hospital (b), the high school (d) and the primary
school (b) networks at α = 0.5. The dash line represents the value (d = 20,
d = 14, d = 26 and d = 24 respectively for (a), (b), (c) and (d)) of the optimal
embedding dimension in which stability is reached. The blue line and the
shaded area represent respectively the average and the variance among the
samples we used for the analysis.

It revealed to be a good hint on the optimal size at which the embedding well
captures the local properties of the networks.

We show the results of the analyses in Table 3.3.

Network Optimal Dimension
Conference d=20
Hospital d=14
High School d=26
Primary School d=24

Table 3.3: Optimal dimension for the four empirical temporal networks, ob-
tained with our entropy method. We set the context parameters s and nb both
to 10 and α to 0.5.

3.2.2 Events context parameters: the selection

In this Section, we will explain how hyperparameters of the context sampling
may impact the final embedding and the information it incorporates. As men-
tioned before, the core task of this work on temporal network embedding is
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predicting the final outcome of an epidemic spreading on top of the temporal
network using its compact representation. We will explain this application in
more detail in Section 3.3.1. Here, for what we will treat in this Section, it
is sufficient to say that we can associate a simulated epidemic size to each
event in the embedding, and we can thus infer this size using event embedding
coordinates. For this task, it is understandable that changing the value of the
hyperparameters may affect the performance of the prediction. In the follow-
ing lines, we will test the performance of our embedding method in inferring
epidemic size by tuning its hyperparameters.

How do context hyperparameters impact the prediction score on different
real networks? Figure 3.8 shows the r2 scores computed for the empirical
temporal networks with respect to the length s and number nb of contexts
sampled for each event. For these computations we fixed α = 0.5 and the
embedding dimensions to their optimal values (see Table 3.3). We can observe
that increasing the length of the context has the same effect as increasing the
number of contexts on the r2 score. As we increase them, a plateau of r2

emerges where the prediction becomes invariant of these parameters beyond
statistical fluctuations. Consequently, choosing a large enough value for both
of these hyper-parameters would be optimal for the prediction task.

From now on, we will fix the context parameters to s = 10 and nb = 10
based on the evaluation we outlined above.

At last, we investigated the influence of the embedding dimension and
the α sampling balance parameter. As shown in Figure 3.9, both increasing
the number of embedding dimensions and α lead to better performances in
predicting the spreading outcome. As we can observe, increasing d, each
case reaches a plateau. On the other hand, we observed somewhat stronger
dependencies on α. While for the conference and the hospital networks, the
more one increases α, the better the prediction gets, for the primary school
and the high school networks, the score reaches a plateau and becomes less
sensitive to the change of α. In general, as we increase the α parameter, the
performance improves. When we increase dimensions, after a given value, the
improvement is marginal or may even decrease (in case Figure 3.9(b)). In
terms of dimensions, the scaling of r2 initially shows rapid improvements of
the prediction task. Still, after a certain number of dimensions, the gain is only
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Figure 3.8: R-squared values, r2, dependency on the nb number (x-axis) and
s size (y-axis) of sampled contexts. The results are shown for the conference
(a), for the hospital (b), for the high school (c) and for the primary school (d)
network. Colors and z-axis code the obtained average r2 score values for given
nb and s parameter pairs computed over 10 realisations. α was fixed to 0.5;
we set d = 20 for Figure (a), d = 14 fo Figure (b), d = 26 for Figure (c) and
d = 24 for Figure (b) - see Figure 3.7.

marginal, indicating an optimal dimension number for training, in agreement
with our entropy analysis (see Section 3.2.1).

If we consider lower values of α, the similarity we capture between the event
between adjacent events is mainly based on the co-occurrences, which are more
relevant in school networks where participants might be active simultaneously
(e.g., in breaks between classes). This argument only moderately applies to
a conference or hospital where simultaneous interactions typically happen in
smaller groups or not at all. Higher values of α imbalance the sampling to
contain more information about temporal paths, which indirectly codes co-
occurrence frequencies. It gives the advantage to the model to learn both
types of similarities and predict the epidemic outcomes with higher precision.
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Figure 3.9: R-squared values, r2 , as the function of the d number of em-
bedding dimensions (x-axis) and α sampling balance (y-axis) parameters. The
results are shown for the conference (a), for the hospital (b), for the high
school (c) and for the primary school (d) network. Colors and z-axis code the
obtained average r2 score values for a given d and α parameter pairs com-
puted over 10 realisations. Other hyper-parameters were fixed to nb = 10 and
s = 10.

From now on, to have a balance in capturing both temporal and struc-
tural information through the embedding, we will fix α = 0.5, based on our
evaluation made above.

3.3 An application: predicting epidemic outcomes

In this Section, we will discuss the core application of our temporal embedding
method, which consists of studying spreading processes occurring on top of the
network. It is crucial to highlight how finding the optimal representation for
capturing key features of a temporal network is very important for this task.
Temporal features of networks (e.g., the discontinuous increase and decrease
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of interactions activity, called the burstiness of interactions [75]) influence
the dynamics of network processes [76]. On the other side, the temporal
structure of the network has an impact on the spreading process on top of it [77,
76]. Studying spreading phenomena on a temporal network using embedding
can help shed light on such a complex and interesting diffusion phenomenon
and give us a new perspective on which structural components and temporal
characteristics play an important role in epidemic processes on networks.

In the following Sections, we will have an overview of epidemic spreading
processes, with particular attention to the compartmental models. Finally, we
will discuss the results of applying our embedding technique to the study of
diffusion phenomena. We will look at these results to help us better understand
how effective embedding is in the representation of our network.

3.3.1 Epidemic spreading

The Greek physician Hippocrates, the father of medicine, is the first person
known to have examined the relationships between disease and environmental
influences. To him goes the credit for distinguishing between diseases that
interested a population (epidemic) from those circumscribed to a population
(endemic). It undoubtedly also earned him the title of the first epidemiologist
in history. Since then, epidemiology studies have always been at the centre
of interest in human studies. To cite the most famous cases, we pass from
Fracastoro’s ”De contagione et contagiosis morbis” in 1543 to the well-known
map by John Snow showing the clusters of cholera cases in the London 1854
epidemic - one of the first data visualization cases in history.

In the contemporary era, thanks to the significant steps forward made by
medicine, genetics, molecular biology, epidemiological studies have also been
enriched and have broadened their horizon. They became the cornerstone of
public health, helping to form political decisions and evidence-based practice
for preventive health care. Modern studies use advanced statistics and machine
learning techniques to create predictive models as well as to define treatment
effects [78].

In this context, it is worth mentioning the importance and impact that
compartmental models have had in the mathematical modelling of infectious
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diseases. They are a model that simplifies the analysis of epidemic processes by
operating within compartmentalization, hence their name - of the population
subject to the epidemic. Basically, by labelling the population with compart-
ments (such as Susceptible or Infectious), the compartmental model describes
the epidemic spreading from one compartment to another.

The conception of compartmental models occurs at the beginning of the
twentieth century, with contributions from various scholars such as Kermack
and McKendrick [79] and Kendall [80]. These models served as a starting
point to multiple studies of epidemic models.

To introduce our discussion, we will now see a specific and straightforward
case of a compartmental model, the SI model, used as an epidemiological
model for our analyses.

3.3.1.i SI: Susceptible-Infectious spreading process

The simplest epidemic models are based on the assumption that we can divide
the population into compartments, each representing a phase of the disease [81,
82, 83, 84, 85]. The one we used for our analysis, the Susceptible-Infected(SI)
model, which foresees that once a healthy node (belonging to compartment
S) is exposed to the infection, it will become infected (compartment I) with
a given rate β and will never return to the original healthy state. In terms of
temporal network structures, the infection can spread from a selected infected
node via temporal interactions and can reach all other nodes via connected valid
temporal paths. The dynamics of I in a SI model are also known as logistic
growth. If there are no vital processes (birth and death), every susceptible will
eventually become infected. The SI model can be written in terms of ordinary
differential equations:

dS

dt
= −βSI

N
, (3.8)

dI

dt
= βSI

N
(3.9)

where N = S + I is the total population. Formulating these equations we
made some assumptions. Given that the total population N does not change,
thus dS

dt + dI
dt = 0. Starting then with I infected individuals, each of them
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will infect β S
N susceptible individuals per unit time. So the variation of I will

depend on the number of infected I, on the fraction of susceptible S
N and

finally on the transmission rate β, which basically impacts on the speed of the
epidemic. This dynamic is exactly shown in Equation 3.9. Equation 3.8 derives
from the assumption that dN

dt = 0.
In our specific case, the SI model has been implemented in such a way

that β = 1. It becomes thus a deterministic process from the spreading point
of view. Figure 3.10 shows a schematic representation of the SI model in (a),
while in (b) is shown three different simulations of an epidemic spreading on a
random network of 1000 nodes, with varying numbers of initially infected nodes
and different β. We can observe how the epidemic reaches all the nodes of
networks, regardless of the initial number of infected nodes or the transmission
rate (i.e., the logistic growth mentioned above). The only variation among
the simulations is the speed of the epidemic in reaching all the nodes. Both
initially I and β impact on the rate: the higher I(t = 0) or β are, the faster
all the nodes will be infected.

Figure 3.10: Schematic representation of a SI epidemiological model. In
Figure (a) is shown the spreading of the simulated epidemic from compartment
S to compartment I, according to a β transmission rate. Figure (b) shows
different simulations of an epidemic spreading on a random network of 1000
nodes. From top to bottom: a case with 20 initial infected nodes and β = 0.3,
a case with 20 initial infected nodes and β = 1 and a case with 100 initial
infected nodes and β = 1.
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3.3.1.ii Prediction of epidemic outcomes: results for empirical temporal networks
and randomized models

As we have shown in Figures 3.3 and 3.6, our model is capable of capturing
both the temporal ordering of events and the underlying mesoscale structures
of the temporal network. In this Section, we want to go a step further: our
embedding technique could provide more information on embedded events.
We have seen how our embedding techniques can embed events following a
principle of similarity (i.e., considering their neighbourhood as their context).
We can see how this impacts the level of the nodes: in this perspective, they are
embedded to be part of overlapping time paths. Since the temporal paths are
closely linked with the spread of diffusion processes on the network (see Section
3.3.1.i), then we can use the information incorporated by the embedding to
predict the final outcome of a simulated epidemic on the network.

We have so far introduced and explained the SI model because it is of our
interest to understand how we valued the efficiency of our embedding method
in predicting the outcomes of an epidemic. The process is straightforward:
taking each event as the starting seed of the epidemic, we simulate the epidemic
spreading on the original temporal network. We then assign the final epidemic
size to each seed event.

We have thus an epidemic size for each event. We store this information
into a dataset containing embedding coordinates of each event and the asso-
ciated epidemic size that will be the target to be predicted. We also add the
square of each coordinate and the euclidean distance from each event in the
network and the first event in time. Along with the embedding coordinates,
they will be used as regressors. In other terms, we assume a linear relationship
between the epidemic size (y) and the embedding coordinates (~x) defined by
the so-called regression equation

y = β0 +
r∑

i=1
βixi (3.10)

where x1, ..., xr are the predictors (the embedding coordinates, their square,
and the euclidean distance) and β0, ..., βr are the regression coefficients. For
training, we operate with a 10-fold cross-validation, i.e., we first randomly
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partitioned the original sample into 10 equal-sized sub-samples and retained a
single sub-sample as the validation data for testing the model while using the
remaining 9 sub-samples for the actual training. We repeat this process 10
times to train the embedding best to learn the coordinates of each event in the
network. We computed the r2 scores (coefficient of determination) between
the predicted and simulated epidemic sizes as the goodness of the prediction.
It helps to understand which amount of variation in y can be explained by the
dependence on ~x using the particular regression model.

Larger r2 indicates a better fit and means that the model can better explain
the output variation with different inputs.

Note that our aim to investigate the final outcome of an epidemic differs
from the one pursued with DyANE [56]. In our case, we are not interested in
the node’s status by time but in the final outcome of the epidemic originated
by a specific event.

We know that several temporal and structural correlations interweave real
temporal networks. They have complex and various impacts on the spreading
processes that occur on top of them. For example, local temporal correlations
which emerge on same-link events may induce a bursty behaviour. In contrast,
higher-order temporal correlations may lead to temporal motifs in the network.
Moreover, structural correlations and weight-structural correlations are respon-
sible for any non-random connection pattern in networks (as communities, or
non-random distribution of strong and weak ties).

To shed some light on the effects of these correlations on the spreading
process, we used three types of randomized reference models (RRM) [86].
When we eliminate combinations of temporal and structural correlations, we
can identify which are determining for the prediction task. The first RRM is
the snapshot shuffling, which randomizes the timestamps of events: the aim
here is to eliminate any temporal correlation between events. The second RRM
we used is the timeline shuffling. We took the timeline of events of a specific
link in the temporal network, and we switched it with the timeline of another
randomly selected link. Doing this, all the correlations between the underlying
structure and timelines are eliminated. The last RRM is the link shuffling
method. We took the static aggregated network underlying the temporal one
to randomize its links, and then we reassign the original timelines of events to
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the new links randomly. In this way, this shuffling destroys any structural and
structural-temporal correlations in the network.

To further understand the effects of the different RRMs on the epidemic
outcome, for each model, we generated five different randomized network re-
alizations and simulated the spreading process starting from each event in the
networks to obtain the distribution of final epidemic sizes.

We summarized the prediction results for the original and the RRM net-
works in Table 3.4, where we depict the observed average r2 values with their
standard deviation computed over the embedding realizations. We fixed the
context parameters s and nb both to 10 and chose the optimal embedding
dimension for each real network detected as we explained in Section 3.2.1.

Data
r2

Original Snapshot Timeline Link

Conference (d=20) 0.79±0.01 0.53 ± 0.04 0.66 ± 0.03 0.57 ± 0.01
Hospital (d=14) 0.53±0.03 0.11 ± 0.02 0.35 ± 0.06 0.50 ± 0.04
High School (d=26) 0.56±0.02 0.23 ± 0.01 0.53 ± 0.02 0.76 ± 0.04
Primary School (d=24) 0.68±0.02 0.12 ± 0.01 0.31 ± 0.02 0.55 ± 0.02

Table 3.4: R-squared values, r2, obtained by comparing the simulated and
predicted epidemics outcomes using embedding of the real empirical temporal
networks and of the randomised model. We set the context parameters s and
nb both to 10. The optimal embedding dimension were chosen as found in
Section 3.2.1.

We can observe that these results show, in general, worse performance
in predicting the final epidemic size of the randomized model embeddings
with respect to the original network embeddings. In some cases, though, the
performance of the RRMs is slightly better. We are going to get a better sense
of this in the following.

On the one hand, since some correlations have been eliminated from RRMs,
which might be determinant for the prediction task, we observe a decrease of
the r2 score. It is the case of the snapshot shuffling method, which consistently
leads to a significant drop in performance. It suggests that temporal correla-
tions (local or higher-order) are very important for the spreading process: it
means that our embedding can capture these dependencies successfully. Time-
line shuffling seems to perform better than the snapshot shuffling method but
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worse than the original network. It suggests that while the embedding can
capture structural correlations, local temporal correlations might be better
predictors than weight-structural correlations.

On the other hand, RRMs also appear with a less complex structure, which
may help the prediction. The link shuffling method is an example: it performs
the best among the RRMs, sometimes even better than the original dataset.
We can observe that the local temporal dynamic is the most important feature
of the temporal network. Still, by removing structural correlations, the system
becomes homogeneous and easier to predict.

Another explanation for the fluctuations in the results observed with com-
puting the analysis on different settings is the diversity among the various epi-
demic size distributions. Here we look at these distributions measured for sim-
ulated epidemic processes seeded from every event in the empirical networks.
As shown in Figure 3.11 for each dataset, we find that these distributions vary
in different ways for different networks. While they are concentrated for the
(a) conference and (c) high school datasets, they are more homogeneously
distributed for the (b) hospital and (d) primary school data.

According to the RRMs, we present below a showcase for the different
methods. Figure 3.12 and Figure 3.13 show the epidemic size distributions
respectively for the snapshot shuffling RRM and for the timeline shuffling RRM.
As we saw in Table 3.4, these models performed worse in predicting the final
outcome of the epidemic than the original. However, they did not alter the final
outcomes of the spreading processes considerably as the obtained distributions
are remarkably similar to the ones measured on the empirical network (see
Figure 3.11). This finding means that the results obtained in the prediction
task are independent of the shape of the epidemic size distribution for these two
cases. Not only that, they confirm that both the local temporal correlations
and the structural correlations that are missing in the networks generated by
these models are determining factors in epidemic processes (the first have
more impact on them than the second one). They, therefore, cause a worse
performance in predicting its final outcome.

In contrast, for the link shuffling RRM, the distributions become very narrow
around relatively large values. This particular shape of the distributions, in this
case, explains why this method performs the best, sometimes even better than
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the original network, in the prediction task. Predicting a narrow outcome
of a process is a considerably easier task than predicting a process with an
outcome of high variance. In this case, peaked distributions correlate with
higher predictive performance.

Figure 3.11: Epidemic size distribution of the (a) conference, (b) hospital,
(c) high school, and (d) primary school original temporal networks.

As a general conclusion, we demonstrate that the embedding successfully
captures both temporal and structural network features. The fact that tempo-
ral and structural features can be entangled impacts embedding performance
in the predictive task but not on what the embedding can learn. If we had a
network with many communities but whose nodes have non-correlated activity,
our model could underperform in a prediction task. However, it can provide
precise predictions if structural and temporal correlations code redundant in-
formation.
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Figure 3.12: Epidemic size distributions on snapshot shuffled RRM networks
for (a) conference, (b) hospital, (c) high school, and (d) primary school net-
works. Colors assign different random realization of the actual network model.

3.3.1.iii Comparison with other methods

In literature, there are a few other recently proposed temporal network em-
bedding methods, as we discuss in Section 2.4. We consider here two of the
most promising ones, the STWalk [51, 87], and the Online-Node2vec embed-
ding methods [53]: we will dedicate this Section to compare their predictive
performances to our weg2vec.

Before looking at the results of this comparison, we will introduce the
Reader to the main features of the two methods, which also allows us to
understand how these impact their predictive performances.

Both methods are thought to build node embeddings for dynamic graphs
using the Skip-Gram model, which introduces a significant difference to our
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Figure 3.13: Epidemic size distributions on timeline shuffled RRM networks
for (a) conference, (b) hospital, (c) high school, and (d) primary school net-
works. Colors assign different random realization of the actual network model.

event embedding method.
In particular, STWalk is designed to learn trajectory representations of

nodes in temporal graphs by operating with two graph representations, a graph
at a given time step and a graph from past time steps. It performs random
walks respectively called space-walk and time-walk, to sample contexts to input
for the Skip-Gram embedding. The authors propose two variants of STWalk,
different in the way the context is built. In STWalk1, space-walk and time-
walk are performed as part of a single step on a combined graph, while in
STWalk2, space-walk and time-walk are done separately.

The second method, Online-Node2vec, is a node embedding method up-
dating coordinates each time a new event appears in a temporal network. It
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Figure 3.14: Epidemic size distributions on link shuffled RRM networks for
(a) conference, (b) hospital, (c) high school, and (d) primary school networks.
Colors assign different random realization of the actual network model.

also applies random walks to generate contexts, possibly using two strategies,
the Temporal Walk algorithm, and the Temporal Neighbourhood algorithm.
In the Temporal Walk algorithm [88] a temporal path-based centrality metric
is used to capture the similarity between nodes by projecting nodes on the
same temporal path close to each other in the embedding. In the Temporal
Neighbourhood algorithm [89], node similarity is inferred via a fingerprinting
method, which projects nodes with similar neighbourhoods close to each other.

To compare the performance of the different methods, we test all of them
on our four empirical networks introduced above. The context parameter nb
and s have been set to 10 and 10 for all cases to give them the same amount
of information to learn and for a fair comparison of outcome. Further, we fix
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the balance parameter α to 0.5. We then compute the average r2 scores of
simulated spreading outcomes as we vary the embedding dimensions. Since
STWalk and Online-Node2vec use only the past and the present as a basis for
the context of the node, we run the simulation for our methods using only the
predecessors for each event as well (see Section 3.1.3). Finally, as previously,
we estimate the epidemic size by using the coordinates of the actual embedding
in a linear regression model (see Section 3.3).

Figure 3.15: Comparison of STWalk, Online-Node2vec and our embedding
methods in predicting spreading outcomes on empirical networks in different
settings as (a) conference, (b) hospital, (c) high school, and (d) primary school.
Results shown are r2 scored obtained from linear regression on coordinates in
embedding spaces with various dimensions computed for each method and
empirical temporal networks.

According to the results in Figure 3.15, our method outperforms all the
other methods on any of the networks for a broad range of dimensions. The
performance improves if we also consider the successors and predecessors in
building the context, as expected. The exception is the hospital network, where
our method gets slightly lower scores with respect to Online-Node2vec for di-
mensions 50 or larger. In general, we can explain the difference in the scores
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due to the advantage of event embedding instead of node embedding. Indeed,
working with events becomes a natural solution if we look at epidemic spread-
ing as a phenomenon mediated by temporal interactions. Specifically, STWalk
may get lower scores because this embedding method codes higher-order cor-
relations among nodes: this more complex information may be less relevant
or noisy to be learned. The relative worse performance of Online-Node2vec
can be because information of the temporal and neighbourhood information
is considered separately instead: this can lead to limited information and thus
limited prediction capacities.

3.4 Final Remarks

Embedding of networks has recently drawn a lot of attention (see Section 2.4).
In fact, it proved to be an efficient tool to resolve tasks such as link prediction
or node classification while providing a lower-dimensional representation of
networks.

Our work stands as a novelty in a field of network embedding that has not
yet been explored, temporal network embedding. The real point of difference
from the literature and the strength of our embedding method is that it incor-
porates events rather than nodes. This peculiarity has proved successful in the
analysis of epidemic processes and related prediction tasks.

The simplicity of our embedding method, which relies on the sampling of
neighbourhoods on a higher-order static representation of the temporal net-
works, using the Skip-Gram model and tuning through a handful of hyperpa-
rameters, makes it easy to handle. We have shown that our event embedding
is particularly efficient to provide compact representations of a temporal net-
work, capturing its essential features such as its time ordering and its underlying
mesoscale structures.

Along with this, we show that the embedded representations code the
essential information of the original network to get good performances in pre-
dicting the outcome of the spreading process. This ability has also been tested
against other methods and has always been confirmed.

We have also created a method to establish the optimal size of the embed-
ding, which has allowed us to obtain a compact representation of the temporal
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network without affecting the quality of the information encoded by the em-
bedding.

Future works would be worth exploring other sampling strategies that de-
couple the purely structural properties, i.e., the presence of the communities
in the aggregated network, from the temporal properties. Another important
follow-up of this work would be applying this embedding technique to solve
questions such as detecting critical events in misinformation spreading.





4
Anatomy of a
crowdfunding platform

A
s we discussed and illustrated in the previous Chapters, in treating

high-resolution human behavioural data, a good representation of
the system is fundamental. So far, we have dealt with social contacts

temporal networks. In this Chapter, we will introduce a different source of
data. We will turn to a social interactions system that describes a community
interacting with the rest of the world, its economy, and its social structure. We
scale to a system that spans years of interactions, where the individual actions
are resolved in terms of fine time granularity and many descriptive metadata.
With respect to the temporal social networks, we treated before, in which we
dealt with a limited number of nodes in a temporal interval relatively contained,
here we approach data that covers interactions of people all around the world
and in almost two decades.

We will discuss the analysis of transactions on an online crowdfunding plat-
form, Kiva. As a global online crowdfunding platform, this platform hosted
transactions from users and lenders around the world for nearly two decades.
We chose to analyze Kiva because the interactions on it can be phrased natu-
rally in terms of temporal networks.

Kiva records with great finesse a rich series of actions performed on the
relative platform. In fact, there have been loan requests from over 1 billion

61
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users for a time period of almost 15 years. To make sense of such an amount
of information, a representation of the data that uses some reduction in di-
mensionality is crucial. A methodological choice of dimensionality reduction
and the representation of interactions via temporal networks prove opportune
in exploring this particular type of social interaction.

Crowdfunding may offer insights and a good starting point of discussion
about social interactions and human behaviour issues [90, 91, 92], since it
pertains to how people build relationships and influence each other for a higher
objective as solidarity.

In fact, analyzing the actions of each individual who participates in the
funding of a project of his interest represents a precious opportunity to study
specific behaviours or social activities through the techniques and models of
network and data science. Understanding what stimulates people to be part
of a project of solidarity towards others, how and to what extent they operate,
finds in the study of crowdfunding an invaluable source of information and a
way to shed light on some crucial aspects of human behaviour in the constraints
of society.

The interest in this particular type of social interaction between individuals
originates the line of research that we will introduce in the following chapters.
The relationship between entrepreneurs and supporters is an event-type of
interaction, different from state-type ties such as friendship [93]. Therefore,
it may not repeat itself over time and is essentially based on a bond of trust
between the borrower and lender.

In the following, we will show various aspects of this interaction and more
general analyses on the crowdfunding phenomenon and its impact on social in-
teractions, whose representation and study are the silver thread of our research
Thesis.

4.1 What is crowdfunding?

Crowdfunding is the practice of funding a project or venture by raising small
contributions from many individuals, typically via the web; it is a form of
alternative finance.

The crowdfunding model generally has three actors involved: the project
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initiator(s) who propose(s) the idea or project to be funded (the borrower(s)),
the supporters of this idea (individuals or groups, the lenders), and a moder-
ating organization (the platform) that intervenes to mediate the transactions
[94]. In the case of Kiva, we will present the fourth type of actor, the Field
Partner, who stands between the so-called borrower and the platform itself.

Crowdfunding has an ancient history. Interestingly, the concept of crowd-
funding is much earlier than the use of the word ”crowdfunding” itself, which
was established in 2006. We can cite as an example the book. Since books
came into circulation, people subsidized them through crowdfunding models.
They could be printed and distributed only if sufficient people were interested
in their purchase and were thus available to pre-buy the books. Another fa-
mous example of crowdfunding in the past centuries was the history of the
Statue of Liberty building. Édouard René Lefebvre de Laboulaye, a French
professor of law and progressive politician, passionately supported the reasons
for the Union in the American Civil War. In 1865 he proposed the idea of a
gift that celebrates the brotherhood between the two nations, a memorial for
the centenary of the two revolutions (French and American) that immortalize
them as symbols of justice and freedom. In 1875 the Franco-American associ-
ation, promoter of the statue’s construction, took an important decision. The
statue would be paid for by the French, while the pedestal by the Americans.
Immediately, the problem arose of how to pay for everything. The Americans
reached their quota after much effort and many complications. Crowdfund-
ing came into play in this context. In 1885, an advertisement in The World
newspaper, held by Joseph Pulitzer, managed to fetch sufficient funds for its
construction.

As the crowdfunding model matured, more and more companies engaged
in this business model, first in the United States of America and later all over
the world [95]. The story of Kiva, for instance, begins in late 2005.

Crowdfunding is based on two different models. On one side, there is the
rewards crowdfunding: entrepreneurs (or borrowers) operate a presale of a
product or a service to launch their business. In the other model, the equity
crowdfunding one, the supporters (or lenders) receive shares of a company in
exchange for the funds.
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4.2 Anatomy of a crowdfunding platform: Kiva

The online crowdfunding platform that we have chosen to study is that of Kiva,
born in 2006. This platform has been increasingly successful over the years
worldwide. It contains information on microcredit transitions that can help us
shed light on the complexity of the study of social interactions.

4.2.1 History and impact

Kiva is a U.S. nonprofit founded in 2005. It has its base in San Francisco, but
it has offices all around the globe.

The idea of Kiva belongs to Matt and Jessica Flannery, its founders, inspired
by the Nobel Peace Prize Muhammad Yunus, founder of the Grameen Bank.

A woman in Uganda made the first loan in 2005, and she used it to expand
her fishmongering business off the coast of Lake Victoria.

Since then, over 14 years, Kiva has crowdfunded more than 1 billion in loans
for entrepreneurs, farmers, students, educators, and more in over 90 countries
worldwide. Even the former U.S. President Bill Clinton conferred recognition
to Kiva in 2007. In his book ”Giving: How Each of Us Can Change the World”
[96] he covered Kiva and the work the organization is currently doing and has
done in the past. Quoting a passage: ”People with a very modest amount of
money can make a huge positive impact all around the world.”

4.2.2 Academic studies of the Kivas’ system

The Kiva phenomenon has also succeeded in research, ranging from socio-
economic analyses to methodological and quantitative analyses.

The research topics of which Kiva has been the subject range from man-
agement [97] to game theory [98], from natural language processing [99] to
social sciences [100, 101]. For example, the platform has been studied as the
objective of general examination of the growing phenomenon of crowdfunding
as an alternative method for raising finance [102, 103].

A variety of gender studies that evaluated the impact of alternate micro-
credit systems on the empowerment of women take into account the Kivas’
platform as an example [104, 105]. Always related to gender studies, Kiva is
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at the centre of the attention of an article in which there was discrimination
in donating to female borrowers based on their ethnicity and attractiveness,
which was not the case for male borrowers [106].

Even the textual data relating to Kiva have aroused interest in the literature.
On the one hand, we tried to understand the impact of messages between
lenders to push other lenders to donate [107]. On the other hand, we looked
for a proxy in the textual information to understand the reasons of people
participate in crowdfunding [99]. Some studies have used the texts have also
to understand how grouping loans can impact their fundraising time [108], or
how loans textual information can lead lenders to donate [109]

Many articles have discussed the importance and efficiency of the Kivas
recommendation system [110, 111, 112]. They range from finding the final
recommendation for lenders by studying their behaviour on the platform [113]
to more general socio-economic studies to preserve an equitable distribution
of capital between different countries in the face of well-known user prejudices
[114].

A macro topic that various lines of research have touched upon is the
studies of lending teams or groups in which lenders come together based on
a communion of ideas and intentions to find loans of common interest to be
subsidized. The studies have been challenged general analyses of the lenders
network [115, 116], the intercultural contacts among them [117], the impact
of team competition on donations [118].

4.3 How Kiva works: the platform and the data

This Section will review the main steps of how the fundraising of a loan occurs
on Kiva; next to each step, we will show the data we have available on this
process. In Figure 4.1 we show a schematic presentation of the Kiva platform
and the process for a loan to be fundraised.

The first step consists of a borrower applying for a loan, and it can happen
through two models: partner and direct. Local Field Partners manage the
partner loans. Field Partners are local organizations (such as nonprofit organi-
zations, microfinance institutions, schools, and more) working in communities
to vet borrowers, provide services and administer loans. Field Partners are lo-
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Figure 4.1: How Kiva works. Individual borrowers or groups of borrowers rely
on the help of Field Partners to manage the application of a loan into a specific
sector of investment. In most cases, the Field Partner prepays the loan, which
is then funded by lenders and refunded by the borrower(s).

cal organizations. They act as brokers between borrowers and lenders through
Kiva. The flow of activities on Kiva is almost entirely in the hands of the F.P.s.

In contrast, borrowers apply directly through the Kiva website for direct
loans. After the loan has gone through the approval process and passed it, it
enters the fundraising period — the timing can vary from loan to loan. The
loan is thus posted to Kiva for lenders to support. Note that for most Field
Partner loans, the money is pre-disbursed. The money is disbursed when the
fundraising is complete, and lenders have entirely crowdfunded the loan for the
direct ones.

The data available to us reflects this entire procedure. We collected differ-
ent datasets1, which contains loans metadata, lenders metadata, Field Partners
metadata, and the data about the transactions. Our data range almost 15
years (from late 2006 to early 2020) and includes a high number of worldwide
countries. The data collected about 1,4 billion loans managed by just under
500 Field partners and supported by more than 2 billion lenders. Speaking of
the loan metadata, for each loan, we have various kinds of information. The
time it has been posted and then possibly fundraised, its amount, the lenders
who supported it, the sector of investment it belongs to, and the possible Field
Partner are only some features of the data.

1Data are available at: https://www.kiva.org/build/data-snapshots .
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Moreover, we also have information about the loan borrower(s), the country
of origin, gender, spoken language, and a brief personal description. We have
little and limited information about the lenders, such as their country of origin,
occupation, motivation in lending, and time of their first subscription to Kiva.
Even for the Field Partners, the metadata is not very detailed. We have access
to countries where they operate, the number of loans and the relative amounts
they managed, and some indicators regarding their activity, such as the rating.

4.3.1 Temporal evolution of the platform

In this Section, we will show some exploratory and preliminary analyses of the
datasets at our disposal. It is necessary to understand the impact of Kiva in
the world over the years and the volume of information we are analyzing.

The basin of Kivas’ users (whether they are borrowers, lenders, or Field
Partners) has been enriched year after year. In Figure 4.2 we can see how
the numbers of loans and lenders evolved with passing years. We can see
that all these numbers increased year after year, a signal of Kivas’ platform’s
efficiency. Another indicator of the growth and diversity of the Kiva user group
is undoubtedly the evolution in the number of languages spoken by users. In
Figure 4.3 we can see how, over the years, the platform achieved a consistent
linguistic diversity from an initial English-language user base.

Figure 4.2: The evolution of the number of loans and lenders on Kiva in time.
The time interval under consideration is from 2006 until 2020.

In Figures 4.4 and 4.5 are reported the world maps representing the volume
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Figure 4.3: The evolution of the number of languages spoken on Kiva in
time. The time interval under consideration is from 2006 until 2020.

of loans and lenders in a specific country, respectively. The colour shows the
abundance of each of these actors for each country. We compared the 2006
world map with the 2020 world map; we can observe how great has been the
growth in the use of the Kivas’ platform around the world.

In terms of the gender distribution of the borrowers, we can observe how
Women mostly use Kiva. 7̃0% of the borrowers are women or groups composed
of women (see Figure 4.6). Kiva has made women’s investments on its platform
a flagship, pushing more and more women to empower themselves from an
entrepreneurial and financial perspective over the years. In this sense, Kiva
stands as a solution to a problem encountered in many countries worldwide,
namely the impossibility of accessing banking or financial services [119, 120,
121]. Women make up 5̃5% of the world’s unbanked population, meaning they
have no access to banking or insurance products. For many of these, almost 1
billion women globally have no access to financial services; they have thus no
access to loans. One of the core reasons why women face this problem is due
to the lack of formal identity. In a context like Kiva, women can invest and
find a way to finance their businesses without any difficulties, accessing loans
otherwise impossible.

We need to consider another aspect of the Kiva platform in terms of user
participation and fundraising timelines. How long does it take before the
lenders fully subsidize a loan? The fundraising times distribution shown in
Figure 4.9 answers this question. We took into account only the funded loans.
Considering for each funded loan the time it took to get paid in full compared
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Figure 4.4: Comparison of the number of loans per country on Kivas’ platform
in 2006 and until 2020. The top Figure map represents the number of borrowers
who have asked for a loan in 2006, according to their countries of origin. The
bottom Figure map shows the ones who asked for it until 2020, according
to their countries of origin. The colour indicates the number of loans each
country has asked for in the respective time intervals.

to the total time available (variable), we can see that the fundraising of most
of the loans occurs in less than half the time allowed to them. Only for a small
part, the fundraising occurs at the last moment. This finding may mean that
from a lender recommendation system point of view, Kiva works efficiently.

We want to dedicate the final part of this Chapter to an overview of what
we believe to be a fundamental feature of the data on Kiva: the investment
sectors. Kiva divides its loans into different sectors, ranging from agriculture
to retail to health and education.

The starting point of our analysis on Kiva consists of giving a good repre-
sentation of the interactions on the platform, looking specifically at the invest-
ment activity in the various sectors. In the next Chapter, we will explain the
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Figure 4.5: The map represents the number of lenders who have funded a
loan in 2016 (top Figure) and the ones who fund it until 2020 (bottom Figure),
according to their countries of origin. The colour indicates the number of
lenders each country has in the respective time intervals.

Figure 4.6: Borrowers gender distribution on Kiva. We show in magenta the
percentage of female borrowers (individuals and groups), in cyan the percent-
age of male borrowers (individuals and groups), and in yellow the percentage
of mixed-gender borrowers (groups). The time interval under consideration is
from 2006 until 2020.

silver thread of the analyses; in this Section, we want to give some information
on the activity in the Kivas’ sectors from a more general perspective.
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Figure 4.7: Distribution of the times for funding a loan. We considered the
time for funding a loan with respect to the total time available for that loan
in the analyses. We took into account only the funded loans.

Figure 4.8: Distribution of averages of the times for funding a loan accordingly
to its sector. We considered the time for funding a loan with respect to the
total time available for that loan in the analyses. We took into account only
the funded loans.

Figure 4.10 shows the volume of activity (i.e., the number of loans) in each
sector of investment of Kiva. We aggregated the measure over the years. As
a result, we can observe how diverse the number of loans is: the agriculture,
retail, and food sectors are the most populated. In some way, this result is an
expected result: these three investment categories are essential globally, even
outside of microcredit platforms and alternative market forms.

One somewhat counterintuitive thing is the evolution of the activity in the
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Figure 4.9: Distribution of averages of the times for funding a loan accordingly
to the year it has been posted on Kiva. We considered the time for funding a
loan with respect to the total time available for that loan in the analyses. We
took into account only the funded loans.

sectors over time. Figure 4.11 illustrates a bar plot for each sector. It indicates
the percentage over the total of loans operated in that sector from 2006 to
2020. As we can see, some sectors that we could consider a not primary
necessity, such as personal use or art, slightly increased in volume over the
years.

Figure 4.10: The bar plot represents the percentage of loans according to a
specific sector, with respect to the total number of loans. The time interval
under consideration is from 2006 until 2020.

With this entirely exploratory analysis on Kiva activity in mind, we will work
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Figure 4.11: The mosaic shows a bar plot for each sector of activity on Kiva.
Each bar plot represents how the percentage of total loans relative to a specific
sector evolves in time (from 2006 until 2020).

in the next Chapter and a compact but efficient representation of this activity
over time to capture the system’s key features.

4.3.2 Data limitations: from micro-scale to meso-scale level of anal-
ysis

In the light of what we have seen, we can meanwhile observe the following.
First, as briefly mentioned in Section 4.3, Kiva has limitations and a lack of
detail for some metadata.

Kiva shows some lack of detail in the metadata of the lenders mainly.
First, the lenders’ dataset presents a few features: a limit for studying their
behaviour on the platform. Second, although the loans metadata are detailed
and numerous, the most relevant characteristics to be studied are not evenly
distributed in the dataset, creating unbalanced classes, an issue for a possible
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classification/forecasting task. We can see, for instance, in Figure 4.6 the
not uniform distribution of the gender of the borrowers. Another example of
unbalanced classes feature is the loan status: almost 95% of the loans labels
are ”funded”. Finally, there is also a substantial imbalance in the platform’s
disbursement methods: most borrowers rely on a Field Partner (9̃9%) while
the remaining 1% apply directly independently.

However, we can summarize the main limitation for our analyses in the
first perspective in which we treated the data. Studying Kiva at the level of
borrowers and lenders, that we will call micro-scale level, therefore, without
the superstructure of Field Partners, we found that this kind of fine-grained
level of our analysis led to mediocre results in prediction tasks, among others.
In general, we observed a lack of signal data because the analyzes are too
fine-grained.

Going instead to the Field Partners level, that we will call meso-scale level,
thus grouping the borrowers on their Field Partners, allows us to extract a
stronger signal from the data. This change of perspective works in two ways:
it will enable us to evaluate Field Partners as the leading players on Kiva.
Moreover, it represents the first step in the sense of dimensionality reduction
in the representation of the system.

4.3.3 Micro-mechanisms and macro-processes: the Coleman’s Boat

To better understand the concept of change of perspective of the analyzes
introduced at the end of the previous Section, we would like to offer a clarifying
parallel with the so-called Coleman’s Boat [122].

The Coleman’s Boat is an intellectual tool designed by the American soci-
ologist James Coleman to provide an explanatory understanding of the social
phenomena in general.

Sociology is interested in how the social world works. In particular, many
central questions in sociology are related to relations between macro mech-
anisms and micromechanisms in society. For example, suppose we think of
states, communities, organizations in general as macro-social reality and at
individual or small groups as micro-social reality. In that case, we can easily
argue how the macro-level impacts the micro-level. The individuals, who are,
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with their interactions, the crucial components of macro social realities, are
continuously influenced in their behaviours by what happens at a macro level.
In contrast, we can explain a social phenomenon by studying the intentional
actions of the individuals who produce it [123, 124]. Since the social phe-
nomenon is the variable that we need to explain, we necessarily start from a
relatively simple model of individual action: and here, Coleman’s Boat comes
into play.

Following the scheme proposed in Figure 4.12, we can see how a social
phenomenon occurring on the macro-level (1) impacts the micro-level (2).
Moreover, by shedding light on what happens on this level, i.e., on the individ-
uals and their behaviour (3), we can thus understand how the aforementioned
social phenomenon will impact society in general (4).

Figure 4.12: The Colemans’ Boat intellectual tool. It is the exemplifica-
tion of how micro-mechanisms can shed light on macro-processes [122]. The
under-exam social phenomenon occurring on the macro-level (1) impacts the
micro-level (2). By shedding light on what happens on this level, i.e., on the
individuals and their behaviour (3), we can thus understand how the aforemen-
tioned social phenomenon impacts society (4).

4.4 A perspective change: Field Partners

As mentioned in Section 4.1, in Kiva, we have three types of actors: borrowers,
lenders, and Field Partners. To bring Coleman’s Boat pattern (see Section
4.3.3) back to our Kiva system, we intend to explain the evolution and observed
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trends of the Kivas’ platform. It is a macro-level phenomenon, and we get a
sense of it by studying the behaviour not at the level of lenders and borrowers
(micro-level) but by investigating the activity of the Field Partners. In this
case, the Field Partners act as the meso-level of the system: we may describe
them as ”super-borrowers” or ”meta-borrowers”.

Going back to the representation of the system, and therefore of the in-
teractions that occur, a ”good” representation intervenes in managing and
describing dynamics at a non-macro level to understand the macro-level.

However, before talking about the representation of interactions, we must
understand which interactions we are discussing.

Once we passed to the mesoscale level of analysis, as we said in the previous
Section, we faced the study of the activity of the Field Partners in the Kiva
sectors. As discussed in Section 4.3.1, these analyses will become central in
our approach to social interactions on Kiva and their optimal representation -
we will tackle their discussion in the next Chapter.

For the moment, we will show exploratory analyzes similar to those shown
above regarding the intervention of Field Partners in the Kiva sectors.

As a starting point, Figure 4.13 reported the world map representing the
number of Field Partners in a specific country, aggregated over the years. The
colour shows the abundance of each of these actors for each country. It may
give us an idea of how many Field Partners are present in each area and,
consequently, how important their role is on the Kivas’ platform.

Figure 4.14 indicates the number of Field Partners operating in a given
sector; we aggregated these values over time. As we can see, we have a more
uniform distribution than that found in Figure 4.10. Therefore, it may help us
to at least partially eliminate the bias resulting from any possible unbalanced
classes discussed in Section 4.3.2. Finally, we show the same information shown
in Figure 4.15 for completeness but analyze the activity of the Field Partners
in each sector in the various continents.

4.4.1 Field Partners and business models: configurations

As a final example of a preliminary analysis, we propose studying how the
activity of Field Partners changes over time. We want to study whether there
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Figure 4.13: The map represents the number of Field Partners who have
operated on Kiva from 2006 until 2020, according to their countries of origin.
The colour indicates the number of Field Partner each country have in this
time interval.

Figure 4.14: Distribution of the Field Partners among the Kiva sectors of
activity. We count each Field Partner in every sector he operated in. The time
interval under consideration is from 2006 until 2020.

is some ”consensus activity” (i.e., a set of ”ideal” business models to adopt)
that the Field Partners achieve over time in their collaboration with Kiva’s
borrowers. Understanding if it exists can give us clues on what the behaviour
of Field Partners is and consequently outline the evolution of the platform itself.
Year after year, each Field Partner on Kiva adopts an action strategy that is
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Figure 4.15: Distribution of the Field Partners among the Kiva sectors of
activity, considering the continent of the loans they managed. We count each
Field Partner in every sector he operated in. The time interval under considera-
tion is from 2006 until 2020. The continent abbreviations stand for AF=Africa,
AS=Asia, EU=Europe, NA=North America, OC=Oceania, SA=South Amer-
ica.

reflected in the choice to work on specific sectors or not. The homogeneity in
these activities can give us a hint about a possible ”consensus activity”.

The tool we want to use in this analysis is the configurations. Given a Field
Partner in a specific year y, we define as configuration c the activity of the
Field Partner in the N = 15 Kivas’ sectors of investments:

cFP (y) = ~u = (u1, ..., uN) (4.1)

where ui is equal to 1 or 0 if there is or is not at least one loan in the ith
sector for the given year y.

Let us see in detail how we calculated the number of configurations and
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the relative entropy.
Figure 4.16 shows an example of a set of configurations for a specific year.

For simplicity, we have reduced the problem to 5 Field Partners and 5 sectors.
If each vector of white and black boxes represents the activity of each Field
Partner in the sectors of Kiva, i.e., a configuration, we can distinguish 3 unique
configurations among them, labelled A, B, C as shown in Figure 4.16.

Figure 4.16: Example of a set of configurations for a year. Having 5 active
Field Partners and 5 sectors of investment for simplicity, we have 3 unique
configurations with a relative entropy H(year) ≈ 0.86.

The probability distribution of this set of configurations is [1
5 ,

1
5 ,

3
5 ], and the

associated entropy is H(year) ≈ 0.86, as calculated as described above.
Once we define a configuration for each Field Partner, we will have a set

of configurations for each year from different Field Partners. Note that the
number of active Field Partners may change year after year.

Given a set of Field Partners configurations for a year, we count how many
times each configuration occurs. In general, we assume the maximum number
of configurations that one can see is equal to the number of Field Partners
active in that specific year. Theoretically, it should be equal to 2N = 215,
but the number of Field Partners is in general much lower than this, and it
constitutes a good upper bound for our analysis. We guess that if there is
a ”consensus activity”, the observed configurations should be less than the
possibilities (so the number of active Field Partners). Moreover, this number
should decrease year after year.

To get a better sense of it, we also measured the entropy of each set of
configurations, year after year. Given the counting of Field Partners configu-
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rations for a year y, we evaluate the relative Shannon entropy H of the set of
configurations, defined as below:

H(y) = −
∑

c py(c)ln(py(c))
ln(∑

c)
(4.2)

where the sum is over the configurations c of the specific year y; py(c) is
equal to the probability of seeing the configuration c to occur in the specific
year y. If some configurations are used more often than others, we may guess
that the entropy should decrease year after year.

Figure 4.17: Analaysis on Kivas’ Field Partners activity configurations. In
Figure (a) we show the evolution of the number of configurations as a per-
centage of the maximum number of configurations (i.e., the number of active
Field Partners), year after year. In Figure (b) we show the evolution of the
Shannon entropy of configurations, normalized on the logarithm of the number
of configurations in each year.

In Figure 4.17 we observe a decreasing number of active configurations in
(a). Moreover, although it is weak, we observe a decrease in the entropy of
configurations in (b), so we can assume that some are used more often. We
should note that the findings are independent. We could have an increase of
configurations with a decrease of configurations entropy and vice versa.

To prove it, we show with an example how the growth/decrease in the
number of configurations in a given year is independent of the growth/decrease
of the relative entropy.
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Figure 4.18 shows a comparison between two different sets of configurations
corresponding to two different years. The case at year y (left) is the same as in
Figure 4.16. The case at year y+ 1 is slightly different: the number of unique
configurations decreases because Field Partner 2 adopted the same ”business
model” of Field Partner 1. In this case, the probability distribution of the
configurations in year y+1 is [2

5 ,
3
5 ]. It gives an entropy H(y+1) ≈ 0.97. This

value is bigger than H(y)(≈ 0.86): it demonstrates that the increase in the
number of unique configurations is independent of the increase or decrease of
their relative entropy.

Figure 4.18: Example of a set of configurations for different years. Having
5 active Field Partners and 5 sectors of investment for simplicity, we have 3
unique configurations in year y and 2 in year y + 1. The relative entropies are
H(y) ≈ 0.86 and H(y + 1) ≈ 0.97. The red square highlights the difference
between the two set of configurations.

In general, we observed a trend of slightly increasing homogeneity among
Field Partners activity. The decreasing number of configurations is independent
of the changes in configurations entropy. Therefore, this finding strengthens
our hypothesis that there is a set of ”ideal” business models for Field Partners.

Therefore, our question is: can we find a good representation of this activity
of the Field Partners in the sectors of Kiva that can condensate the information
to explain phenomena like the behaviour outlined above?

What matters most to us is studying how to represent Field Partners’ ac-
tivity over time in the various sectors. Once again, embedding and matrix and
tensor decomposition techniques will be our tools to find a solution to this task
and better understand the particular social interactions on this crowdfunding
platform. In the next Chapter, we will explain how a good representation of the
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Field Partners interactions on Kiva can help us make sense of the platform’s
evolution over time. We will work once again with time-varying systems, adopt-
ing tensor decomposition techniques to shed light on the dynamics in the Kiva
sectors.

4.5 Representation of the Field Partners interactions

In the previous Section, we observed a trend in the Field Partners activity. Year
after year, the number of possible configurations adopted by them decreases:
this means that they restricted their business models to a limited number
(see Figure 4.17(a)). Even the configuration entropy confirms this trend: not
only the number of configurations drops, but there are configurations more
frequent than others (see Figure 4.17(b)). This increasing homogeneity in
the Field Partners activity makes us think a common business model could
exist among them. With this assumption in mind and in the spirit of this
Thesis silver thread, an adequate representation of the problem is essential.
The similarities among Field Partners activities in time make us hypothesize
that their cause may lie in some higher-order interaction correlations among
Field Partners interactions. The concept of a ”common business model” here
is central: it summarizes both the evolution in time and the common points
of Field Partners activity.

Chapter 2 proposed a variety of systems and applications for which using
a temporal network representation can be a perfect solution. We can easily
include our analysis here in the number. In fact, the interactions between Field
Partners find a natural representation in a time-varying network.

We saw in Section 2.2 that a possible representation for a temporal network
is a tensor, and that this representation is optimal for combining community
detection and temporal activity (see Section 3.1.4.iv). Using temporal decom-
position to study this problem can let us understand the connections between
the temporal component and the topological structure of a time-varying net-
work.
For these reasons, we decided to adopt the tensor as our suitable representation
and the tensor decomposition technique as our tool to study this problem.

In the following Sections, we will explain how we decided to represent the
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Field Partners interactions and all the analyses related to them.

4.5.1 Field Partners temporal network: data selection

We decided to use a Field Partner-Field Partner temporal network to study
higher-order correlations among Field Partners interactions. For computational
reasons and to remove noisy information related to infrequent interactions,
we cut on the number of Field Partners. We selected the most active Field
Partners on the Kivas’ platform aggregated on time using the elbow method
heuristic [125, 126]. To be more precise, in our dataset, we can associate the
number of managed loans to each Field Partners. In this case, we decided to
aggregate the number of loans all over the years. Sorting the number of loans
in descending order, we aim to find a point (i.e., the Field Partner relative to
this number of loans) beyond which the variation will become negligible. In this
context, using the ”elbow” as a cutoff point reveals to be a good solution. The
elbow method is a common heuristic in mathematical optimization to choose
a point where increasing the number of variables is no longer justified due to
the non-increase of the attached information.

Figure 4.19 shows the above mentioned cutoff selection. Sorting the num-
ber of loans according to descending order, we find an elbow corresponding to
22 eligible Field Partners.

Once we selected the most active Field Partners, we started to build the
temporal network for Field Partners interactions. Since we wanted to study
the similarities of Field Partners business models in time, we thought that the
best representation of the interaction could be building a temporal network in
the following way. The n nodes are the 22 Field Partners, and we put a link
between them if they have posted a loan in the same sector of investment at
the same time. We selected a monthly granularity for the analysis as a balance
between a low granularity (day), which causes an increase in noise in the data,
and a high one (year), which nevertheless causes a loss of information at a low
level.

In the end, we obtained an undirected temporal network that allows us to
focus on Field Partners interactions, specifically on their similarity on investing
in the same sector.
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Figure 4.19: Cutoff selection on the Field Partners. Sorting the number of
loans according to descending order, we find an elbow corresponding to 22
eligible Field Partners. The dashed line indicates the elbow, while the pink
area highlights the eligible Field Partners.

4.5.2 Tensor decomposition of the Field Partners temporal network

As we explained in Section 3.1.4.iv, we operated a transformation on the above
described temporal network. We can indeed think of a temporal network as a
collection of T static adjacency matrices, one for each timestamp t ∈ T - in
our case, we have taken into account 157 months 2.

We have thus obtained a 3-rank tensor whose dimensions are n × n ×
t representing our real time-varying system - see Figure 3.5. As explained
in Section 3.1.4.iv, the tensor representation of the system helps us analyse
the community-activity structures of the temporal network (we will refer to
them also as ”mesoscale structures”). These structures can shed light on the
similarities of the Field Partner activities, taking the temporal evolution into
account.

4.5.2.i Tensor rank: the selection

The step we are going to face now is the definition of the number of mesoscale
structures. In Chapter 3 we used the core consistency metric (see Section
3.1.4.iv, [74]). In this case, we decided to use another method for computa-

2Our data range almost 15 years, minus the months in which we do not have an interaction between
any of the 22 Field Partner under analysis.
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tional reasons. The new technique we decided to adopt exploits the approx-
imation error that the tensor decomposition algorithm makes in the attempt
to reproduce the tensor through the three factors A, B, C (see Figure 3.5).
In more detail, we know that each time we decompose a tensor in factors, it
happens with an approximation. We thus calculated this approximation error
for each possible rank for 10 different decomposition, for 10 different possible
ranks. We then selected the optimal rank using the elbow method heuristic
(see Section 4.5.1).

We decided to keep a low value for the rank to have a low dimensional
representation of the Field Partner system. A low dimensionality of the problem
makes reading the results more intuitive, and it might give us insights into the
Field Partners activity.

Figure 4.20 show the selection of the best rank for our tensor. It represents
the approximation error in tensor decomposition with respect to the tensor
rank. The error decreases as the rank increases, with an elbow corresponding
to the optimal rank r = 3.

Figure 4.20: Approximation error in tensor decomposition with respect to the
rank. The red dashed line indicates the elbow corresponding to the optimal
rank r = 3. The blue line and the shaded area represent respectively the
average and the variance among the samples we used for the analysis.

4.5.2.ii Mesoscale structures in the Field Partners tensor

Once we selected the optimal rank, we proceeded with the tensor decompo-
sition. As we discusses in Section 3.1.4.iv, we expressed the 3-rank tensor
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with an approximated decomposition (see Equation 3.5). As in the case of the
temporal network embedding discussed in the previous Chapter, this technique
let us group our links at a given time into mesoscale structures. We now have
each link at a given time in our temporal network corresponding to a 1-rank
tensor. We can thus assign a mesoscale structure to each link.

We can now assign each given link to a specific sector of investment and
a specific timestamp since we linked Field Partners who operated in the same
sector at the same time. Figure 4.21 shows the different distribution in time
and sector of the 3 different mesoscale structures we found. From a sector
distributions point of view, we do not detect any substantial difference between
the mesoscale structures, except for the number of elements that compose
them (a). Looking instead at the timestamp distributions, we can see how
our model can capture complementary and defined groups in each mesoscale
structure (b).

At this level of analysis, we can only state that the representation of the
temporal network through the tensor decomposition has found mesoscale struc-
tures corresponding to well-defined time intervals. At this point, it is worth
asking what this can mean. Are there any non-trivial patterns in Field Partners
interactions? Or do we observe an arbitrary temporal subdivision inexorably
linked to an absence or scarcity of signal in the data? To answer these ques-
tions, we need to resort to a reference null model. Like in the previous Chapter,
this can help us understand what kind of signal we have in the data and what
part of it our model can capture.

4.5.3 Null models in tensor decomposition

We want to spend a few words on the importance of reference null models.
We know that the interactions described in temporal networks give rise to
temporal and/or structural components. They can be more or less defined,
more or less interacting, and more or less easy to understand and represent.
The null models help us to outline the salient features by disentangling the
various components.

Each problem can refer to different and ad hoc null models. In this frame-
work, there is no principle solution. Our question, whether there is an intrinsic
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Figure 4.21: Distribution of the sectors of investment (a) and the time inter-
vals (b) in the mesoscale structures obtained through tensor decomposition.

structure in our data, can help us to outline an effective one. In Figure 4.21
in the mesoscale structures, we have seen that there is a defined timestamps
distribution (b), which does not, however, correspond to very different sector
distributions (a). Therefore, we can ask ourselves whether the spatial corre-
lations will also fall by destroying any structural correlations. In this case, it
would mean that we have upstream a lack of signal in the data that causes
the tensor decomposition to create randomly defined time intervals. However,
if the temporal correlations also fall, we can assume higher-order structural
correlations that we cannot see by simply looking at the sector distributions
in the mesoscale structures. With that in mind, we thought an optimal null
model would be one where we would shuffle the nodes for each timestamp in
the time network. In this way, we would have for each timestamp the same
nodes but connected randomly, thus destroying any structural correlation.
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We thus built a temporal network that would preserve the timeline of the
original one but would destroy the possible structural correlation by shuffling,
for each timestamp, the original nodes. We will refer to this shuffle tensor as
the null-model tensor.

This null model is purposely simple: this will allow us to understand what
structures exist in our data. A first clue about the quality of the signal coming
from our data is to understand how the approximation error varies on the
decomposition of the null-model tensor. If we observe a trend similar to that
observed in Figure 4.20, think that there may not be an intrinsic a priori
structure. Therefore, we have repeated the same experiment described in
Section 4.5.2.i and shown in Figure 4.20 also for the null-model tensor. The
result is shown in Figure 4.22.

Figure 4.22: Comparison of the approximation error in the original (blue line)
and in the null-model (orange line) tensor decomposition with respect to the
rank. The red dashed line indicates the elbow corresponding to the optimal
rank r = 3. The lines and the shaded areas around them represent respectively
the average and the variance among the samples we used for the analysis.

As we can observe, the trend found in Figure 4.22 is not very different from
that in Figure 4.20 . The approximation error method used to find the optimal
rank also fixes that for the null-model tensor at r = 3, the same result obtained
for the original tensor. It might be a signal of a lack of intrinsic structure of
the data.

To have a confirmation, we proceeded with the analysis of the mesoscale
structures of the null-model tensor. Figure 4.23 shows the results. Once again,
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we do not observe any peculiar distribution of sectors in any of the mesoscale
structures. On the other hand, we find a well-defined and complementary
distribution of the timestamps for each mesoscale structure.

Figure 4.23: Distribution of the sectors of investment (a) and the time inter-
vals (b) in the mesoscale structures obtained through tensor decomposition.
The analysis has been done on the null-model tensor.

The results for the null-model tensor are analogous to the previous ones.
We can therefore say that the model arbitrarily decomposes temporal interac-
tions lacking an actual structure at the origin. It suggests that there is no such
clear signal in the data or that it is even absent.

However, we can say that the tensor decomposition, in this case, has helped
us to understand that we probably cannot find an explanation for what we found
in Figure 4.17 by looking at the simple interactions between Field Partners in
the different sectors. It again confirms how a correct representation of the
problem can help us explain some non-trivial trends and patterns that we ob-
serve in the exploratory phase. Unfortunately, in this specific case, the already
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discussed data limitations (see Section 4.3.2) can lead to signal weakness that
even a good representation of the problem can struggle to express and capture.

4.6 Final Remarks

With this mix of analysis, exploration, and modelling of interactions on Kiva,
we introduced the crowdfunding platform’s history, evolution, and main char-
acteristics as an example of a specific type of social interaction, the event-type.
We can look at this Chapter in two ways. It is an application of the models
and techniques seen in the previous Chapter, and it represents the result of
convergent analyses both from the more mathematical-computational sphere
and from those of the social sciences.

Following the silver thread of this Thesis on the low dimensional represen-
tation of the social interactions, we have proposed a variety of analyzes on
different levels. In this final part of the Chapter, we want to highlight how
we first introduced dimensionality reduction by setting the Field Partners as
the focus of our analyses. Second, we devised a representation of the Field
Partners interactions using tensor decomposition, which, confirming its effec-
tiveness, helped delineate the scarceness of structure of the information in the
data.



5
Conclusions
and perspectives

T
he study of social interactions is crucial to understand the complexity

of human relationships, society, and socio-technical systems. Social
interactions have been central to socio-economic studies for a long

time. With the advancement of digital technologies, studies on social interac-
tions have gained access to large basins of digital data on human interactions.
In this context, disciplines such as computational social sciences and social net-
work analysis have quickly progressed thanks to the significant advance in data
collection and analysis. Representing, analysing and understanding the struc-
ture and dynamics of social interactions have posed a challenge in this research
area. Networks have thus become a common language, a bridge established
across many disciplines such as statistical physics, applied mathematics, social
sciences and complex systems sciences, aiming both at answering established
research questions with new tools and at tackling new and more ambitious
challenges. Networks are indeed a natural representation of social interactions:
network datasets naturalistically generated by digital platforms are challenging
in terms of sheer size and heterogeneity, as they encode many different aspects
such as temporal and geographical features and user-generated contents, both
structured and unstructured. Dealing with such high-dimensional system en-
coding social interactions is challenging in terms of computation and analysis.
Many methods of network dimensionality reduction and low-dimensional repre-
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sentation of graphs have been developed to tackle this issue. There are many
possibilities for the design of low-dimensional representations of nodes, edges,
or the whole graph that preserve given relations of the original entities. Net-
work embeddings have been individuated as an important solution: by reducing
the dimensionality of the network, they facilitate making sense of the original
data, esposing the relevant structures, and enable us to conceive analyses that
would otherwise be impossible to be carried out. Many machine learning al-
gorithms have the potential to solve problems such as link prediction, nodes
classification or clustering tasks, but most of them are designed to accept as
an input vector-based object. Network embeddings are useful to represent net-
works interactions and dynamics in terms of vector-based object, learning and
preserving feature representations of nodes and links, and are a suitable input
for otherwise impracticable machine learning tasks such as classification and
prediction.

In the first part of this Thesis, we focus on the development and the ap-
plication of new embedding techniques for the representation of time-resolved
interaction networks. Temporal networks have received great attention from
the network science community, because allow to understand the understand-
ing of how the characteristics and dynamics of social interactions change over
time. In particular, temporal networks allow the study of dynamical processes,
such as spreading processes. Spreading processes appear in diverse natural and
technological systems, such as the spread of infectious diseases and the dis-
semination of information. They are interconnected with human interactions
because complex networked structures, especially changing over time, may af-
fect the behaviour of spreading processes. Given the importance of spreading
processes in real-world scenarios, understanding the characteristics of social
interactions that impact epidemic processes have crucial significance.

We present a temporal network embedding technique whose originality lies
in the embedding of interaction events, not of nodes, Focusing on the event,
i.e. on the interaction between nodes at a given time, our method preserves
information on the causal structure of the network; hence it is in principle
suitable to study dynamical processes on temporal networks such as epidemic
spreading. We apply our embedding method on empirical temporal network
data on human proximity in space in numerous real-world environments, be-
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cause these settings are optimal to study epidemic processes. The embedded
representation retains important temporal and structural features of the data,
that allow us to understand how these aspect of the interactions plays a central
role in the dynamic of spreading processes.

Our method can obtain a representation for any temporal network, but
the focus on event embedding makes it particularly suitable and extensible for
representing temporal networks on top of which to study a causal process such
as an spreading process.

In the second part of the Thesis, we analyse an online crowdfunding system,
for which is available a large-scale interaction dataset. The data contains
information on the interactions and the transactions between different actors
operating on this system worldwide for more than 15 years. Specifically, we
can observe how the users (lenders) invest in specific sectors by financing
other users (borrowers). There are also intermediate actors, the so called
Field Partners, who manage the borrowers’ loans in these transactions. Field
Partners act as brokers between borrowers and lenders: activities on the system
are almost entirely in the hands of the Field Partners. We provide a general
descriptive analysis of the principal characteristics of this crowdfunding system
and its anatomy. Alongside this descriptive analysis, we focus on the temporal
dimension of the network, a complex challenge because the representation
of this system as a network presents various actors. Since that the role of
Field Partners is crucial in the transactions, to understand the whole system
is necessary to understand how Field Partners interactions work. Our research
interest mainly focuses on the transformation of system structure over time and
how Field Partners transactions shaped it, and we opt for a representation of
the system that considers both community structure and temporal evolution. A
tensor representation of this system can help us capture the correlation between
the latent structure of the system and its temporal patterns. In order to detect
these underlying structures and to deal with a challenging dataset, we operate
a a tensor factorisation, obtaining a compact representation capable of learning
and representing community-activity structures of the tensor. Analysing these
underlying structures paves the way to characterise and better outline the Field
Partners’ activity on the system, and the evolution of the system in general.

The results leave us with some open questions. Can we design other meth-
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ods to study data on social interactions? Can we find different data sources
worth exploring with our dimensionality reduction methods? In this Thesis we
introduced different social interactions systems and dimensionality reduction
methods that are only a small part of the big, continuously evolving framework
of low dimensional social network representation. Contact networks and crowd-
funding systems are just an example of interaction system data: mobility data
on proximity interactions between people, social media data that describe inter-
actions among users, financial transactions are others high-resolution data on
social interactions that we can explore. Moreover, we deal in this Thesis with
nodes and interactions of temporal networks, without considering any meta-
data that can describe them. In real-world social interactions, people may have
roles or specific demographic characteristics; interactions are exchanges whose
features depend on the people and the setting in which they occur. A possible
direction could be implementing a dimensional reduction method that can take
into account the metadata of users and events that describe a social interac-
tion. Another possible follow-up work is including a wider range of dynamical
processes in our analysis. We could consider other epidemic processes, such
SIS or SIR, more complex than the SI process simulated in this Thesis. Given
the peculiarity of focusing on event embedding, suitable for studying different
spreading processes, it would be interesting to adapt our embedding technique
to study specific spreading processes, misinformation, and fake news spreading
in this context. We could even expand our horizon to other important dynam-
ical processes, such as consensus formation on networks and synchronisation.
Both dynamical processes are central in social networks research, and studying
the emergence of consensus in social systems or their synchronisation may shed
light on the dynamics of social interactions.

By focusing on social networks as a representation for social interactions
that will evolve and change over time, we develop different dimensional re-
duction methodologies adapted to different settings and objectives to have a
compact but informative representation. The network representation and the
dimensional reduction techniques we proposed here showed us new insights
and perspectives on the different systems we dealt with, and in general, on the
characteristics and structures of social interactions.

The contribution of this Thesis consists in the exploration and application to
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real-world systems of methods for dimensionality reduction of time-resolved so-
cial interaction data. This work lies in the broader context of low-dimensional
graph data representations, which has witnessed the development of a vast
spectrum of methods spanning embeddings, low-rank tensor representations,
graph convolutions, and more. To date, no single approach is generally suitable
to deal with all data sources, and complex tradeoffs exist between performance
in the context of a prediction task and interpretability of the learned representa-
tions. We dare hope to have contributed to exploring the rich research domain
at the intersection of network science, machine learning, and their applications
to decoding and understanding digital data on social behaviours.





6
Appendix -
weg2vec: event embed-
ding
in temporal networks

T
his Appendix reports the article we published on Scientific Reports

[57], as a complementary resource to understand in more detail what
we have treated in Chapter 3. You may find additional information

here: https://www.nature.com/articles/s41598-020-63221-2.
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weg2vec: Event embedding for 
temporal networks
Maddalena Torricelli1,2, Márton Karsai3,4,1 & Laetitia Gauvin1 ✉

Network embedding techniques are powerful to capture structural regularities in networks and to 
identify similarities between their local fabrics. However, conventional network embedding models are 
developed for static structures, commonly consider nodes only and they are seriously challenged when 
the network is varying in time. Temporal networks may provide an advantage in the description of real 
systems, but they code more complex information, which could be effectively represented only by a 
handful of methods so far. Here, we propose a new method of event embedding of temporal networks, 
called weg2vec, which builds on temporal and structural similarities of events to learn a low dimensional 
representation of a temporal network. This projection successfully captures latent structures and 
similarities between events involving different nodes at different times and provides ways to predict the 
final outcome of spreading processes unfolding on the temporal structure.

An interacting group of people, the collectively active neurons in the brain, or the transportation system of a 
city are only a few examples of complex systems, which are all intrinsically dynamical1. They can be commonly 
interpreted as a set of entities, which interact over time and form a network structure coding the architecture of 
the system in hand2,3. This duality of the structure and temporal nature of interactions can be effectively captured 
by temporal networks, proposing a new and precise representation of complex systems as compared to earlier 
strategies4,5. On the finest level, temporal networks consist of time-varying events between interacting nodes, and 
as a whole they appear as systems with high complexity and dimensionality. Events in real temporal structures, 
however, are not random but correlated with each other and arguably driven by several microscopic mechanisms 
leading to several generative characters of the network. Emerging properties like the heterogeneous number or 
strength of interactions6,7, community structure8–10, degree correlations, bursty temporal patterns11,12, or temporal 
motifs of causally correlated events13,14 are all arguably induced by such mechanisms. In turn, temporal events and 
their correlations largely influence dynamical processes as well15, like they determine the speed and final outcome 
of information or epidemic spreading16–19. The recognition of these impacts has put temporal networks in the 
focus point of several investigations recently, which yet struggle to propose efficient representations to capture 
the complex temporal/structural information coded in them, while reducing their dimensionality to ease their 
analysis.

Correlated patterns in the structure and dynamics of networks usually can be described by certain 
higher-order representations20. For static networks, line graphs propose an efficient description21,22, which in their 
simplest form identify static links as nodes and connect them if they are adjacent, i.e., share an ending node in 
common. Other technique is based on simplicial complexes23 considering homology of the network topology to 
capture higher order structures. At the same time, recent network embedding methods propose inventive ways to 
obtain a reduced dimensional representation of static structures. Their common goal is to map complex networks 
to a low-dimensional space, while conserving certain similarities of nodes reflected by some distance metrics in 
the embedding. Most common methods use random walk sampling24,25 or graph convolution26,27 to capture the 
local structural context of network nodes. In case of temporal networks, the recently proposed event graph rep-
resentation28,29 defines a higher-order description by identifying relations between events, which are adjacent, i.e. 
not simultaneous and share at least one ending node. Adjacent events then are connected by links with direction 
respecting the arrow of time, and with weight defined as the absolute time difference between the connected 
events. This type of description is very useful as it codes all time-respecting paths in a temporal network at once, 
while proposing an information lossless representation of the temporal structure as a static weighted directed acy-
clic graph. Recently a few dynamical network embedding methods30–33 have been developed to consider dynam-
ical changes in the structure in the learned network representations. At the base of many methods there is the 
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modification of the standard representation of the temporal network, whether it is in the form of a list of events, 
a tensor9 or a supra-adjacency matrix34. All of these methods like DyANE34, Online Node2Vec32, STWalk30, or 
the one proposed by Singer et al.31 commonly aim to solve a node embedding problem by locally sampling the 
temporal-structural neighbourhood of nodes to create contexts, which they feed to a Skip-Gram learning archi-
tecture borrowed from the text representation literature35. As a solution, they build a sequence of correlated/
updated embeddings of network snapshots, which consider short term history of the network backward in time. 
However, these methods have some common limitations; first of all, it can be hard to manage a high number of 
hyper parameters for the control of the sampling random walk process and the embedding itself. At the same 
time, the embedding of nodes may miss to reflect the dynamical changes of temporal interactions. Finally, taking 
into account only past and present interactions in the embedding can crucially limit the performance of the pre-
diction, while the consideration of future events can significantly improve this task.

Here we propose a new temporal network embedding method, that we call weg2vec (weighted event graph 
to vector), which aims to tackle all these shortcomings. This is an event embedding method, which represents 
an entire temporal network in the same reduced dimensional abstract space. It is based on combined event con-
texts built by sampling locally a higher-order static representation of temporal networks, which in turn code 
the complex patterns characterising the structure and dynamics of real world networks. This is an unsupervised 
representation learning technique, which can consider the past and future context of an event simultaneously. 
It is sampling without using dynamical processes, thus it can be controlled by a handful of hyper parameters. It 
identifies similarity between different events/nodes, which may be active at different times, but influence a similar 
set of nodes in the future. To demonstrate the power of this representation, we showcase its utility through the 
prediction of the final outcome of modelled spreading processes on several real world temporal networks. This 
prediction task performs significantly better when it builds on our representation as compared to other dynamical 
network embeddings.

As follows, first we will present the pipeline to build our embedding method. We will show the characteristics 
of our representation, measuring its stability and its ability to capture temporal and structural information from 
the network. We will show then the results obtained in estimating an epidemic spreading outcome, as a showcase 
of the potentials of our embedding method in the analysis of dynamic processes. Finally, we will compare our 
results to similar computations performed with two other embedding methods. In the final Sections, we present 
the discussion of the results and the analysis of the methods.

Results
An embedding method of temporal networks may take a list of temporal interactions as input, and provide a 
lower dimensional representation, in which vectors corresponding to similar nodes or events in the original 
structure ideally point close to each other in the embedding. In our pipeline we solve this problem in three con-
secutive methodological steps. First, we turn the original temporal network into a higher-order representation, 
which captures pairs of adjacent and consecutive events, which may be in causal relationship. Second, we use 
this representation to generate environments for each event, sampled from their adjacent neighbours. Finally we 
obtain an embedding of events by training a Skip-Gram model on the obtained environments. These steps are 
schematically drawn in Fig. 1) and introduced next in the coming sections.

To demonstrate our method we used four different datasets all obtained from the SocioPatterns project36. 
These open datasets record the time evolving physical proxy interactions of a large number of people in different 
settings like in conference, high school, hospital, or primary school. The data comes as a long sequence of network 
snapshots recording simultaneous interactions between any participants in every 20 seconds. While for demon-
stration most of the results in the paper are shown only for the conference and primary school settings, a detailed 
data description together with the analysis for the other networks are presented in the Supplementary 
Information.

Figure 1. Schematic presentation of the methodological pipeline of the presented temporal network 
embedding method, which takes a temporal network to (a) project it into a weighted event graph; (b) to sample 
a set of environments for each event; (c) and uses it as input for a Skip-Gram model; (d) to obtain an event 
embedding of the original network.

CHAPTER 6. APPENDIX - WEG2VEC: EVENT EMBEDDING IN
TEMPORAL NETWORKS 99
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Temporal networks as weighted event graphs. Let us consider a temporal network

=G N E T( , , ), (1)T T

where ET denotes a set of events (temporal edges) among nodes in n at times ∈t T . Specifically, we define an 
event =e i j t( , , ) as an interaction between two nodes ∈ ×i j N N( , )  at a given timestamp ∈t T . The time aggre-
gation of interactions in GT over t maps the underlying structure into a static graph =G N E( , ) defined over the 
same set of nodes N , which are connected if they interacted at least once. For simplicity here we assume that 
events are undirected and no self events/links exist, i.e. for any event i j t( , , ) or link i j( , ), ≠i j.

We define two events =e i j t( , , )1 1  and =e k l t( , , )2 2  to be adjacent ( →e e1 2) if they share at least one node 
( ∩ ≠ ∅i j k l{ , } { , } ) and they are time consecutive ( <t t1 2). Note that adjacency in a static network G can be 
similarly defined between links =l i j( , )1  and =l k l( , )2 , which share at least one node ( ∩ ≠ ∅i j k l{ , } { , } ). More 
restrictively, we called them δt-adjacent (

δ⟶e e
t

1 2) if they are adjacent and δ− ≤t t t2 1 , thus follow each other 
within a given period of time ( δ τ≤ ≤t0 ) where τ  corresponds to the total period of time of the interactions. 
Adjacency introduces a directed relation between events, with orientation respecting their order in time. Using 
this notion we can formally define a static directed network representation =D E E( , )T D  of any temporal net-
work, where original events in ET are defined as nodes and they are connected by directed links ∈e ED D if they 
are adjacent = →e e eD 1 2. The obtained network is a directed acyclic graph called the event graph, defined earlier 
in28,29. It can be interpreted as a temporal line graph, which provides a higher-order representation to map out 
simultaneously all time respecting paths of the original temporal network without any loss of information. Note, 
that to simplify our representation, for a given event if it has multiple future adjacent events with the same pair of 
nodes, we only consider the earliest one.

Event graphs can be easily enriched with various types of link weights reflecting some temporal or structural 
information coded in the original structure. Here, to better capture the strength of potential causal relationships, 
first we consider a weight defined as =

+ −
wpath t t

1
(1 )2 1

, which is a measure inversely proportional to the absolute 
time difference between adjacent events at t1 and t2. This definition of the weight allows us to include the tempo-
rality of interactions such as long decay in social activities. At the same time we define a second weight for adja-
cent events (links of the event graph), based on the total number of co-occurring events on the underlying 
adjacent links in the static network. More precisely, the w e e( , )co 1 2  co-occurrence weight counts the number of δt
-adjacent events in GT appearing on a given pair of adjacent links l i j( , )1  and l k l( , )2  in the static graph G. Note that 
adjacent events connected in d, which corresponds to the same links in the underlying network G, will have the 
same wco values. Datasets analysed in this paper are defined as sequences of snapshots aggregating temporal inter-
actions in consecutive time windows of size Δt. In these systems we compute wco for adjacent links as the number 
of co-occurrence of corresponding events within a single snapshot. This definition may slightly underestimate the 
real co-occurrence (if δt ≤ Δt), but provides the best plausible solution due to the un-ambiguity of timings of 
events within a single snapshot.

Neighbourhood sampling strategy. In the same spirit of recent node embedding techniques25,35 based on 
the Skip-Gram model, we propose an event embedding method, which samples neighbourhoods for events from 
the weighted event graph representation to map them to a lower dimensional space. To assign an environment to 
an event ek, we sample its local neighbourhood set Nk, which consists of the set of its first in- (past) and out- 
(future) neighbours (also called its predecessors and successors from now on). The sampling is done according to 
probabilities determined by the two types of weights of the links that connect the actual event to its neighbours.

In order to consider not only the past but the future of an event in its environment, during sampling we use a 
combined set of its predecessor and successor events. Further, to balance the contribution of causality and tem-
poral co-occurrence, we introduce a neighbourhood sampling strategy such that the probability p e( )l  of picking 
an event el from the combined neighbourhood set Nk of the central event ek is given by:

α α= + −p e F w e e F w e e( ) ( ( , )) (1 ) ( ( , )) (2)l path k l co k l

where α is a coefficient between 0 and 1 scaling the contribution of the two types of weights and F is a normalised 
weighted function defined as:

=
∑

⋅
∈

F w w e e
w e e

( ) ( , )
( , ) (3)

k l

n N k nk

Using such probabilities computed for each neighbour, we sample nb number of environments randomly for 
each event for an effective training of the model explained next. Each environment contains s events, we call the 
number s, the length of the environment.

Embedding of empirical temporal networks. Once the environments have been created, they are 
passed as inputs to the Skip-Gram model, with parameters fixed to different values according to the analysis to 
conduct. The result is a d-dimensional vector space in which events are represented by Cartesian coordinates. As 
an illustration, Fig. 2 shows a 3-dimensional embedded representation of two of the empirical networks we used 
for the analysis, recorded in a conference and a primary school settings. Our aim with this setting was to investi-
gate the performance of low-dimensional embedding on the one hand, and on the other taking into account 
equally the effects of causal temporal paths and co-occurrences by setting α = .0 5. The environment parameters 
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nb and s have been set both to 10 as an example. In Fig. 2(a,b) each event is represented as a point in the embedded 
space with colour indicating the time at which they occurred in the original temporal network. Interestingly, the 
gradient change of colours indicates that these embeddings capture in large part the time ordering of the events. 
At the same time, Fig. 2(c,d) shows the same 3-dimensional embedded representations, but with colours repre-
senting the membership to mesoscale structures detected by tensor factorisation methods applied on the original 
temporal network9 (see Section on Tensor Factorisation for mesoscale structure extraction). Evidently, as colours 
are not distributed randomly but similar colours are somewhat grouped together in space, it suggests that our 
embedding is able to capture some of these mesoscale structures as well.

We propose an additional microscopic scale analyses of our embedding method in the 
Supplementary Information. There we studied pairs of events and we were interested in the relation between 
their time difference measured in the temporal network and their euclidean distance observed in the embed-
ding. Indeed, we found clear correlation between these quantities and demonstrated that the euclidean distances 
among linked events in the temporal network are significantly smaller than the distances measured between ran-
domly selected events pairs. These observations demonstrate that our method simultaneously captures structural 
and temporal vicinity of events.

Effects of the dimension and of the neighbourhood sampling. One of the most important hyper 
parameter of our method is the number of dimensions of the embedding vector space. Lower than optimal num-
ber of dimensions may lead to neglected but otherwise relevant latent correlations in the temporal structure, 
while overestimation of this number may give us a highly redundant embedded space. We test here the consist-
ency and robustness of our embedding technique in terms of this parameter. We argue that as we increase the 
number of dimensions, once it reaches and overpasses an optimal number, it starts coding increasingly redundant 
information in the embedding. As a consequence, further dimensions would not alter the relative positions of 
embedded events and the pairwise euclidean distances among them would stabilise. To check this assumption, we 
use an entropy measure capturing the fluctuations of pairwise euclidean distances over several realisations with 
the same number of embedding dimensions. More precisely, for selected event pairs, we measured the probability 
distribution of their pairwise euclidean distances over 10 realisations (see Section Entropy Computation) and 
used it to compute an entropy score. Averaging these scores over all the event pairs provided us an indicator of the 
stability of the embedding.

Figure 2. 3-dimensional embeddings of the conference and primary school networks. x, y and z axes indicate 
event coordinates, while colour in panels (a and b) shows the time at which the event occurs and in panels (c 
and d) mesoscale structure membership found using a tensor factorisation method (see Section Tensor 
Factorisation for mesoscale structure extraction) respectively set to find 5 and 10 of these structures. Hyper 
parameters were set to α = .0 5, =nb 10 and =s 10.
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We show results in Fig. 3 for two empirical networks using a balanced embedding with α = .0 5 in both cases. 
As we expected, the entropy decreases as we increase the number of dimensions. This is due to stabilisation of the 
distribution of pairwise euclidean distances, which in turn gives us a hint on the optimal dimension at which the 
local neighbourhoods (as defined by the sampling) are well captured by the embedding. To select this optimal 
dimension, we identified the lower bound at which entropy starts to fluctuate around a constant value (see 
Methods 4 and Supplementary Information). Note that to identify the optimal number of dimensions we have 
taken into account other algorithms37 as explained in the Supplementary Information. However, our final choice 
fell on the entropy based method we introduced above as it maintained a good trade-off between the compactness 
(i.e. low dimensionality) and stability of the embedding. Other tested methods suggested an unrealistically high 
number of dimensions to be optimal, probably due to their incompatibility with the actual setting, as they were 
developed for word embedding problems.

Spreading process prediction with embedding events. Beyond the demonstrated capacities of our 
model to capture the temporal ordering and the underlying mesoscopic structures, it may provide further useful 
information about the embedded events. As a temporal network embedding, it positions events in proximity with 
similar neighbourhoods. In other words, it can help to identify similar events maybe involving different nodes 
at different times, but influencing a similar set of other nodes via overlapping temporal paths. As a consequence, 
this information can be used to predict the outcome of information diffusion processes on temporal networks.

To explore this problem, we model a Susceptible-Infected (SI) process, which is the simplest schematic model 
of epidemic or information spreading (see Section Spreading Process in Methods). Defined on networks, this 
model assumes that each node can be in one of two mutually exclusive states (susceptible (S) or infected (I)) at a 
given time. While initially each node is susceptible, infection can spread from a selected infected seed node/event 
via temporal interactions and can reach all other nodes via connected valid temporal paths. To obtain the 
expected outcome of SI process on a temporal network we took each event as the seed and simulated the spread-
ing on the empirical temporal network to measure the final epidemic size in each case. Note that our aim to 
investigate the final outcome of an epidemic differs from the one pursued with DyANE34. In our case, we are not 
interested in the status of the node time by time, but in the final outcome of the epidemic originated by a specific 
event. To test the versatility of our embedding method we trained a model using the embedded coordinates of 
events for epidemic size predictions and compared results directly to the corresponding simulated outcomes. We 
used linear regression to approximate the correspondence between the embedding coordinates of each event and 
the size of epidemic initiated from them. As the goodness of the prediction we simply computed the r2 scores 
between the predicted and simulated epidemic sizes. Note, that we tested more complicated non-linear models 
but obtained lower performance in prediction (not shown here). We report our results in Table 1, where we fixed 
the environment parameters s and nb both to 10 and chose the optimal embedding dimension for each real net-
work detected as we explained in Section Effects of the dimension and of the neighbourhood sampling.

Figure 3. Entropy values with respect to d number of embedding dimensions for the conference (a) and the 
primary school (b) networks at α = .0 5. The dash line represents the value ( =d 20 and 24 respectively for (a 
and b)) of the optimal embedding dimension in which stability is reached. The blue line and the shaded area 
represent respectively the average and the variance among the samples we used for the analysis.

r2

Original Snapshot Timeline LinkData

Conference (d = 20) 0.79 ± 0.01 0.53 ± 0.04 0.66 ± 0.03 0.57 ± 0.01

Hospital (d = 14) 0.53 ± 0.03 0.11 ± 0.02 0.35 ± 0.06 0.50 ± 0.04

High School (d = 26) 0.56 ± 0.02 0.23 ± 0.01 0.53 ± 0.02 0.76 ± 0.04

Primary School (d = 24) 0.68 ± 0.02 0.12 ± 0.01 0.31 ± 0.02 0.55 ± 0.02

Table 1. R-squared values, r2 obtained between the simulated and predicted epidemics outcomes using 
embedding of the real empirical temporal networks and of the randomised model. We set the environment 
parameters s and nb both to 10. The optimal embedding dimension were chosen as found in Effects of the 
dimension and of the neighbourhood sampling.
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Real temporal networks are interwoven by several temporal and structural correlations. First there are local 
temporal correlations induced by intrinsic or environment effects emerging between events on the same link 
leading to bursty behaviour, event trains or circadian activity patterns. Another type is higher-order temporal 
correlations leading to the emergence of causal temporal motifs. Structural correlations are responsible for the 
emerging assortative patterns, communities, or any non-random connection pattern in a social network, while 
weight-structural correlations induce the non-random distribution of strong and weak ties inside and between 
communities. In Table 2 we summarise which RRM preserves and eliminates which type of correlations.

To get a better sense about the effects of these correlations, we used three types of randomised reference mod-
els (RRM)38 to eliminate combinations of temporal and structural correlations, and to identify which of them are 
determinant for the prediction task. These RRMs were

•	 Snapshot shuffling, which randomises the timestamps of events in order to eliminate any temporal correlation 
between them inducing burstiness, causal motifs, or group activation etc. This model is assigned as 
P[ Γpf(t), ( )T ] using the notation convention introduced in38.

•	 Timeline shuffling takes the complete timeline of events between a connected pair of nodes in the temporal 
network and swap it with the timeline of another randomly selected connected pair of nodes. This shuffling 
method, noted as P[ ΘL p, f( ( ))L ] in38, eliminates all correlations between the underlying structure and time-
lines while also vanish any casual correlations between events on adjacent links.

•	 Link shuffling method (noted as P[ ΘL pf( ), ( )L ] in38) randomises links of the underlying aggregated static 
network first to obtain a Bernoulli random structure, and then reassign randomly the original timelines of 
events to the new links without replacement. In this way, it destroys any structural and structural-temporal 
correlations in the network, while keeping local temporal correlations like burstiness unaltered.

For a summary of present and eliminated correlations in the different RRMs see Table 2.
The prediction results for the original and the RRM networks are summarised in Table 1, where we depict the 

observed average r2 values with their standard deviation computed over the embedding realisations. These results 
suggest that in general the randomised model embeddings perform worse in predicting the final epidemic size with 
respect to the original network embeddings. In one way this is straightforward as some correlations have been elimi-
nated from RRMs, which might be determinant for the prediction task. On the other hand, RRMs also appear with a 
less complex structure and limited irrelevant dependencies and noise, which in turn may help the prediction. It is the 
snapshot shuffling method, which leads consistently to a significant drop in performance, suggesting that temporal 
correlations (local or higher-order) are very important for the spreading process and that our embedding can capture 
these dependencies successfully. Timeline shuffling, which destroys weight-structural and higher-order temporal cor-
relations but conserve the dynamics on links and the underlying network seems to perform better as compared to the 
snapshot shuffling method but yet worse than the original network. This suggests that while structural correlations 
can be captured by the embedding, local temporal correlations might be better predictors than weight-structural 
correlations. Interestingly, the link shuffling method, which conserves only local timeline dynamics on links, performs 
the best among the RRMs, sometimes even better than the original dataset. Consequently, indeed local temporal event 
dynamics is the most important feature of the temporal network, while removing structural correlations the system 
becomes homogeneous and easier to predict (for a supporting analysis see Supplementary Information). Although 
these general conclusions seem to be consistent over the several analysed datasets, results computed in different set-
tings may have some fluctuations. As explained in the Supplementary Information, this can be partially explained by 
the variance of the epidemic size distribution reflecting the fluctuation of epidemic size started from different times 
and events. In most of the cases smaller variance of epidemic size correlates with higher predictive performance except 
for the link shuffling method, as explained in the Supplementary Information.

As a general conclusion we showed that the embedding successfully captures a combination of temporal and 
structural features of the network. On the other hand, the fact that temporal and structural features can be entan-
gled has an impact on embedding performance but not on what the embedding is able to learn about them. For 
instance, the model can under-perform in a community-rich network where nodes of the same community have 
totally uncorrelated activities, while can provide precise predictions in shuffled datasets if structural and temporal 
correlations code redundant information.

In Methods in Section Parameter dependencies we also analyse the impact of changing the environment param-
eters nb and s, the dimension of the embedding d and the hyper parameter α on the predictability of the epidemic 
spreading outcome (i.e. with respect to the r2 score). The tuning of the parameters for the best prediction gives a 
hint about the sensitivity of the prediction task on local properties of the networks and the sampling parameters.

Correlation Local 
temporal

Weight-
structural

Higher-order 
temporal StructuralRRM

Original ✓ ✓ ✓ ✓

Snapshot P[ ( ) pf t , T
(Γ)] × ✓ × ✓

Timeline P[L, f(pL(Θ))] ✓ × × ✓

Link P[ ( )L pf , L
(Θ)] ✓ × × ×

Table 2. Summary of preserved and eliminated structural and temporal correlations (Local temporal, Weight-
structural, Higher-order temporal, and Structural) in the Original and different random reference models 
(Snapshot, Timeline and Link shuffling) of temporal networks. For further explanation see text.
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Comparison with other methods. There are a few other recently proposed dynamical network embed-
ding methods, which can be used for the prediction of spreading outcome. Here we consider two of the most 
promising ones, the STWalk30,39, and the Online-Node2vec embedding methods40,41 to compare their predictive 
performances to weg2vec. Both methods are thought to build node embeddings for dynamic graphs using the 
Skip-Gram model, which introduces a significant difference to our event embedding method.

STWalk is designed to learn trajectory representations of nodes in temporal graphs by operating with two 
graph representations, a graph at a given time step and a graph from past time steps. It performs random walks 
respectively called space-walk and time-walk, to sample environments to input for the Skip-Gram embed-
ding. The authors propose two variants of STWalk, different in the way the environment is built. In STWalk1, 
space-walk and time-walk are performed as part of a single step on a combined graph, while in STWalk2, space- 
and time-walks are done separately.

Online-Node2vec is a node embedding method updating coordinates each time a new event appears in a tem-
poral network. It also applies random walks to generate environments possibly using two strategies, the Temporal 
Walk algorithm and the Temporal Neighbourhood algorithm. In the Temporal Walk algorithm42 a temporal 
path based centrality metric is used to capture similarity between nodes by projecting nodes on the same tem-
poral path close to each other in the embedding. In the Temporal Neighbourhood algorithm43, node similarity 
is inferred via a fingerprinting method, which projects nodes with similar neighbourhoods close to each other.

To compare the performance of the different methods, we test all of them on the four empirical networks 
introduced earlier. The environment parameter nb and s have been set to 10 and 10 for all cases to give them the 
same amount of information to learn and for a fair comparison of outcome. Further, we fix the balance parameter 
α to .0 5. We then compute the average r2 scores of simulated spreading outcomes as we vary the number of 
embedding dimensions. Since STWalk and Online-Node2vec use only the past and the present as basis for the 
nodes environment, we run the simulation for our methods using only the predecessors for each event as well (see 
Section Neighbourhood sampling strategy). Finally, as previously, we estimate the epidemic size by using the 
coordinates of the actual embedding in a linear regression model (see Section Spreading Process).

According to the results in Fig. 4, our method outperforms all the other methods on any of the networks for a 
broad range of dimensions. The performance improves if we also consider the successors and not only the prede-
cessors in building the environment, as expected. The exception is the hospital network, where our method gets 
lower scores with respect to Online-Node2vec for dimensions 50 or larger. In general, the difference in the scores 
can be explained due to the advantage of event embedding instead of node embedding. Indeed if we are looking 
at epidemic spreading mediated by temporal interactions, it becomes more natural to work with events. In the 
case of STWalk, the lower scores can be partly explained by the selection of the environments that are allowed to 
included higher-order correlations among nodes. This more complex information coded in the environments can 
appear less relevant or noisy for the learning task here. In case of Online-Node2vec, the relative 
under-performance can be due to the fact that information of the temporal and neighbourhood information are 
considered separately instead. Missing to join these two aspects can lead to limited information and prediction 
capacities.

Figure 4. Comparison of STWalk, Online-Node2vec and our embedding methods in predicting spreading 
outcomes on empirical networks in different settings as (a) conference, (b) hospital, (c) high school, and (d) 
primary school. Results shown are r2 scored obtained from linear regression on coordinates in embedding 
spaces with various dimensions computed for each method and empirical temporal networks.
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Discussion
Embedding of networks has recently drawn a lot of attention as it both provides lower dimensional representa-
tions of networks and proves to be efficient to resolve task such as link prediction, node classification or anomaly 
detection. Here we proposed an embedding technique of temporal networks, a domain still little explored as most 
low dimensional representations of networks have been introduced for static networks. Moreover, instead of gen-
erating node embedding, we are creating link embedding, which we show to be much more efficient when we try 
to solve a task linked to spreading process compared to node embedding techniques.

The embedding method we introduced has the advantage to be very simple, it relies on the sampling of neigh-
bourhood on a higher order static representation of the temporal networks and the use of the Skip-Gram model, 
largely developed for word embedding. The neighbourhood sampling was built so that it takes into account both 
the notions of causal temporal paths and co-occurrences, meaning that events that are on the same temporal 
paths and that tend to co-occur are projected close in space. We have shown that an embedding based on this 
neighbourhood sampling is particularly efficient to provide compact representations of temporal networks that 
retain essential features of the networks such as the time ordering and the organisation of networks in mesos-
cale structures. Here, we also provide a way to choose a relevant dimension for the embedding. Along with this, 
we show that the learned representations retain enough information of the original network to get a relevant 
estimate of the outcome of spreading process. Interestingly, this observation remains true even if the sampling 
strategy uses only information from the past for each event. This means that the technique introduced can be also 
used as an online method taking into account temporal events on the run. Moreover, tuning the neighbourhood 
sampling, i.e. playing on the trade-off between including causal temporal paths and co-occurrences, to get the 
best performance for the prediction of the outcome of the spreading process can be used to detect the relevant 
properties of the original network for the spreading process.

For future works, it would worth exploring other sampling strategies that decouples the purely structural 
properties, i.e. the presence of the communities in the aggregated network, from the temporal properties. Another 
important follow-up of this work would be the application of this embedding technique to solve questions such 
as the detection of key events in misinformation spreading.

Methods
Entropy Computation. To measure the entropy over the distributions of the euclidean distances between 
pairs of event coordinates in each of the temporal network embedding, we build 10 embeddings for 50 different 
dimensions (from 2 to 100 at step 2), setting α = .0 5. The hyper parameters nb and s were set to 10 and 10 respec-
tively. For each embedding, we then divide our dataset in 10 consecutive samples of 1000 consecutive events each, 
both to avoid to compute all the pairwise distances (which would be very costly computationally) and at the same 
time to have a representative set of events.

We compute the euclidean distance of each pair of events in the samples for each of the 10 different embed-
dings. We then bin the distances into =k 10 bins ranging from the global maximum and the global minimum 
values over all the possible dimension and realisations of the embedding for the same network, and measure the 
entropy over these sets of distances as

∑=H p plog ,
(4)k

k k

where pk represents the probability associated with the kth bin. In Fig. 3 (see also Supplementary Information) the 
blue curve represents the entropy values with respect to the number of embedding dimensions, averaged on the 
10 samples as described above and the shaded surrounding area shows the variance among the 10 samples. The 
vertical dash line corresponds to the dimension at which the embedding stabilises. To determine this point we 
looked for the best fit of a horizontal line on the average entropy curve and took the value of the first interception 
of the curve with its fit.

Spreading Process. The simplest epidemic models are based on the assumption that the population can be 
divided into compartments, each representing a phase of the disease44–48. The one we used for our analysis, the 
Susceptible-Infected model, which foresees that once a healthy node (in state S) is exposed to the infection, it will 
become infected (state I) with a given rate β and will never return to the original healthy state. In our specific case, 
the SI  model has been implemented in such a way that β = 1, which defines a a deterministic process from the 
spreading point of view.

Taking each event as the starting of the epidemic, we simulate the epidemic spreading on the temporal net-
work and we assign the final epidemic size to each seed event. We build a dataset containing embedding coordi-
nates of each event, the associated epidemic size that will be the target to be predicted, the square of each 
coordinate and the euclidean distance from each event in the network and the first event in time, that will be used 
as regressors. In other terms, we assume a linear relationship between the epidemic size (y) and the embedding 
coordinates (→x ) defined by the so-called regression equation

∑β β= +
=

y x
(5)i

r

i i0
1

where …x x, , r1  are the predictors (the embedding coordinates, their square and the euclidean distance) and 
β β…, , r0  are the regression coefficients. For training we operate with a 10-fold cross-validation, i.e. we first ran-
domly partitioned the original sample into 10 equal sized sub-samples and retain a single sub-sample as the vali-
dation data for testing the model, while using the remaining 9 sub-samples for the actual training. We repeat this 
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process 10 times to train the embedding to best learn the coordinates of each event in the network. We use the 
coefficient of determination, denoted as r2, to understand which amount of variation in y can be explained by the 
dependence on →x  using the particular regression model. Larger r2 indicates a better fit and means that the model 
can better explain the variation of the output with different inputs.

Tensor Factorisation for mesoscale structure extraction. A temporal network can be fully described 
by a time-dependent adjacency matrix, where its entries are either one or zero depending on the presence or 
absence of interactions of pair of nodes at a given time. This matrix can be seen as a three-way tensor, whose size 
is × ×n n t (n indicates the number of nodes and t the number of snapshots in the temporal network). This 
tensor can then be factorised into a sum of r rank-one tensors, i.e. number of mesoscale structures we search into 
the temporal network. Using this technique we can group events into mesoscale structures. Indeed with the 
decomposition, we now have a value for each link for each time for each rank-1 tensor, we assign a mesoscale 
structure to each event based on these values. Basically the mesoscale structure assigned to each event is the one 
for which the corresponding link at the corresponding time has the highest value. To find the optimal number of 
mesoscale structures, we used the core consistency metric49. It is based on scrutinising the appropriateness of the 
structural model based on the data and the estimated parameters of gradually augmented models. A model is 
called appropriate if adding other combinations of the same components does not improve the fit considerably. In 
practice, we operate different tensor decompositions for different value of the rank (ranging from 2 to 20, for all 
the networks) in order to estimate the best value for it.

Parameter dependencies. Here, we explain the way we investigate how hyper parameters of the environ-
ment sampling may impact the prediction score on different real networks. Figure 5 shows the r2 scores computed 
for the conference and primary school networks with respect to the length s and number nb of environments 
sampled for each event. For these computations we fixed α = .0 5 and the embedding dimensions to their optimal 
values. According to Fig. 5 on the conference network, except for very small number or length of contexts we see 
an emerging plateau of r2 values. This means that the environment size compensates for the number of environ-
ments (or vice versa) when we measure the embedding performance. In other terms, increasing the length of the 
environment has the same effect than increasing the number of environments on the r2 score. For the primary 
school network we observe a similar but somewhat weaker compensation effect (Fig. 5), while we observed the 
same behaviour even for the hospital and the high school networks (see Supplementary Information). These 
results suggest that these two parameters are highly redundant, thus we can effectively reduce our parameter set 
by fixing both to a large enough value.

In order to investigate the influence of the embedding dimension and the α sampling balance parameter, next 
we fix the environment parameters to =s 10 and =nb 10 based on our evaluation above. As shown in Fig. 6 (and 
in Supplementary Information for other networks) both increasing the number of embedding dimensions and α 
lead to better performances in predicting the spreading outcome. As the function of the number of dimensions, 
each case reaches a plateau in accordance with our earlier results presented in Section Effects of the dimension 
and of the neighbourhood sampling. On the other hand we observe somewhat stronger dependencies on α. While 
for the conference and the hospital networks the more one increases α the better the prediction gets, for the pri-
mary school and the high school networks the score reaches a plateau and become less sensitive to the change of 
α (see Fig. 6 and Supplementary Information). If we consider lower values of α, the similarity we capture between 
the event between adjacent events is mainly based on the co-occurrences, which are more relevant in school net-
works where participants might be active at the same time (e.g. in breaks between classes). This argument only 

Figure 5. R-squared values, r2, dependency on the nb number (x-axis) and s size (y-axis) of sampled 
environments. Figure (a) shows results for the conference network and Figure (b) for the primary school 
network. Colours and z-axis code the obtained average r2 score values for given nb and s parameter pairs 
computed over 10 realisations. α was fixed to 0.5; we set =d 20 for Figure (a) and =d 24 for Figure (b) - see 
Fig. 3.
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moderately applies to a conference or hospital where simultaneous interactions typically happen in smaller 
groups or not at all. Higher values of α imbalance the sampling to contain more information about temporal 
paths, which actually indirectly codes co-occurrence frequencies as well. This gives the advantage to the model to 
learn both type of similarities and to predict the epidemic outcomes with higher precision.
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