Amato, Elisabetta
(2022)
Modeling and optimization techniques for advanced vehicular networking, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Automotive per una mobilità intelligente, 34 Ciclo. DOI 10.48676/unibo/amsdottorato/10117.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (2MB)
|
Abstract
This thesis deals with optimization techniques and modeling of vehicular networks.
Thanks to the models realized with the integer linear programming (ILP) and the heuristic ones, it was possible to study the performances in 5G networks for the vehicular. Thanks to Software-defined networking (SDN) and Network functions virtualization (NFV) paradigms it was possible to study the performances of different classes of service, such as the Ultra Reliable Low Latency Communications (URLLC) class and enhanced Mobile BroadBand (eMBB) class, and how the functional split can have positive effects on network resource management. Two different protection techniques have been studied: Shared Path Protection (SPP) and Dedicated Path Protection (DPP). Thanks to these different protections, it is possible to achieve different network reliability requirements, according to the needs of the end user.
Finally, thanks to a simulator developed in Python, it was possible to study the dynamic allocation of resources in a 5G metro network. Through different provisioning algorithms and different dynamic resource management techniques, useful results have been obtained for understanding the needs in the vehicular networks that will exploit 5G. Finally, two models are shown for reconfiguring backup resources when using shared resource protection.
Abstract
This thesis deals with optimization techniques and modeling of vehicular networks.
Thanks to the models realized with the integer linear programming (ILP) and the heuristic ones, it was possible to study the performances in 5G networks for the vehicular. Thanks to Software-defined networking (SDN) and Network functions virtualization (NFV) paradigms it was possible to study the performances of different classes of service, such as the Ultra Reliable Low Latency Communications (URLLC) class and enhanced Mobile BroadBand (eMBB) class, and how the functional split can have positive effects on network resource management. Two different protection techniques have been studied: Shared Path Protection (SPP) and Dedicated Path Protection (DPP). Thanks to these different protections, it is possible to achieve different network reliability requirements, according to the needs of the end user.
Finally, thanks to a simulator developed in Python, it was possible to study the dynamic allocation of resources in a 5G metro network. Through different provisioning algorithms and different dynamic resource management techniques, useful results have been obtained for understanding the needs in the vehicular networks that will exploit 5G. Finally, two models are shown for reconfiguring backup resources when using shared resource protection.
Tipologia del documento
Tesi di dottorato
Autore
Amato, Elisabetta
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
34
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
5G, Slicing, Vehicular Networks, NFV, SDN, V2X, ILP, URLLC, eMBB, Optimization
URN:NBN
DOI
10.48676/unibo/amsdottorato/10117
Data di discussione
30 Marzo 2022
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Amato, Elisabetta
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
34
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
5G, Slicing, Vehicular Networks, NFV, SDN, V2X, ILP, URLLC, eMBB, Optimization
URN:NBN
DOI
10.48676/unibo/amsdottorato/10117
Data di discussione
30 Marzo 2022
URI
Statistica sui download
Gestione del documento: