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Abstract

In this dissertation, we will look at two fundamental aspects of Networks
— Network Analysis and Network Design. In part A, we look at Net-
work Analysis area of the dissertation which involves finding the densest
subgraph in a given graph. The densest subgraph extraction problem
is fundamentally a non-linear optimization problem. Nevertheless, it
can be solved in polynomial time by an exact algorithm based on the
iterative solution of a series of maximum flow sub-problems. Despite its
polynomial time complexity, the computing time required by the exact
algorithms on very large graphs could be prohibitive. Thus, to approach
graphs with millions of vertices and edges, one has to resort to heuristic
algorithms. We provide an efficient implementation of a greedy heuristic
from the literature that is extremely fast and has some nice theoretical
properties. We also introduce a new heuristic algorithm that is built on
top of the greedy and the exact methods. An extensive computational
analysis shows that the proposed heuristic algorithm proved very ef-
fective on a large number of test instances, often providing either the
optimal solution or near-optimal solution within short computing times.

In part B, we discuss Network design which is a cornerstone of math-
ematical optimization, is about defining the main characteristics of a
network satisfying requirements on connectivity, capacity, and level-of-
service. In multi-commodity network design, one is required to design a
network minimizing the installation cost of its arcs and the operational
cost to serve a set of point-to-point connections. The definition of this
prototypical problem was recently enriched by additional constraints
imposing that each origin-destination of a connection is served by a
single path satisfying one or more level-of-service requirements, thus
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Abstract

defining the Network Design with Service Requirements. These constraints
are crucial, e.g., in telecommunications and computer networks, in order
to ensure reliable and low-latency communication. In this paper we pro-
vide a new formulation for the problem, where variables are associated
with paths satisfying the end-to-end service requirements. We present a
fast algorithm for enumerating all the exponentially-many feasible paths
and, when this is not viable, we provide a column generation scheme
that is embedded into a branch-and-cut-and-price algorithm.
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1 Networks: A concise
introduction

Studying Networks has been an integral part of the curriculum for any
operation researcher. Networks, or sometimes also referred to as Graphs,
are mathematical structures that can be used to represent interaction
between objects. Graphs have been used for centuries to model real-world
scenarios, like Euler describing Seven Bridges of Königsberg in 1736.
In recent decades, tremendous advancements were made in analysing
graphs both from theoretical and computational point of views. With
these new advancements, it also became easier to represent various
real-world scenarios as graphs. Networks are corner stones of some of
the massive inventions in the past few decades. A network at its core
has two components — nodes or sometimes referred to as vertices and
edges or arcs, depending on the nature of the connections between the
nodes. The PageRank algorithm that made Google a powerhouse in
web search activity works on a graph where web pages are nodes and
the hyperlinks are the arcs. Similarly, GPS and online maps which uses
the road networks as graphs have changed the face of transportation
industry. The interdisciplinary nature of graph theory can be shown by
highlighting the works in the areas of social science, particularly in social
network analysis, friend network analysis and also in linguistics. There
are many other areas described in chapter 2.
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1 Networks: A concise introduction

1.1 Definitions

An undirected graph G is a mathematical structure that comprises of an
ordered pair (V, E) where,

• V is a set of nodes or vertices

• E is a set of edges where E 2 {{a, b}} | a, b 2 V and a ! = b. The
unordered pair of vertices {a, b} is called an edge between the
vertices a and b.

The above graph G is assumed to have a unique edge between any two
vertices. An undirected multigraph will have multiple edges connecting
the two same vertices. The graphs can also have loops which is an edge
from a vertex to itself.

The edges in simple graphs can also have real “weights”. The weights
can be used to represent real world phenomenon like distance, time or
importance of the connection between the two nodes. In this thesis, we
deal only with either weighted or unweighted simple graphs.

A directed graph G0 is similar to G but the connections between the
vertices are represented by arcs which are ordered pair of nodes. G0 is
an ordered pair of (V, A), where,

• V is a set of nodes or vertices

• A is a set of arcs where A 2 {(a, b)} | (a, b) 2 V2 and a ! = b.

The ordered pair of vertices {a, b} where a! = b is called a directed
arc between from the vertex a to vertex b. We primarily deal with simple
weighted directed graphs in this thesis.

While Graphs have been used to solve innumerable real-world prob-
lems, we focus on two special cases in this thesis — Graph Analytics
analysis and Network Design

2



1 Networks: A concise introduction

1.2 Graph Analytics:

[HI18] further shows the numerous interdisciplinary fields where graph
theory and analytics are indispensable. Graph analytics’ primary goal is
to extraction information that can be then used to solve some real world
business cases. [HI18] lists various kinds of analytics that can be run on
Graphs:

• Path Analytics: These analytics are probably the most fundamental
analysis that can be done on graphs. They primarily involve graph
traversal by using breadth first search (BFS) or Depth First Search
(DFS) algorithms and shortest path problems using numerous algo-
rithms like Dijkstra and Floyd-Warshall algorithms. We use these
algorithms a lot in various applications throughout this paper.

• Connectivity: Connectivity is again a fundamental graph analytics
tool and is used primarily to find connected components which in
turn have lot of practical implications like finding largest compo-
nents or number of connected components.

• Ranking: In any real world network, not all vertices are assumed to
have equal importance. There are various vertex or edge centrality
measures proposed in [Fre78] that highlight the importance of the
vertices to the graph network. As described before, algorithms like
PageRank also tell us how important a web page is in the internet.

• Clustering and Subgraph Detection: Clustering is one of the most
studied “big-data” algorithm to find subgraphs in a given graph
containing vertices with similar characteristics. We can cluster based
on some rules (like cliques) or detecting communities (vertices in
a community have high connectivity with other vertices and low
connectivity with vertices outside the community). One can also be
interested in detecting a specific subgraph that satisfies a particular
metric like say density. We discuss more about finding densest
subgraphs in Chapter 2

3



1 Networks: A concise introduction

While there are other graph analytics methods that we have not men-
tioned, we described the most important ones related to this manuscript.
For more information, readers can refer to [Bol98] and [RKF12]

1.3 Network Design

Over the past few decades, tremendous amount of research has been
done in the area of Network Design to create cutting edge transporta-
tion and supply chain networks which lead to invaluable amount of
savings in time, resources and money. While the area of Network Design
was primarily used for transportation science problems, in the recent
areas, communication networks like telecommunication and wireless
communication networks are also using network design principles to ef-
fectively transfer data. [MW84] describe how network design can achieve
both long-term and short-term goals of effective transportation plans.
Network planning that involves building airports, shipyards, highways
probably require billions of dollars in investment have to be very care-
fully planned and Network Design applications and algorithms plays
a fundamental role in catering to the multiple constraints of resources,
budget , service etc and providing with the best outcome. [MW84] also
give examples for intermediate level network design like warehouse
of facility location problems. Many e-commerce sites like amazon and
postal carriers like UPS, FedEx have to do network planning on almost
daily basis to find optimal routes for their drivers to delver the goods. To
summarize, irrespective of the time frame of outcomes or scale of invest-
ment, Network Design plays a crucial role in our lives and poor network
choices can waste lot of money and result in sub-optimal outcomes.

1.3.1 Models for Network Design

[MW84] mentions a generic network design problem. It consists of N, a
set of vertices and A, a set of arcs. In most cases, we also have K, a set
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1 Networks: A concise introduction

of commodities and their respective sources and sinks, and fixed and
variable or operating costs for the arcs. The network design problem tries
to route these commodities from their sources to sinks trying to achieve
the required outcome and respecting the constraints. This problem can be
solved by integer programming by creating necessary fixed-arc variables
to find out which arcs are present in the final solution and commodity-arc
variables to find out which commodities are being routed by which arcs.
We discuss more about this problem in chapter 5

The above generic problem can be used to represent some special cases
of network design problems. [MW84] list the following network design
problems that can be modeled and solved by integer programming:

• Shortest Path Problems and Minimum Spanning trees

• Traveling Salesman Problem

• Vehicle Routing Problem

• Facility Location Problem

• Traffic Equilibrium

In addition to the above problems, we study Network Design with
Service Requirements in chapter 5 and propose algorithms to solve them
efficiently.

5



2 Dense Subgraphs:
Introduction

A graph is a mathematical structure containing vertices and edges that
is often used to represent different real-life scenarios. Besides very tra-
ditional applications in transportation, mapping, and logistics, graphs
may also be used to describe many social, biological, financial, and tech-
nological systems. In these cases, vertices represent individuals, cells,
proteins, components, and edges represent some kind of interaction be-
tween the vertices. As a result, Graph Theory is one of the most extensively
researched areas in computer science.

Graph networks that arise in real-life applications have edges which
are either weighted or unweighted. While unweighted edges simply
represent some connection between two vertices, weighted edges can be
used to indicate the importance of a connection in the graph, or the time
required for traveling on a given edge, or the probability of an edge to
occur in the network. The edges could be further directed or undirected:
the former model one-way relationships, like the “follow" network in
Twitter, while the latter are used for two-way connections, for instance,
Facebook friendships.

Identification of dense areas is a very interesting problem in social
network analysis. Intuitively, dense areas in a graph can be considered
to be a subset of highly-connected vertices that correspond to regions
where there is more interaction among the vertices. For instance, con-
sider a network describing the interactions between various Internet
Service Providers, exchange points, customers, and other related parties:
identifying dense subgraphs in this network allows us to detect critical
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2 Dense Subgraphs: Introduction

points of failure, which could further help in planning for contingencies
to mitigate unplanned service outages. Similarly, for social networks,
dense subgraphs identify areas of common interests and communities.
Many other examples where finding dense subgraphs is a key problem
are detailed in [Lee+10] and in [For10].

The first few chapters in this dissertation deals with the search of dense
subgraphs in large graphs. The content is organized as follows. Chapter 2
discusses the definition of the problem and gives an overview of both the
historical and more recent approaches to the Densest Subgraph Extraction
(DSE) problem. Section 3 reviews the existing literature, presenting the
main exact approaches for computing an optimal solution of the DSE
problem, and an existing heuristic algorithm known as Greedy Peeling.
Section 3.1 introduces a new algorithm called the Hybrid algorithm that is
built on top of Greedy Peeling and an exact algorithm. All algorithms are
computationally tested in Section 4 on a large set of graph instances taken
from the literature including both unweighted and weighted graphs.
Finally, Section 9.2 gives a summary and draws some conclusions.

We list three main contributions in this disseration pertaining to dense
subgraph discovery. From a practical viewpoint, we introduce a simple
heuristic algorithm that is built on top of the greedy heuristic and any
exact method. Our proposed algorithm is typically very fast, produces
solutions that improve over the greedy solution, and gives us near-
optimal solutions.

From a theoretical point of view, we present a simple graph instance
where the Greedy Peeling algorithm approaches its worst-case perfor-
mance. To the best of our knowledge, there is only one other example in
the literature showing a similar behavior of the Greedy Peeling algorithm
(see [GT15]) but the example we present is simpler than the existing
one. Besides, the example provided in [GT15] refers to a disconnected
graph, and could be efficiently tackled by considering each connected
component, one at a time. On the contrary, our example is a connected
graph, for which we show that the Greedy Peeling algorithm achieves the

7



2 Dense Subgraphs: Introduction

theoretical worst case performance.
Finally, from a computational perspective, we present a thorough

experimental analysis, that is by far the most extensive in the literature for
this class of problems. While most of the previous works in the literature
have dealt with small or medium sized instances, in this dissertation
we make a considerable step forward concerning the instance size by
considering graphs with tens of millions of vertices and hundreds of
millions of edges. Our computational study shows that the practical
performance of the Greedy Peeling is much better than its theoretical
guarantee, and that a further improvement can be achieved with limited
computational effort.

2.1 Definition of the problem

In this section we give a formal definition of the problem. Let G = (V, E)
be an unweighted, undirected graph with vertex set V and edge set E.
Throughout the text, we will assume that G is a simple graph, i.e., there
are no multiple edges connecting the same pair of vertices. The density
of G, sometimes referred to as average degree, is defined as

f (G) =
|E|
|V|

, (2.1)

and corresponds to the ratio between the number of edges and the
number of vertices in the graph.

For a given subset of vertices S ✓ V, we define E(S) as the induced set
of edges, i.e., E(S) = {(u, v) 2 E : u 2 S, v 2 S}, and G(S) = (S, E(S))
as the subgraph induced by S. When no confusion arises, we will write
that set S has a density

f (S) = f (G(S)) =
|E(S)|
|S|

(2.2)

Given an unweighted graph G = (V, E), the Densest Subgraph Extraction
(DSE) problem requires to determine a subset S ✓ V of vertices that

8



2 Dense Subgraphs: Introduction

induces a subgraph of maximum density. Although it can be easily
proved that there always exists an optimal solution to the DSE problem
inducing a connected subgraph, we do not make any assumption on the
input graph.

As already mentioned, in many applications each edge (u, v) 2 E has
a positive weight wuv, which could, for instance, be used to represent
the importance of a relationship between two vertices in the network.
Weighted graphs can also be used to model a unique scenario where the
actual edge set is unknown and each potential edge has an associated
non-negative probability. In this probabilistic setting, one is interested
in finding a subgraph that has a large probability to be the one with
maximum density. This leads to a natural extension of the density
definition in (2.1) to the edge-weighted graphs as

f w(G) =

Â
(u,v)2E

wuv

|V|
. (2.3)

Similarly, we can define the weighted density for a given subset S ✓ V
of vertices.

The aforementioned density definitions are valid for undirected graphs
only. For directed graphs, different definitions are typically used and we
refer the interested reader to [Cha00; KS09].

The DSE problem has been studied since the early 1980s. Though
this problem is fundamentally an unconstrained non-linear optimization
problem, it can still be solved efficiently. Indeed, a flow-based algorithm
to get an optimal solution of the problem for unweighted graphs was
introduced in [PQ82] and it requires utmost |V| max-flow (min-cut)
operations on a network of |V|+ 2 vertices, i.e., it runs in polynomial time.
Later, an alternative flow-based algorithm with better computational
complexity was introduced in [Gol84]. This algorithm determines the
densest subgraph in only O(log(|V|)) max-flow operations and can
easily be extended to weighted graphs. Finally, a parametric max-flow
algorithm which can solve the DSE with a single max-flow computation

9



2 Dense Subgraphs: Introduction

was given in [GGT89]. This parametric max-flow algorithm improves
upon the complexity of the previous method described in [Gol84] by a
factor of log(|V|).

Though solvable in polynomial time, computing densest subgraphs
using flow-based algorithms could be very time consuming for very large
graphs. Thus, when real-world applications with millions of vertices
and edges are considered, one has to resort to heuristics. One of the
most important heuristic algorithms for the DSE problem is the Greedy
Peeling introduced in [Asa+00]. Besides being very fast in practice,
this algorithm has nice theoretical properties. It has been proved in
[Cha00] that this algorithm has a worst-case 2-approximation, i.e., the
density of the subgraph found by Greedy Peeling is at least half of the
density of the optimal subgraph. The algorithm can be implemented to
have time complexity of O(|E|+ |V|) in case of unweighted graphs and
O(|E|+ |V| log(|V|)) in case of weighted graphs. Finally, we mention
a variant of the Greedy Peeling algorithm, introduced in [BKV12], that
can be implemented in a distributed way and for which the input is
not stored, in order to reduce the memory requirement. This algorithm
makes O(log(|V)|) passes over the input graph and uses O(|V|) main
memory, and has a worst-case approximation equal to (2 + 2e) for any
e > 0.

In some applications, additional constraints are imposed to limit (either
from below or from above) the size of set S; in this case, the resulting
problem becomes an NP-hard problem. An extensive discussion on
finding dense subgraphs with size bounds can be found in [AC09].

Many alternative definitions of density have been proposed in the
literature. Indeed, the average-degree definition may produce subgraphs
that have a large number of vertices, and are not extensively connected.
For instance, a clique, which is intuitively a dense subgraph, might not be
the densest subgraph according to the average degree, as another larger
and loosely connected subgraph could produce a bigger ratio according
to (2.1). Figure 2.1, shows an example in which the whole graph corre-
sponds to the densest subgraph, with a density of 18

7 = 2.57 , although

10



2 Dense Subgraphs: Introduction

a clique exists (defined by the vertices in the dashed circle) that has a
density equal to 15

6 = 2.5. Additional considerations about the downsides
of using definition (2.1) as a metric to find the dense subgraphs are given
in many papers from the literature. A different density metric, called
quasi-clique, was introduced in [Tso+13]; according to this definition, the
density of graph G = (V, E) is given by f (G) = |E(S)|� a(|S|2 ), where
a is a tuning parameter. The authors in [Tso+13] claim that quasi-clique
metric is better than average-degree, as it was shown that quasi-clique pro-
duces subgraphs that are tightly connected and smaller. In the same vein
as [Tso+13], authors in [HS18] proposed another density metric called
discounted average degree as f (S) = |E(S)|

|S|b , where b is a parameter that can
be chosen to affect the size of the desired subgraph. They also give four
desirable properties of a density metric and show that their discounted
average degree metric performs well on satisfying those four properties.
Other than these two definitions, also depending on the type of graph,
there have been many other proposed definitions of density, including
edge ratio, triangle density, and triangle ratio, and others (see [ARS02;
BBH11; CS12; Tso14]).

Figure 2.1: A small example to understand in which a clique is not the
densest subgraph

11



2 Dense Subgraphs: Introduction

Despite these alternatives, there is no clear consensus on using any of
them as standard, and average degree remains the most common and
accepted.

12



3 Algorithms to find dense
subgraphs

In this section we discuss solution approaches for the DSE problem that
have been proposed in the literature. The next subsection describes
an exact algorithm and a mathematical formulation of the DSE, while
Section 3.0.2 presents a greedy heuristic and analyzes its theoretical
performance.

3.0.1 Exact algorithms

The first exact algorithm we consider is the Goldberg’s algorithm which
has been introduced in [Gol84] and is a relatively fast exact algorithm
to compute the densest subgraph in a given graph G. For the sake
of completeness, we report the algorithm’s pseudo code in Figure 3.1.
The algorithm iteratively guesses the solution value, solves a max-flow
problem on an augmented network, and updates the value of the guess.

Figure 3.2 shows an illustration of an augmented network for a given
guess g. The vertex set in the network is V [ {s, t}, i.e., there are |V|+ 2
vertices. Each edge in G is replaced by two reverse arcs with unit
capacity. In addition, there is an arc from vertex s to each vertex v 2 V
with capacity |E|, and an arc from each vertex v 2 V to vertex t with
capacity (|E|+ 2g � dv), where dv is the degree of vertex v with respect
to G.

At each iteration, the algorithm defines the augmented network A(g)
associated with the current guess g and computes a max s � t flow
(minimum cut) on this network. Depending on whether the minimum cut

13



3 Algorithms to find dense subgraphs

Goldberg’s: input = G(V, E)

initialize: ` := 0, u := |E|, SE = ∆;
while u � ` � 1

|V| (|V|�1) do

g := u+`
2 ;

‘ ’ define the augmented network A(g) associated with g;
find the minimum cut

�
S, T

�
in A(g);

if S = {s} then u := g
else

l := g;
SE := S \ {s};

end while
return SE

Figure 3.1: Goldberg’s algorithm

isolates vertex s, or instead separates the vertices in V in two nonempty
subsets, the current g value reveals itself either a lower or an upper
bound on the optimal density. The algorithm updates these bounds
accordingly, until the difference between lower and upper bound is
below some threshold.

It was proved in [Gol84] that, as the optimal g value can only take
a finite set of values in the interval [0, |E(S)|], the binary search con-
verges to the optimal value and the number of iterations is bounded by
O(log(|V|)). There are many efficient algorithms for solving max-flow
problem (see, e.g., [Hen+18]). Using the Push-Relabel algorithm (see
[GT88]), the max-flow problem can be solved in O(|V|3) time, producing
an overall O(log(|V|) |V|3) time complexity for Goldberg’s algorithm.

A completely different exact solution method has been proposed in
[Cha00]. This approach describes the DSE problem by means of a Linear
Programming (LP) model, that can be solved using any general-purpose
LP solver. The LP model can easily be extended to the weighted case
with minor modifications. The model has |V|+ |E| variables and two
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Figure 3.2: Augmented network A(g), courtesy of [Gol84]

constraints per edge, i.e., its size is polynomial in the size of the input
graph. Despite this, the constraint matrix of the formulation can be mas-
sive and the memory requirements to solve the model can be prohibitive
for large graph instances. Typically this produces computational perfor-
mances that are worse than those of the flow-based Goldberg’s algorithm
discussed above. However, the LP model provides a good foundation
for finding dense subgraphs in directed graphs and its related proofs as
discussed in [Cha00].

3.0.2 Greedy Peeling algorithm

For very large graphs, the application of the exact algorithms described
in the previous section may require large memory and long computa-
tional times. This is where heuristic approaches can be used for getting
reasonably good solutions quickly. The heuristic algorithm described
in this section produces subgraphs whose density is usually close to an
optimal one.

As the objective of DSE is to find a subgraph with best average degree,
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the algorithm consists of starting with the initial graph and removing,
one at a time, a vertex with the smallest degree in the current graph.
The resulting algorithm, called Greedy Peeling, is described in Figure 3.3
and can be naively implemented to run in O(|V|2) time. To prove the
time complexity it is enough to observe that there are n iterations; each
iteration requires O(|V|) time to find the vertex u with minimum degree
with respect to the current subgraph (breaking ties arbitrarily), and
another O(|V|) time to update the subgraph once u has been removed.
A more efficient implementation can be obtained using a “degree-lists”
data structure, in which a list is defined for each possible value of the
degree of a vertex. All vertices with same degree are placed in the same
list and lists are ordered by increasing degree. Using this data structure,
the determination of the next vertex u to be removed can be done in
constant time, taking an arbitrary vertex in the first non-empty list. Since
removing vertex u decreases the degree of its neighbors by one unit,
updating the graph (essentially data-lists) can be done by moving each
neighbor of u from its current list to the previous one (i.e., to the list
with degree one less than current degree). Since the number of vertex
movements among the lists is equal to the number of edges of G, the
time complexity of the algorithm is O(|E|+ |V|). The results in this
paper (see Section 4) correspond to this implementation of the algorithm.

Greedy Peeling: input = G(V, E)

initialize: n := |V|, Sn := V;
for i = n to 1 do

let u be the smallest degree vertex in G(Si);
Si�1 := Si \ {u};

endfor
SH2 arg maxi=1,...,n f (Si);
return SH

Figure 3.3: Greedy Peeling algorithm for the unweighted case.
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Extension to the weighted case.

The Greedy Peeling algorithm can easily be extended to the weighted case
by selecting, at each iteration, vertex u as the one having the minimum
weighted-degree, i.e., the weighted sum of all the incident edges with
respect to the current subgraph. However, the linear time complexity
of the algorithm is not preserved because the degree-lists data structure
cannot be used for graphs with general weights. Using Fibonacci heaps
to determine, at each iteration, the minimum weighted-degree vertex,
the algorithm runs in O

�
|E|+ |V| log(|V|)

�
, see [Cha00]. The degree-

lists implementation could also be used to determine weighted dense
subgraphs, similar to the unweighted case, if weights are either integer
numbers or are all scaled to integers. Assume the weights are integers
and let u be the vertex that has currently been selected for removal. The
weighted-degree of each neighbor of u, say vertex v, is decreased by an
amount wuv, instead of one as in the unweighted case. However, using
degree lists may yield to a considerable worsening in the performance
of the algorithm as the number of lists to be considered is bounded by
the maximum weight degree of all vertices, i.e., it is pseudo-polynomial
in the size of the input (and is strongly dependent on the number of
significant digits in the weight values, if they are not integers).

To avoid this issue, we use binary heaps to implement the Greedy
Peeling algorithm for the weighted case. A binary heap data structure
is a complete binary tree which satisfies heap ordering. In particular,
we use the min-heap property, which requires that the value of each
node in the tree is greater than or equal to the value of its parent node.
Initially, we compute the weighted-degree of each vertex and insert all
the vertices in a heap data structure satisfying the min-heap property. At
each iteration, determining the next vertex to be removed can be done in
constant time, as the minimum value is associated with the root node
of the tree. Once a vertex has been removed, updating the weighted
degree of its neighbors and rearranging those vertices in the heap can
be done in O(log(|V|)) time. In the following, we will report results for
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this implementation, which works for both rational and integer weights,
and is very fast in practice even for large graphs.

Worst-case analysis

The theoretical performance of the Greedy Peeling algorithm was analyzed
in [Cha00] (and in [Asa+00] for a constrained version of the DSE problem),
where the worst-case performance ratio of the algorithm was proved to
be equal to 2. To the best of our knowledge, the only example for which
the approximation is asymptotically tight has been given in [GT15].

In the following we present a simpler instance, where the worst-case
performance ratio is approached. In addition, while the example reported
in [GT15] is based on a disconnected graph, the following instance
refers to a connected graph. To the best of our knowledge, this is
the first example showing that the worst-case performance ratio of the
algorithm may be hit for connected graphs as well. This result provides
a relevant piece of information about the performance of the Greedy
Peeling algorithm; indeed, it shows that, given a disconnected graph, the
worst-case approximation provided by the algorithm cannot be improved
by sequentially considering all the connected components, one at a time.

The instance shown in Figure 3.4 is a graph G which has two vertices
u and v connected by an edge; both vertices u and v are also connected
to additional 2k vertices indexed by {1, . . . , 2k} by 4k edges. Vertices
u and v are also connected by a path consisting of another set of t
vertices and t + 1 edges. Thus, graph G has 2 + 2k + t vertices and
1 + 4k + t + 1 = 4k + t + 2 edges.

At the first iteration the Greedy Peeling considers the full graph, which
has a density equal to f (G) = 4k+t+2

2k+t+2 . In the first 2k iterations, all vertices
but u and v have degree 2. Breaking ties by lowest index, the algorithm
removes, in turn, vertices 1, 2, . . . , 2k. Each vertex removal induces the
elimination of two edges from the remaining subgraph; it is easy to see
that the resulting density cannot be larger than f (G). When vertices 1, 2,
. . . , 2k have been removed, the remaining subgraph is a cycle spanning
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Figure 3.4: Bad connected instance for the Greedy Peeling. The graph has
2k + t + 2p vertices and 4k + t + 2 edges.

t + 2 vertices. Regardless the order in which the vertices are removed,
the algorithm encounters subgraphs having a density smaller than the
initial one. Thus, the Greedy Peeling returns a heuristic solution with
value f G = 4k+t+2

2k+t+2 .
An optimal solution is defined by vertex set {1, 2, . . . , 2k} [ {u, v} .

The induced subgraph has 2k + 2 vertices and 4k + 1 edges, hence the
optimal solution value is f ⇤ = 4k+1

2k+2 . Thus, the ratio between the optimal
and the approximate solution values is given by

f ⇤

f G =
4k+1
2k+2

4k+t+2
2k+t+2

=
(4k + 1)(2k + t + 2)
(2k + 2)(4k + t + 2)

(3.1)

Taking t = k2 we have that f ⇤

f G is arbitrarily close to 2 for sufficiently large
values of k.

Finally, observe that a simple adaptation to the weighted case of the
worst-case analysis given in [Cha00] shows that, also in this case, the
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Greedy Peeling returns a solution value which is at least half of the optimal
density. As graph G is a weighted instance with all weights equal to 1,
this results shows that the worst-case approximation ratio is tight in the
weighted case as well.

3.1 Hybrid algorithm

Hybrid: input = G(V, E)

// Greedy Peeling

S1 := Greedy Peeling
�
G(V, E)

�
;

// Expansion phase

S2 := {v 2 V : (u, v) 2 E for some v 2 S1};

E2 := {(u, v) 2 E : u 2 S2, v 2 S2};

// Exact phase

SH := Exact
�
G(S2, E2)

�
;

return SH

Figure 3.5: Hybrid algorithm.

In this section we present a Hybrid algorithm that combines the Greedy
Peeling and an exact algorithm to improve the greedy solution value. The
algorithm is given in Figure 3.5 and consists of three phases, namely
Greedy Peeling, Expansion phase, and Exact phase. The first phase cor-
responds to the execution of the Greedy Peeling algorithm discussed in
Section 3.0.2 and is intended to quickly produce an initial solution. Using
this initial greedy solution, the Expansion phase obtains a “core” sub-
graph, which is likely to contain either all or most of the vertices in an
optimal solution. Finally, the Exact phase solves the DSE problem on
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the core using an exact algorithm, for instance, the flow-based Goldberg’s
algorithm or the LP approach described in Section 3.0.1.

The Expansion phase takes in input a subset of vertices S1, possibly
identified by the Greedy Peeling, expands the vertex set by adding all
those vertices that are neighbors of one vertex in S1, and defines the
induced edge set E2. An implementation of this phase is described in
Figure 3.6. Set S2 includes all the vertices that are currently included
in the expanded graph. Before the Expansion phase, S2 = ∆. In the
Expansion phase we considers all vertices in S1, one at a time. For each
u 2 S1, we consider all its neighbors; if the current neighbor v is in
S1 \ S2, we add the edge (u, v) to E2. If v /2 S2, we add vertex v to S2

and edge (u, v) to E2, and scan all neighbors of v; for each neighbor k

Expansion: input = S1, V, E
S2 := ∆, E2 := ∆;
//consider each vertex u in the input solution

for each u 2 S1 do
S2 := S2 [ {u};
// add all neighbors of u

for each v 2 V : (u, v) 2 E do
if v 2 S1 then

if v 2 S2 then E2 := E2 [ {(u, v)};
else

S2 := S2 [ {v}, E2 := E2 [ {(u, v)};
// add edges between vertices that both are in S2 \ S1

for each k 2 S2 \ S1 : (v, k) 2 E do E2 := E2 [ {(v, k)};
endif

endfor
endfor
return G(S2, E2)

Figure 3.6: Expansion phase.
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that is currently in set S2 we also add an edge (v, k) to E2.
Figure 3.7 gives an example of the Expansion phase. The original

graph has 12 vertices and S1 = {5, 6, 7, 8}. At first, S2 = ∆. We can
start at vertex u = 5 which makes S2 = {5} and consider the first of its
neighbors, i.e., vertex v = 2. From the algorithm, we can add vertex 2
to S2 and the edge (2, 5) to E2. Now, we scan the neighbors of 2 and
we can add an edge to E2 if any of the neighboring vertices of 2 are
present in S2. Since no new neighboring vertices of 2 (essential vertex
1) are present in S2, we do not add any new edges to E2. So we have
S2 = {5, 2} and E2 = {(2, 5)}. Then, we examine the other neighboring
vertices of 5 namely 6, 7 and 8. As all these vertices belong to S1 and
none of them are in S2, no action is taken. Then, we move on the next
member in S1, i.e. u = 6. We add 6 to S2 and examine the neighbors of 6.
We have vertex v = 3 that can be added to S2 and the edge (3, 6) can be
added to E2. Now, S2 = {5, 2, 6, 3} and S2 \ S1 = {2, 3}, implying that
edge (3, 2) has to be added to E2. Since no other edge can be added, we
then move on to the next neighbor of 6, namely 5. When considering this
vertex, edge (6, 5) can be added to E2 as 5 is in both S1 and S2. As all
the neighbors of 6 have been considered, we move onto the next vertex
in S1, i.e. 7. We continue doing the above process for all the members in
S1 until we get the expanded subgraph, shown in Figure 3.7(b)

In the third phase, an exact algorithm is applied to the graph obtained
by the Expansion phase. Typically this graph is much smaller than the
original one, allowing a fast execution of the exact algorithm. In addition,
if the flow-based algorithm is used, the greedy solution value, combined
with the 2-approximation guarantee of the method, produces good initial
lower and upper bounds for the value of the density, which can be used to
speed up the binary search. The biggest caveat is that there are instances
for which the Greedy Peeling produces very large subgraphs. In this
situation, the Expansion phase may require a very long computing time,
and often returns the original graph, making this approach impractical.
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Figure 3.7: Expansion phase example
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4 Dense Subgraphs:
Computational experiments

4.1 Setup and programming

All the algorithms described in this paper were implemented in C++ us-
ing standard containers, like std::vector, std::queue. We used the GCC
compiler with a high level of optimization enabled (-O3). All our experi-
ments were executed on a computer equipped with an Intel(R) Xeon(R)
CPU E3-1220 V2 @ 3.10GHz CPU and 16 GB of RAM; all computing
times (t) given below are expressed in milliseconds.

In the following we report the results obtained using the three algo-
rithms, namely:

• The Greedy Peeling discussed in Section 3.0.2.

• The Hybrid algorithm of Section 3.1.

• The flow-based exact algorithm (Goldberg’s algorithm) of Section
3.0.1. This algorithm embeds a push-relabel algorithm to compute
the max-flow (min-cut) with O(|V|3) time complexity. It should
be noted that this algorithm requires to construct an augmented
network which has more than twice the number of edges than the
original graph network. As a result, the augmented network could
occupy very large space in memory, and hence the algorithm may
fail for memory requirement on very large instances.

We analyzed both weighted and unweighted instances (see below). For
weighted instances, the Greedy Peeling was implemented using binary
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heaps as this solution turned out to be much more efficient than using
the degree-list implementation. As to the Goldberg’s algorithm, it required
very minor modifications for handling the weighted case as well. The
Hybrid algorithm uses the Greedy Peeling and the Goldberg’s algorithm
as modular components to create and solve the expanded subgraph
respectively, while the Expansion phase clearly is not affected by the
presence of weights on the edges.

4.2 Testbed

All the instances, both unweighted and weighted, were taken from Suite
Sparse Collection [DH11]. To select a meaningful set of instances, we
considered graphs that:

(i) are classified as undirected graph or undirected weighted graph or
undirected graph with communities or undirected random graph;

(ii) have at least 20,000 vertices;

(iii) have at most 65,000,000 vertices and 150,000,000 edges; and

(iv) only have positive weights (for weighted instances).

As informed in Section 2.1, the definition of density for directed graphs
is significantly different than for undirected graphs and hence (i) we only
considered the latter. Since the DSE is solvable in polynomial time, and
hence optimal solutions are obtained with limited effort for small graphs,
(ii) we chose to only consider instances that are “not too small” and
may therefore be challenging for our algorithms. We also imposed some
upper-bounds on the size of the graphs as any graphs which are bigger
than the ones mentioned in (iii) can not be solved by any algorithm on
our machine as all of them run out of memory. And finally, (iv) we only
considered graphs with positive weights, as all algorithms discussed
in this paper do not have a straightforward extension when negative
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weights are considered. For instance, Goldberg’s algorithm would fail in
case of negative weights.

This produced a testbed with 170 instances. The benchmark includes
50 census-based weighted graphs (like xx2010 in Table 4.8) that have
very similar characteristics. To avoid presenting very similar results,
we decided to consider only the ten largest among these instances. In
addition, we have also considered three large directed graphs (called
Wikipedia instances), that were present in the computational analysis
in [Tso+13]; for these instances, minor modifications were required, e.g.,
converting directed arcs to undirected edges and removing duplicated
edges. Finally, we do not present the results on some graphs where the
greedy algorithm fails.

The majority of the graphs in our testbed are unweighted and hence
we have further partitioned them into different buckets, depending on
their size. The Medium bucket contains those instances which have less
than 1,000,000 vertices. The Large bucket contains instances having more
than 1,000,000 vertices but less than 10 million vertices and less than
50,000,000 edges. Finally, the Massive bucket includes all the remaining
instances.

4.3 Analysis on instances in the Medium bucket

In this section we report the outcome of our computational experiments
on the instances in the first bucket, that contains 41 instances.

Table 4.1 gives the results and reports, for each instance, the following
information:

• The name of the instance and the main characteristics of the graph.

• For the Greedy Peeling algorithm: the required computing time tG
and the associated density value fG.

• For the Hybrid algorithm: the computing time for the Expansion
phase and for the Exact phase (t2 and t3, respectively), the overall
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computing time tH of the algorithm and the density value fH of the
best solution found.

• For the exact algorithm (Goldberg’s algorithm): the required com-
puting time tE and the density value f ⇤.

If an algorithm runs out of memory during its execution, we report the
failure by ‘–’. The bold numbers in the table indicate the best density
found. In case of ties, the density of the fastest algorithm is boldfaced.

Results in Table 4.1 show that Goldberg’s algorithm can handle this set
of instances quite efficiently: the required computing time is equal to
162 seconds on average and no failure was experienced due to memory
reasons. The Greedy Peeling algorithm, though having a worst-case
performance ratio equal to 2, gives a very tight approximation on the
optimal density in practice, as the average gap with respect to the optimal
density is 3.12%. In addition, this algorithm is very fast, the average CPU
time being around 0.09 seconds.

The Hybrid algorithm has good performances, as it improves over
the greedy solution in 27 cases, but it runs out of memory for instance
mycielskian17; on the remaining 40 instances, the average percentage gap
of the algorithm is about 1.14%. The table shows that there are a number
of instances for which the Hybrid algorithm performs poorly in terms of
computing time. In Table 4.2 we report all the instances where the ratio
of tH

tE
> 0.75 and where the Hybrid algorithm runs out of memory. For

each such instance, the table gives:

• The name of the instance.

• The number of vertices |S1| in the subgraph produced by Greedy
Peeling and the ratio between |S1| and the total number of vertices
V.

• The number of vertices and edges (|S2| and |E2| , respectively) in
the expanded subgraph and the ratio between |S2| and the total
number of vertices V.
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Table 4.2 shows that the Hybrid algorithm encounters difficulties while
dealing with instances where the solution produced by Greedy Peeling has
almost the same number of vertices as the whole graph. And sometimes,
even when Greedy Peeling produces a smaller and more compact solution,
the Expansion phase produces either the original graph or almost the
original graph. For these specific instances, which are identified by
the ratio |S2|/|V| being close to 1, the Expansion phase may be time
consuming, and the application of Goldberg’s algorithm after Expansion
requires similar computing time as applying Goldberg’s algorithm to the
original instances. Thus, the Hybrid algorithm may overall be even slower
than the direct application of Goldberg’s algorithm on the initial graph
instances. The average computing time taken by the Hybrid algorithm
for instances in the Medium bucket is around 115 seconds; if we exclude
the 14 pathological instances listed in Table 4.2, time take by the Hybrid
algorithm falls to around 21 seconds.

4.4 Tuning of the algorithm

In this section we present some additional results for evaluating variants
of the Hybrid algorithm. In particular, we consider:

• H1: This algorithm is aimed at evaluating the effect of the Expansion
phase. In this scheme we simply disabled the Expansion phase
of the Hybrid algorithm and executed Goldberg’s algorithm on the
subgraph produced by Greedy Peeling. However, since the output of
the latter consists of a set of vertices only (S1), the associated edges
have to be reconstructed and stored.

• H2: This algorithm is used to evaluate possible solution improve-
ments obtained by repeatedly performing the Expansion and Exact
phases. The algorithm operates in two steps: first, it executes the
Hybrid algorithm and stores the associated solution. Then, this so-
lution is expanded again using the Expansion phase and Goldberg’s
algorithm is invoked on the resulting subgraph.
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• H3: This algorithm is intended to evaluate if a different way to
expand could produce a larger graph, allowing Goldberg’s algorithm
to determine a subgraph with better density. In particular, given
the set S1 of vertices produced by Greedy Peeling, this algorithm
executes the Expansion phase twice in sequence. In this way, the
graph which is used as input for Goldberg’s algorithm includes
the neighbors of the vertices in S1 and also the neighbors of the
neighbors.

In these experiments, we consider again the 40 instances in the Medium
bucket but mycielskian17. Table 4.3 gives results for the three schemes
above, as well as for the Greedy Peeling and for the Hybrid algorithm
described in Section 3.1. For each algorithm, we report the average values
of the computing time (in milliseconds) and average percentage gap with
respect to the optimal solution. The statistics are computed with respect
to all instances in the Medium bucket but the instance mycielskian17.

These results show that variants H2 and H3, while requiring additional
computational effort when compared to the Hybrid algorithm, only pro-
duce negligible improvements in the solution quality.

The situation is less clear for H1, which is computationally less expen-
sive than the Hybrid algorithm, but also finds solutions of lower quality;
for this reason, we analyzed the performance of these two algorithms on
a restricted subset of instances. According to the results in Table 4.2, the
Hybrid algorithm performs badly if Goldberg’s algorithm is applied to a
graph whose size is comparable with the original one. For this reason,
we removed all instances for which our solution approach has small
probability of being successful, and selected the instances for which
|S2|/|V| < 0.85 (resp. |S1|/|V| < 0.85 for H1). Table 4.4 reports the
statistics with respect to these instances only. As the number of these in-
stances depends on the algorithm, we also report the number of instances
that are used for comparison. On this restricted benchmark, H1 has an
average percentage gap of around 3% and an average computing time
of 18 seconds, while the Hybrid algorithm has a slightly larger average
computing time (around 21 seconds), but the average percentage gap is
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almost halved (around 1.7%), thus showing the robustness of our design
choices.

4.4.1 Disconnected graphs.

As previously mentioned, when the DSE problem is solved for a discon-
nected graph, there always exists an optimal solution corresponding to
a connected subgraph. Hence, instead of running an algorithm on the
whole graph, a possible strategy involves executing it on each component
separately. Although checking for connectivity in a given graph is an
easy task, its practical difficulty depends on the size of the graph and on
the way it is described. For example, when the graph is described as a
list of edges, extracting and storing the connected components requires
an increased memory usage, which can be a problem for huge graphs.

Analyzing instances in our benchmark, we found that most of them
are connected graphs. As to the remaining disconnected ones, each of
them typically has few large components with many vertices, and a very
large number of small components that have very few vertices. Hence,
in order to evaluate possible improvements obtained by considering
each component separately, we tested both Greedy Peeling and Hybrid
algorithm where we: i) first detect the connected components of the
input graph by using Depth-first search algorithm, and then ii) run the
specific algorithm on the largest connected component only.

Table 4.5 reports the statistics for the 12 instances in the Medium bucket
that are disconnected. It shows us the average computing time (in
milliseconds) and the average percentage gap for both Greedy Peeling
and Hybrid algorithm executed on the original graph and on the biggest
component in the said original graph. The table shows that component
detection has limited impact in terms of computing time, as for both
algorithms we observe a small reduction (a few milliseconds) of the
average time. However, we also observe a non-negligible worsening
of the solution quality (the average gap increases by around 4% in
both cases). This is due to the fact that for one instance, the optimal
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subgraph is present in a smaller component and not in the biggest one.
This analysis shows us that, in order to find the densest subgraph in
a disconnected graph, we can not restrict ourselves to applying the
algorithms on the largest component of the graph. This leads to an
increase in the time taken to find the densest subgraph as we have to run
the algorithms on all the large components of the disconnected graph.

4.5 Results on instances in the Large and
Massive buckets

In this section we present the results of our experiments on instances in
the Large and Massive buckets. Based on the outcome of the results in the
previous sections, we do not run the Hybrid algorithm for those instances
where the greedy solution (or the expanded subgraph) is almost as large
as the original graph. In particular, we removed the graphs for which
|S2|
|V|

> 0.85, namely the instances in the series delaunay, hugebubbles,
hugetrace, and hugetric, as well as instances 333SP, adaptive, AS365,
channel-500x100x100-b050, M6, NACA0015, and NLR. Note that |S2| can
be computed in negligible time before performing the Expansion phase,
simply scanning all the edges that are incident to vertices in the greedy
solution.

Table 4.6 addresses the instances in the Large bucket and shows that,
similar to instances in the Medium bucket, Hybrid algorithm consistently
improves upon the density value produced by Greedy Peeling, frequently
producing an optimal solution. The Hybrid algorithm was able to find
the optimal solution in 13 cases out of 21 instances, and in 12 out of these
13 cases it was faster than the Goldberg’s algorithm. As for the 8 instances
that are not solved to optimality, the associated average gap is around
3.5%. The average gap over all the 21 instances is around 1.3%, much
smaller than that of the Greedy Peeling, which is around 6.7%. As for the
computing time, Greedy Peeling just takes around 1.3 seconds on average,
while the Hybrid algorithm takes 215 seconds on average. The Goldberg’s

31



4 Dense Subgraphs: Computational experiments

algorithm takes more than 1050 seconds on average for solving these
instances to optimality.

In Table 4.7, we present the results of the three algorithms for the
instances in the Massive bucket in our benchmark. These graph instances
were derived from real-life applications like gene networks (kmer series),
road networks, social networks, and others. It can be immediately
seen that Goldberg’s algorithm fails for all the instances due to memory
limitation. For these instances, Greedy Peeling finds a dense subgraph
within 10 seconds on average, despite running on some graphs having
tens of millions of vertices and hundreds of millions of edges. The
Hybrid algorithm consistently improves upon the greedy solution for
most instances, the only exceptions being hollywood-2009, where both
algorithms give the same solution, and soc-orkut, for which the Hybrid
algorithm runs out of memory. Ignoring this last instance, the average
computing time taken by the Hybrid algorithm is around 41 seconds, and
the average improvement produced by this algorithm over the Greedy
Peeling is around 10%.

4.6 Results on weighted instances

Finally, in this section we address the weighted instances and report the
associated results in Table 4.8.

The Greedy Peeling performs very well, and finds a provable optimal
solution in 9 out of 16 cases; for instance mawi_201512020000 it produces
the same density value as the Hybrid algorithm, but optimality of the
solution cannot be confirmed as the Goldberg’s algorithm fails. The Hybrid
algorithm improves over the greedy solution in 5 of the 6 remaining
instances, in 4 of these cases finding a provable optimal solution. On
average, the Greedy Peeling takes 2 seconds, while the Hybrid algorithm
takes 28 seconds. On the other hand, Goldberg’s algorithm fails to solve 2
instances and, for the remaining instances, it requires on average almost
98 seconds to find the optimal solution. By removing the two mawi
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instances, we see that the average percentage gap of the Greedy Peeling
is around 1.72%, which is reduced to less than 0.02% by the Hybrid
algorithm.
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Graph Properties Greedy Peeling Hybrid Goldberg’s
Instance |V| |E| tG fG t2 t3 tH fH tE f ⇤

144 144,649 1,074,393 53 7.4416 30,114 259,526 289,694 7.4559 280,444 7.4559
598a 110,971 741,934 37 6.8043 5,066 35,843 40,947 6.8792 73,151 6.8792

as-22july06 22,963 48,436 3 19.9423 11 737 751 19.9423 1,317 19.9423
auto 448,695 3,314,611 181 7.4495 89,415 310,410 400,007 7.5211 622,512 7.5213

ca-CondMat 23,133 93,439 4 12.5000 <1 8 13 13.3667 2,336 13.3667
caidaRouterLevel 192,244 609,066 50 25.5167 9 223 282 25.7750 23,785 25.7750

citationCiteseer 268,495 1,156,647 96 12.0019 205 6,268 6,570 12.1808 59,115 12.1808
coAuthorsCiteseer 227,320 814,134 60 43.0000 4 58 123 43.0000 25,229 43.0000

coAuthorsDBLP 299,067 977,676 78 57.0000 5 74 158 57.0690 35,584 57.0690
com-Amazon 334,863 925,872 104 3.8327 2,163 8,674 10,942 4.8041 53,902 4.8041

com-DBLP 317,080 1,049,866 94 56.5000 6 77 178 56.5652 38,550 56.5652
coPapersCiteseer 434,102 16,036,720 296 422.0000 229 3,316 3,842 422.0000 205,527 422.0000

coPapersDBLP 540,486 15,245,729 358 168.0000 67 2,324 2,752 168.0000 233,183 168.0000
cs4 22,499 43,858 2 1.9493 247 8,059 8,309 1.9526 9,008 1.9526

dblp-2010 326,186 807,700 62 37.0000 4 15 82 37.0000 26,000 37.0000
delaunay_n15 32,768 98,274 4 2.9991 710 12,997 13,712 2.9991 14,375 2.9991
delaunay_n16 65,536 196,575 10 2.9995 2,835 50,002 52,848 2.9995 49,406 2.9995
delaunay_n17 131,072 393,176 23 2.9997 11,103 147,668 158,794 2.9997 145,617 2.9997
delaunay_n18 262,144 786,396 47 2.9999 44,140 394,457 438,645 2.9999 427,411 2.9999
delaunay_n19 524,288 1,572,823 96 2.9999 176,182 1,740,164 1,916,442 2.9999 1,768,799 2.9999

dictionary28 52,652 89,038 5 12.5000 1 4 11 12.5000 2,634 12.5000
fe_body 45,087 163,734 7 3.9043 2 159 168 3.9213 5,421 4.0490

fe_ocean 143,437 409,593 22 2.8734 6,533 49,005 55,561 2.8964 80,359 2.8966
fe_rotor 99,617 662,431 27 6.6571 12,459 146,689 159,176 6.6920 159,632 6.6920
fe_tooth 78,136 452,591 20 5.9171 2,319 25,546 27,885 5.9778 58,032 5.9801

loc-Brightkite 58,228 214,078 11 40.5571 12 492 515 40.5591 6,124 40.5591
loc-Gowalla 196,591 950,327 62 43.8000 174 11,902 12,139 43.8018 32,753 43.8018

luxembourg_osm 114,599 119,666 10 1.1548 2 2 15 1.2667 4,338 1.5238
m14b 214,765 1,679,018 79 7.8266 71,078 185,721 256,879 7.8694 238,330 7.8694

mycielskian15 24,575 5,555,555 101 333.5567 30,001 97,961 128,064 333.5567 107,600 333.5567
mycielskian16 49,151 16,691,240 322 530.8705 175,641 305,244 481,208 530.8705 344,396 530.8705
mycielskian17 98,303 50,122,871 1,092 845.8977 – – – – 1,165,647 845.8977
rgg_n_2_15_s0 32,768 160,240 6 7.5500 <1 1 8 7.6522 3,336 7.8947
rgg_n_2_16_s0 65,536 342,127 16 7.6471 <1 2 19 9.000 7,824 9.0000
rgg_n_2_17_s0 131,072 728,753 39 8.0000 1 1 42 8.2083 20,552 8.9200
rgg_n_2_18_s0 262,144 1,547,283 87 10.0769 3 2 93 10.4242 45,015 10.4242
rgg_n_2_19_s0 524,288 3,269,766 190 8.9474 5 1 197 10.1667 125,960 10.1667

t60k 60,005 89,440 5 1.4905 1,036 91,590 92,632 1.4914 83,854 1.4914
usroads 129,164 165,435 19 1.5789 1 <1 21 1.6250 11,992 1.7528

usroads-48 126,146 161,950 18 1.5714 2 1 22 1.6250 14,238 1.7528
wing 62,032 121,544 9 1.9596 1,897 46,318 48,225 1.9627 53,894 1.9627

Table 4.1: Results on instances in the Medium bucket. All times are in
milliseconds.
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Graph Properties Greedy Peeling Hybrid
Instance |S1| |S1|/|V| |S2| |E2| |S2|/|V|

144 137,542 0.9509 138,830 1,032,694 0.9598
cs4 22,498 1.0000 22,499 43,858 1.0000

delaunay_n15 32,767 1.0000 32,768 98,274 1.0000
delaunay_n16 65,535 1.0000 65,536 196,575 1.0000
delaunay_n17 131,071 1.0000 131,072 393,176 1.0000
delaunay_n18 262,143 1.0000 262,144 786,396 1.0000
delaunay_n19 524,287 1.0000 524,288 1,572,823 1.0000

fe_rotor 98,214 0.9859 98,971 658,472 0.9935
m14b 206,912 0.9634 210,693 1,647,651 0.9810

mycielskian15 9,078 0.3694 24,575 5,555,555 1.0000
mycielskian16 16,436 0.3344 49,151 16,691,240 1.0000
mycielskian17 28,496 0.2899 98,303 50,122,871 1.0000

t60k 59,866 0.9977 59,935 89,313 0.9988
wing 61,852 0.9971 61,994 121,461 0.9994

Table 4.2: Instances for which the Hybrid algorithm can take a very long
time.

Instances Greedy Peeling H1 Hybrid H2 H3

t %gap t %gap t %gap t %gap t %gap
ALL 68 3.2015 87,320 2.1986 115,199 1.1427 205,276 1.1420 134,274 1.1419

Table 4.3: Average computing time and percentage gap for different vari-
ants of the Hybrid algorithm. All times are in milliseconds.

Instances H1 Hybrid
# inst. t %gap # inst. t %gap

SELECTED 29 18,531 3.0322 27 20,864 1.6928

Table 4.4: Average computing time and percentage gap for H1 and Hybrid
algorithm on a selected subset of instances. All times are in
milliseconds.
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Original Graph Biggest Component
Instances Greedy Peeling Hybrid algorithm Greedy Peeling Hybrid algorithm

t % gap t % gap t % gap t % gap
DISCONNECTED 41 5.5019 121 1.7912 34 9.8064 113 5.5338

Table 4.5: Performance of Greedy Peeling and Hybrid algorithm on discon-
nected graphs. All times are in milliseconds.

Graph Properties Greedy Peeling Hybrid Goldberg’s
Instance |V| |E| tG fG t2 t3 tH fH tE f ⇤

as-Skitter 1,696,415 11,095,298 822 89.1810 2,303 37,273 40,399 89.4009 388,513 89.4009
asia_osm 11,950,757 12,711,603 1,342 1.7778 135 <1 1,478 1.7778 703,145 1.8513

belgium_osm 1,441,295 1,549,970 185 1.6000 15 <1 200 1.6000 77,872 1.6750
com-LiveJournal 3,997,962 34,681,189 3,129 190.9845 82 695 3,907 193.5136 1,226,155 193.5136

com-Youtube 1,134,890 2,987,624 341 45.5778 1,608 60,642 62,592 45.5988 157,970 45.5988
germany_osm 11,548,845 12,369,181 1,734 1.6250 133 <1 1,868 1.6667 784,833 1.7500

great-britain_osm 7,733,822 8,156,517 1,039 1.8710 93 1 1,134 1.9583 465,254 1.9583
italy_osm 6,686,493 7,013,978 743 1.6250 80 <1 824 1.6667 365,157 1.7778

netherlands_osm 2,216,688 2,441,238 298 1.6667 29 <1 328 1.7143 190,545 1.7143
packing-500x100x100-b050 2,145,852 17,488,243 640 8.5361 147,977 612,576 761,195 8.7361 2,931,714 8.8078

rgg_n_2_20_s0 1,048,576 6,891,620 415 11.1212 14 4 433 11.6250 276,226 11.6346
rgg_n_2_21_s0 2,097,152 14,487,995 930 9.3934 22 7 960 11.9048 667,290 11.9048
rgg_n_2_22_s0 4,194,304 30,359,198 1,937 10.5503 58 25 2,021 12.550 1,806,177 12.5500

road_central 14,081,816 16,933,413 3,285 1.6002 179 20 3,485 1.7750 6,231,763 1.9029
roadNet-CA 1,971,281 2,766,607 315 1.6743 48 233 597 1.9677 313,535 1.9677
roadNet-PA 1,090,920 1,541,898 177 1.6441 14 14 205 1.8571 234,657 1.8783
roadNet-TX 1,393,383 1,921,660 216 1.7656 17 7 241 2.0769 82,250 2.0769

venturiLevel3 4,026,819 8,054,237 672 2.0014 1,001,420 111,528 1,113,531 2.0613 351,929 2.0613
wikipedia-20051105 1,634,989 18,540,603 1,561 126.5925 14,248 418,588 434,379 127.0162 872,899 127.0162
wikipedia-20060925 2,983,494 35,048,116 3,643 138.7406 43,194 967,617 1,014,476 140.5966 1,919,124 140.5966
wikipedia-20061104 3,148,440 37,043,458 3,862 140.5598 47,102 1,031,432 1,082,416 141.6711 2,063,044 141.6711

Table 4.6: Results on instances in the Large bucket. All times are in
milliseconds.
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Graph Properties Greedy Peeling Hybrid Goldberg’s
Instance |V| |E| tG fG t2 t3 tH fH tE f ⇤

europe_osm 50,912,018 54,054,660 6,869 1.7047 640 26 7,535 2.0000 – –
hollywood-2009 1,139,905 56,375,711 1,895 1,104.0000 14,712 199,468 216,076 1,104.0000 – –

kmer_U1a 67,716,231 69,389,281 26,907 4.0000 862 2 27,771 4.0455 – –
kmer_V2a 55,042,369 58,608,800 20,570 6.9000 691 10 21,271 7.0909 – –

rgg_n_2_23_s0 8,388,608 63,501,393 4,072 11.0476 112 25 4,210 13.4000 – –
rgg_n_2_24_s0 16,777,216 132,557,200 8,571 12.1220 237 15 8,824 13.7143 – –

road_usa 23,947,347 28,854,312 4,545 1.5974 301 2 4,849 1.8462 – –
soc-orkut 4,847,571 106,349,209 9,111 206.9307 509 – – – – –

Table 4.7: Results on instances in the Massive bucket. All times are in
milliseconds.

Graph Properties Greedy Peeling Hybrid Goldberg’s
Instance |V| |E| tG fG t2 t3 tH fH tE f ⇤

ca2010 710,145 1,744,683 856 6,234,021.0000 21 1 881 6,234,021.0000 103,815 6,234,021.0000
cond-mat-2003 31,163 120,029 16 17.6000 1 < 1 18 17.6000 3,032 17.6000
cond-mat-2005 40,421 175,693 23 23.0000 1 < 1 25 23.0000 4,836 23.0000

fl2010 484,481 1,173,147 496 3,753,682.4620 15 20 538 3,992,056.5380 59,637 3,992,056.5380
ga2010 291,086 709,028 257 3,929,610.0000 8 4 275 3,929,610.0000 33,232 3,929,610.0000

human_gene1 22,283 12,323,680 311 62.6766 26,139 142,612 169,065 62.6766 275,234 62.6766
il2010 451,554 1,082,232 444 5,508,363.6000 13 1 489 5,508,363.6000 57,320 5,508,363.6000

mi2010 329,885 789,045 299 6,993,878.8460 10 3 322 7,370,921.5830 39,088 7,390,000.2310
mo2010 343,565 828,284 321 1,666,117.5000 10 < 1 344 1,666,117.5000 41,163 1,666,117.5000

mawi_201512012345 18,571,154 19,020,160 9,216 798,116.4286 560 120 9,831 927,951.0000 – –
mawi_201512020000 35,991,342 37,242,710 18,174 1,770,103.0000 1,073 183 19,219 1,770,103.0000 – –

mouse_gene 45,101 14,461,095 419 27.7563 34,115 217,095 251,631 28.4702 505,157 28.4702
ny2010 350,169 854,772 328 2,986,674.1110 11 2 347 3,289,936.6250 42,839 3,289,936.6250
oh2010 365,344 884,120 344 3,826,971.8000 11 4 360 3,826,971.8000 43,112 3,826,971.8000
pa2010 421,545 1,029,231 420 3,202,713.0000 12 < 1 442 3,202,713.0000 52,870 3,202,713.0000
tx2010 914,231 2,228,136 1,265 6,563,105.3330 27 2 1,277 6,630,141.8000 120,507 6,630,141.8000

Table 4.8: Results on weighted instances. All times are in milliseconds.
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Network design is a cornerstone of mathematical optimization, as wit-
nessed by the large amount of literature on this topic. Indeed, historically
it finds applications in logistics and transportation of goods and per-
sons ([MW84]) and, more recently, in telecommunications, data sharing,
energy distribution, and distributed computing ([GCF99]).

Network design is about defining the main characteristics of a network
satisfying requirements on connectivity, capacity, and level-of-service.
Setting up the network induces some installation cost, while additional
costs are incurred when operating the service. It is quite common that
a larger cost in the first term yields to a reduction in the latter, and
vice-versa. Thus, the problem requires to find an equilibrium in the
trade-offs between the installation and the operational costs.

A prototypical network design problem is the multi-commodity net-
work design, in which one is required to design a network minimizing
the installation cost of its arcs and the operational cost to serve a set of
point-to-point connections, denoted as commodities. The solutions to this
problem, however, can results in networks for which some commodities
experience a low-quality connection with respect to some metric, e.g.,
distance or number of intermediate network nodes (hops) between origin
and destination. In some applications, this is a critical issue: for example
in telecommunications, a common requirement consists of limiting the
number of hops between origin and destination of any connection, as
this has a direct effect on the latency of the communication. Similarly, in
transportation networks, it is common to limit the distance traveled be-
tween origin-destination pairs, in particular when dealing with a public
transport service or when transporting perishable goods.
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Recently, [BLM17] filled this gap and introduced the Network Design
with Service Requirements (NDSR), a network design problem in which
additional constraints impose that each origin-destination is served by a
single path satisfying one or more level-of-service requirements. More
specifically, each path must satisfy a maximum length with respect to
a number of specified metrics. The problem asks to select some arcs to
include in the network and to define, for each commodity, a path on
the selected arcs and taking into account the mentioned level-of-service
requirements. composed of The objective is to minimize a cost function
consists of minimizing the total installation cost of the network arcs and
of the operational cost of the selected paths. In that paper, the authors
show that a model based on arc-flow variables can be hard to solve
even for moderate-sized networks. Hence, through a wide polyhedral
analysis they derive several families of valid inequalities, which can be
exploited to strengthen the formulation. The resulting model, combined
with an effective heuristic algorithm, allows to tackle larger instances of
the problem.

In this manuscript, we propose a new model where variables are asso-
ciated with paths satisfying the end-to-end service requirements. This
way, many of the weaknesses of the arc-flow formulation are naturally
overtaken without the need to recur to cut separation techniques. This
desirable property comes at the cost of a formulation which is much
larger, involving an exponential number of path variables. However, we
show that for all the instances considered by [BLM17], we are indeed
capable of quickly enumerating all the variables of the new formulation,
thanks to an effective labelling algorithm, and to solve to proven optimal-
ity a much larger set of instances using a general-purpose ILP solver. In
particular, our approach allows to solve a relevant fraction of the large
instances introduced by [BLM17], and to compute near-optimal solutions
in the remaining cases, showing that the algorithm scales efficiently to
larger size of the network. In addition, we provide a new set of instances
for which enumerating all the paths is not viable; for solving these large
instances, we present a column generation scheme that is embedded into
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a full branch-and-cut-and-price algorithm.
The following chapters in this dissertation are organized as follows. In

the remainder of this section, we review some literature related to the
problem at hand. Section 6 formally describes the problem, reviews a
mathematical formulation from the literature, introduces a novel formu-
lation, and compares the two models. Section 7.2 presents a solution
approach based on branch-and-cut-and-price, describing column gener-
ation and the addition of valid inequalities. Section 8 computationally
compares the performances of the proposed algorithms with state-of-the-
art approach on test instances from the literature. Finally, in Section 9.2
we present some conclusions.

Literature Review: There is a wide literature on network design prob-
lems, and many surveys have been published on these topics, see, e.g.,
[MW84], [Cra00], and [Wie07]. Depending on the specific application,
different variants of these problems were considered. A notable field of
research involves the design of reliable and survivable networks, that has
become a major objective for telecommunication operators (see, [KM05]).
In this context, one is required to define a robust network preserving a
given connectivity level under possible failure of certain network compo-
nents. There exist several ways to express the network robustness. Under
a stochastic paradigm, the network is required to remain operative either
with a large probability ([SL13], [BCM15]) or after some recourse action
has been implemented ([LMZ17]). Alternatively, more conservative ap-
proaches, imposing explicit redundancy in the definition of the network,
have been considered in the literature; typically, one is required to design
a network having two (edge) disjoint paths for each commodity ([MR05],
[AS08], [ASK08], and [BMN09]), while [GMS95] considered the case in
which higher connectivity requirements are imposed.

Another class of related problems arises in applications where explicit
constraints are imposed on the characteristics of each path. A common
requirement to guarantee the required quality of service is to limit the
number of hops of each path; this problem has been introduced by
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[BA92], while [Gou98] presented a strong flow formulation that has been
later adopted for many hop-constrained network design problems. In
some cases, the resulting network is required to have a special structure
(typically, a tree), or survivability considerations have been added to the
problem definition; see, e.g., [Bot+13] and [GLL15].

Our problem is closely related to the class of multi-commodity flow
problems ([Ken78]) in which the network is given and commodities
compete for the use of the arcs, which have a limited capacity. A branch-
and-cut-and-price approach using path variables has been proposed by
[BHV00]. Another relevant special case of NDSR arises when network
design has to be defined for a unique commodity, and a single metric has
to be considered. The resulting budget constrained shortest path problem,
introduced by [Jok66], is an NP-hard problem, and turns out to be a
simplified version of a subproblem that we have to solve for generating
columns, which takes more than one metric into consideration.

Finally, on the applications side, end-to-end service requirements have
been considered by [BS96], [Kim+99], and [ABW02], where express
delivery of parcels is optimized. Though service time is a key aspect in
these applications, the special structure of the networks allows to avoid
to explicitly impose these constraints.
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formulation of NDSR

We now give a formal definition of the problem addressed in this paper.
We are given a directed graph G = (V ,A) where V is the node set and
A is the arc set, and a set K of commodities. Each commodity k 2 K has
associated a source node sk and a sink node tk. For each arc a 2 A there
is an activation cost Fa; in addition, using an arc a for a commodity k
induces a flow cost ck

a. The problem asks to send, for each commodity
k, one unit of flow on a single path pk from the source to the sink, by
determining a set of arcs and the routing of the flows so that the sum of
the activation and flow costs is a minimum. In addition, there is a set M
of metrics, that determines the feasibility of the path associated with a
given commodity k: for each metric m, we denote by wkm

a the weight of
arc a with respect to the metric, and require that the sum of the weights
on arcs in pk does not exceed a given upper limit Wkm. We denote by wk

a
and Wk the corresponding m-dimensional vectors.

Throughout the paper, we assume that the graph includes no multiple
arcs. This assumption is without loss of generality, as multiple arcs with
different costs or service consumption for a given pair of nodes can be
handled by the addition of dummy nodes. In addition, we assume that,
for each commodity, at least one feasible path exists, since otherwise the
problem is clearly infeasible.

The problem reduces to the budget-constrained shortest path when
there is a single commodity and a single metric. This shows that the
problem is NP-hard.

The next section reports a descriptive formulation that has been pro-
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posed in the literature, whereas Section 6.0.2 introduces a novel formula-
tion that will be used in our solution scheme.

6.0.1 Arc-flow formulation

The following formulation has been proposed by [BLM17] and makes
use of activation variables and flow variables. All variables are binary
and have the following meaning:

za =

(
1 if arc a is selected
0 otherwise

(a 2 A)

yk
a =

(
1 if commodity k is routed on arc a
0 otherwise

(a 2 A, k 2 K)

Then, the NDSR can be modelled using the following Integer Linear
Programming (ILP) formulation:

min Â
a2A

Faza + Â
k2K

Â
a2A

ck
ayk

a (6.1a)

subject to Â
a2d+(v)

yk
a � Â

a2d�(v)
yk

a =

8
<

:

+1 v = sk

�1 v = tk

0 v 2 V \ {sk, tk}

k 2 K

(6.1b)

Â
a2A

wkm
a yk

a  Wkm k 2 K, m 2 M

(6.1c)

yk
a  za a 2 A, k 2 K

(6.1d)
za 2 {0, 1} a 2 A

(6.1e)

yk
a 2 {0, 1} a 2 A, k 2 K.

(6.1f)
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The objective function minimizes the sum of the activation and flow
costs. Constraints (6.1b) impose flow conservation for each commodity
and node, whereas (6.1c) concern feasibility of the paths with respect
to the metrics, and inequalities (6.1d) force the activation of arcs that
are used for routing a positive flow. Finally (6.1e) and (6.1f) define the
domain of the variables. The arc-flow formulation has a polynomial
size, as it includes (|K| + 1) |A| variables and |K| (|V| + |A| + |M|)
constraints.

6.0.2 Path-based formulation

The novel ILP formulation that we propose includes the same binary acti-
vation variables of model (6.1a)–(6.1f), that select the arcs to be activated,
whereas flow variables are replaced by path variables that are defined
as follows. Let P k be the set of all feasible paths for commodity k. For
each commodity k and each path p 2 P k, let us introduce a binary path
variable xp with the following meaning:

xp =

(
1, if commodity k is routed along path p
0 otherwise

(k 2 K, p 2 P
k)

Let cp be the flow cost of the path p for commodity k, defined as the sum
of the flow costs of all the arcs in p. The problem can thus be modelled
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as follows:

min Â
a2A

Faza + Â
k2K

Â
p2P k

cpxp (6.2a)

subject to za � Â
p2P k : a2p

xp � 0 a 2 A, k 2 K

(6.2b)

Â
p2P k

xp = 1 k 2 K (6.2c)

za 2 {0, 1} a 2 A (6.2d)

xp 2 {0, 1} p 2 P
k, k 2 K.

(6.2e)

The objective function minimizes activation costs and flow costs, which
are here expressed in terms of path variables. Constraints (6.2b) are the
counterpart of (6.1d), enforcing activation of arcs that are used by a path.
Constraints (6.2c) ensure that, for every commodity, one feasible path is
selected. Finally, (6.2d) and (6.2e) define the domain of the variables.

Observation 1. The model obtained by relaxing integrality requirement (6.2e)
admits an optimal integer solution.

Proof. Assume that an optimal solution for the relaxation is given. For
a given choice of the z variables, the x variables associated with a com-
modity do not interact with those of a different commodity. Thus, we
concentrate on a single commodity, say k, and assume that more than
one path is selected for that commodity, the sum of the values of the
associated path variables being 1. By optimality of the initial solution,
all the selected paths must have the same cost. Hence, by increasing the
value of one path variable to 1 and setting to 0 all the remaining ones,
we obtain a solution that has the same cost as the original one.
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7.1 Variable enumeration:

We first observe that the path-based formulation has has O(2|V|) variables
and (|A|+ 1) |K| constraints, i.e., its size can be exponential in the size
of the instance. We now introduce an algorithm for enumerating all
path variables; however, for large graphs, enumerating all paths can be
challenging, and one may have to resort to column generation techniques,
that will be discussed in Section 7.2.

Enumeration Algorithm 1 considers one commodity k at a time and
defines all simple paths from sk to tk that satisfy resource constraints
under all metrics. The algorithm is inspired by the labelling method
proposed by [DB03] for the budget-constrained shortest path problem.
In our algorithm, each label ` = {u, c, w} represents a path from sk to u
having cost c and using wm units of resources under each metric m. Each
label is generated as unmarked, meaning that it has to be expanded, and
then it is marked when considered for expansion. Expansion of a label `
associated with a node u consists in appending an arc a = (u, v) to the
current path. To this aim, we consider all the outgoing arcs from u and,
for each neighbor node v not yet belonging to path `, we check whether
using the current label for reaching v preserves feasibility with respect to
the metrics. In this case, we define a new label `0 = {v, c + ck

a, w + wk
a},

i.e., we update the path cost and resource usage when using the current
label for reaching v. Eventually, node v is inserted in set T, that includes
all nodes associated with unmarked labels. The algorithm terminates
when T = ∆, meaning that no label can be further expanded, and returns
all labels associated with node tk. Although a node can be inserted in
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Algorithm 1: Compute all feasible paths for a fixed commodity
Input : k

1 s := sk, t := tk, T := {s}, c := 0, w := 0;
2 Define an unmarked label ` := {s, c, w} for node s;
3 while T 6= ∆ do
4 pick any u 2 T;
5 T := T \ {u};
6 foreach unmarked label ` = {u, c, w} associated with node u

do
7 mark label `;
8 foreach a = (u, v) 2 d+(u) do
9 if (v /2 path `) and (w + w

k
a  W

k) then
10 define an unmarked label `0 = {v, c + ck

a, w + wk
a};

11 if (v 6= t) then
12 T := T [ {v}

13 return all labels associated with node t;

and removed from T more than once, the convergence of the algorithm
is ensured by requiring simple paths, which is checked in line 9.

The above algorithm can be improved by pre-computing, for each
metric m 2 M, the shortest path from each node to tk when the cost
of each arc a is given by wkm

a . This figure can be used when checking
feasibility of the new label in line 9: by adding this term to the left-
hand-side of the inequality, we avoid generating labels that could not be
feasibly expanded to node tk.

7.1.1 Models comparison

In this section we compare the two formulations in terms of their linear
relaxations.
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Observation 2. Any feasible solution for the linear relaxation of the path-based
formulation can be mapped to a feasible solution of the same cost of the linear
relaxation of the arc-based formulation, whereas the opposite does not hold.

Proof. Let z⇤, x⇤ be a feasible solution of the linear relaxation of the path-
based formulation. We now define a solution ez, ey that is feasible for the
linear relaxation of the arc-based formulation and has the same cost.
First, we set ez = z⇤. Then, for each arc a 2 A and commodity k 2 K, we
set

eyk
a = Â

p2P k :a2p
x⇤p.

It is straightforward to check that flow conservation constraints (6.1b)
and feasibility requirements (6.1c) with respect to the metrics are satisfied
as y variables are obtained as combination of feasible paths, whereas
constraints (6.1d) are implied by (6.2c) and by the definition of eyk

a. The
equivalence of the costs follows from the definition of the cost of each
path.

Figure 7.1 gives a small numerical example showing that the counter-
part does not hold. The instance has no flow costs, a single commodity,
and a single metric, for which the capacity is W = 2. For each arc we
report the activation cost and the weight with respect to the metric. While
there is a unique feasible path p = {(s, t)} having cost 1, an optimal
solution to the linear relaxation of the arc-based formulation is given by
ys1 = y1t = yst = 1/2 having cost 1/2.

The observation shows that the path-based formulation dominates the
arc-based one in terms of tightness of the associated linear relaxations.

The structure of feasible solutions for the linear relaxation of the arc-
based formulations was analyzed by [BLM17], showing that fractional
solutions may arise for two main reasons:

• for a given commodity, the model may route part of the flow on a
path that is less expensive but infeasible with respect to the metric
requirements (see again Figure 7.1);
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s
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[0, 2]

[1, 1]

[0, 1]

Figure 7.1: Simple example for which the path-based formulation domi-
nates the arc-flow formulation.

• arc activation variables can be set at a fractional value to allow
sharing the activation cost of some arcs among different paths
associated with different commodities.

Accordingly, [BLM17] introduced different families of valid inequalities
to cut some of these solutions. The first type of fractionalities do not
appear in the path-based formulation, in which feasibility of the paths is
enforced when defining the variables; thus, adding similar inequalities
would be useless. On the other hand, the second type of fractionality
may affect the path-based formulation as well, as shown in Figure 7.2. In
this example, there are three commodities, no flow costs and activation
costs equal to one for arcs (3, 6), (4, 7), (5, 8) and zero for the remaining
arcs. The figure shows an optimal solution of the linear relaxation of the
path-based formulation, where the flow of each commodity is split into
two paths, the costly arcs are activated at value 0.5 and the resulting cost
is 3/2. On the other hand, any integer feasible solution has a cost at least
equal to 2. For this reason, in our approach we consider the possibility
to add some classes of valid inequalities of the second type.
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Figure 7.2: Fractional solution of the linear relaxation of the path-based
formulation.

7.2 Branch-and-cut-and-price approach

In this section, we introduce an exact algorithm based on the path-
formulation that can be used when enumerating all paths is unpractical.
The algorithm adopts a branch-and-bound strategy and solves, at each
node, the linear relaxation of the model by means of column generation
techniques. The basic scheme is possibly enriched by the addition of
valid inequalities, that do not change the structure of the method, thus
resulting in a robust branch-and-cut-and-price algorithm.

7.2.1 Column generation and labelling

Column generation is an iterative scheme used for solving linear models
with an exponentially large number of variables. At each iteration, a
restricted master problem including a subset of the variables is solved, and
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its dual solution is used to determine new variables (if any) that have to
be added to the formulation in order to converge to an optimal solution.

In our setting we assume without loss of generality that constraints
(6.2c) are rewritten as inequalities. At each iteration, the restricted master
includes all the z variables, and a non-empty subset f

P k ✓ P k of path
variables for each commodity k (notice that by construction the restricted
master always includes a feasible solution). Assume that the restricted
master has been solved to optimality, and let gk

a and rk be optimal
non-negative dual variables associated with constraints (6.2b) and (6.2c),
respectively. The reduced cost for a path variable xp for a commodity k is
given by

cp = cp + Â
a2p

gk
a � rk = Â

a2p

�
ck

a + gk
a
�
� rk = Â

a2p
eck

a � rk,

where the arc costs are eck
a = ck

a + gk
a. Thus, the pricing problem for a given

commodity k is to find a feasible path whose reduced cost is negative,
and can be formulated as a budget-constrained shortest path problem under
costs eck

a and resources defined by the metrics. If the cost of this shortest
path is strictly smaller than rk, the corresponding path variable is added
to the restricted master, and the process is iterated; if no path variable
is generated for any commodity, the optimal solution of the current
restricted master is an optimal solution for the linear relaxation of the
problem.

Solution of the budget-constrained shortest path problem: Enumera-
tion Algorithm 1 can be modified to compute the shortest path under
resource constraints for a given commodity k, a problem which is NP-
hard even if the graph is acyclic and |M| = 1 (see, [GJ79]). The resulting
Algorithm 2 differs from the enumeration one starting from line 11,
where a dominance check aimed at avoiding expansion of suboptimal
paths is introduced. More precisely, label `0 is dominated by another
label `00 associated with the same node if its cost and its resource usage
are larger then or equal to the cost and usage of `00. In this case `0 is
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marked. Vice-versa, it may also happen that `0 dominates `00, in which
case we mark `00. Node v is inserted in set T only if label `0 remains
unmarked. The algorithm returns a unique path, corresponding to the
label with minimum cost among all those associated with node tk.

Algorithm 2: Compute a constrained shortest path for a fixed
commodity
Input : k

1 s := sk, t := tk, T := {s}, c := 0, w := 0;
2 Define an unmarked label ` := {s, c, w} for node s;
3 while T 6= ∆ do
4 pick any u 2 T;
5 T := T \ {u};
6 foreach unmarked label ` = {u, c, w} associated with node u

do
7 mark label `;
8 foreach a = (u, v) 2 d+(u) do
9 if (v /2 path `) and (w + w

k
a  W

k) then
10 define an unmarked label `0 = {v, c + eck

a, w + wk
a};

11 if (`0 is dominated by a label `00 associated with node
v) then

12 mark label `0;

13 if (`0 dominates a label `00 associated with node v)
then

14 mark label `00;

15 if (v 6= t) and (`0 is unmarked) then
16 T := T [ {v}

17 return the unmarked label with minimum cost c associated with
node t;
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7.2.2 Branching scheme

In our branching scheme we always select a z variable for branching.
According to Observation 1, at each node where all the z variables attain
integer values, there exists an optimal solution in which all the x variables
are integer as well. Notice that this is the solution returned by solving
the restricted master problem by means of the simplex algorithm.

A positive effect of this branching strategy is that it does not affect
the structure of the pricing subproblem. This is a crucial property for
designing an effective branch-and-price algorithm, as it allows to solve
the column generation subproblem throughout all the branching tree by
means of the same effective labelling algorithm used at the root node.
Clearly, imposing za = 1 for some a 2 A has no direct effect in the
pricing. Conversely, when imposing za = 0, in the pricing subproblem
we simply forbid the use of arc a when generating new path variables,
which can be easily handled by setting A = A \ {a}.

7.2.3 Adding valid inequalities

In order to tighten the formulation and increase the dual bound at each
node, we can add valid inequalities that cut fractional solutions in which
arc activation variables are set at a fractional value to allow sharing the
activation cost of some arcs among different paths.

To this aim, we adapt to our model some of the inequalities introduced
by [BLM17] for the arc-flow formulation. These inequalities are obtained
by analyzing the structure of the graph G and by deriving relationships
between pairs of arcs (a, b) when routing the flow of a commodity k,
namely:

• OR relationships, occurring when no more than one arc of pair
(a, b) can be used to route flow from sk to tk;

• IF relationships, occurring when the flow through arc a must also
be routed through b; and
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• CUT relationship, occurring when at least one between a and b
must be used to route the flow.

These relationships are then used to derive conditions that link the
activation variable of an arc with the flow variables associated with the
same arc and different commodities. By using the arc-flow variables, all
these inequalities have the following general structure

Â
(a,k)2C

za � Â
(a,k)2C

yk
a � q,

where C is a set of arc-commodity pairs and q is a scalar number.
By translating these conditions in terms of the path variables, we obtain

Â
(a,k)2C

za � Â
(a,k)2C

Â
p2P k :a2p

xp � q (7.1)

which can be enforced in the path-based formulation.
As it happens for the branching conditions, the addition of the in-

equalities above does not affect the structure of the pricing problem at
a generic node of the branching tree. Indeed, for a given commodity k,
constraint (7.1) only affects those paths that contain an arc a such that
pair (a, k) 2 C. For each such path, the reduced cost of the associated
variable is thus cp = Âa2p

�
ck

a + gk
a
�
+ fC � rk where fC is the dual vari-

able associated with constraint (7.1). More in general, given a collection
C of inequalities, the reduced cost of a path associated with commodity
k is

cp = Â
a2p

�
ck

a + gk
a + Â

C2C :(a,k)2C
fC�

� rk

Hence, the only effect of additional inequalities on the shortest path
computation is on the definition of arc costs eck

a, which now include the
dual variables of these constraints as well.
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This allows us to solve the column generation subproblem with no
modification of the labelling algorithm even after the addition of valid
inequalities. The resulting algorithm is then a robust branch-and-cut-
and-price.
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In our computational experiments we explore three directions. First, we
compare the computational performance of the path-based formulation
with the arc-based formulation. Our second order of business is to
determine the features of the instances for which full enumeration of all
feasible paths is possible, and when instead one has to resort to column
generation. In this case, the solver cannot be used as a black box, and the
addition of valid inequalities may be an effective option for accelerating
the solution process. Finally, we evaluate the effect of adding valid
inequalities to the path-based formulation, in terms of bound given by
the linear relaxation and overall performance of the algorithm.

Unless specified, all algorithms were run on an AMD Ryzen Thread-
ripper 3960X running at 3.8 GHz in single-thread mode, with a time limit
of 1 hour per instance. All algorithms were implemented in C++. Both
the arc-flow and the path-based formulations were solved using Gurobi
version 9.1.1 as ILP solver, whereas the branch-and-cut-and-price was
implemented on top of the SCIP optimization suite (version 7.0.1 with
its default SoPlex solver), which allows to embed a column generation
scheme within the enumeration process (see [Gam+20]).

8.1 Instances from the literature

We now describe a benchmark of instances that has recently been in-
troduced by [BLM17], who kindly provided us the code for generating
the numerical data. Each instance is characterized by the following pa-
rameters: the number of nodes |V|, number of arcs |A|, and number of
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commodities |K|. Nodes are randomly located on a rectangular grid and
are connected by a spanning arborescence; then, |A|� |V|+ 1 arcs are
added to the arc set, making sure that the resulting network contains
one directed path for each pair of nodes. The source and terminal node
for each commodity are randomly selected in V . The activation cost of
each arc depends on the euclidean distance between the two endpoints
and on a random parameter. A parameter g governs the ratio between
flow costs and activation costs. Coefficients wk

a for a given arc a 2 A

are negatively correlated to the activation cost Fa through a parameter
b and a random term. All instances consider |M| = 2 metrics. Weight
limits for each commodity k and each metric equal the length (using arc
weights as lengths) of the q-th shortest path from sk to tk, where q is
a random parameter having uniform distribution in an interval of size
DQ centered in Qavg. A particular combination of network size (|V|, |A|,
and |K|), cost structure and service requirements (b, g, Qavg, and DQ) is
referred to as a scenario. Overall, [BLM17] defined 18 scenarios: the first
seven scenarios share the same default values of the parameters for cost
structure and service requirements, while considering varying network
sizes ranging from 30 nodes, 120 arcs, and 90 commodities to 50 nodes,
250 arcs, and 150 commodities. Scenarios 8-15 are all defined with a
fixed network size (|V| = 50, |A| = 200, and |K| = 150) and different
cost structure and service requirements. Finally, the last 3 scenarios have
the default values of the parameters defining cost structure and service
requirements and are characterized by larger size of the network, up to
80 nodes, 320 arcs, and 240 commodities. For each scenario, five instances
were generated, for a total of 90 instances. Although the original set
of instances is not available, we generated 18 scenarios for a total of 90
instances by using the same parameters used by [BLM17]. In Table 8.1,
we will refer to each scenario as |V|/|A|/|k|/b g Qavg DQ where the last
four parameters take values in {L, M, H} to denote low, medium and
high figures, respectively.
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8.2 Results on the instances from the literature

Table 8.1 gives the results of computational experiments on the 90 in-
stances derived from the 18 scenarios described above; instances are
grouped by scenario, i.e., every row reports aggregate results for five
instances. The table compares the following approaches:

• base-model corresponds to the direct application of general-purpose
ILP solver Gurobi to the arc-flow formulation;

• BLM is the composite algorithm proposed by [BLM17], and imple-
ments a branch-and-cut scheme built on top of the general-purpose
ILP solver CPLEX 12.5.1 for solving the arc-flow formulation. The
algorithm includes separation of several families of valid inequali-
ties and an effective LP-based heuristic algorithm that is executed
at the root node. All these figures are taken from [BLM17], and
correspond to experiments executed on a Intel core i5 using an
integrality gap for early termination equal to 0.1%;

• all-path denotes the algorithm obtained by enumerating all feasible
paths through Algorithm 1 and solving the resulting path-based
formulation using the Gurobi ILP solver. This approach does not
include cut separation nor column generation, allowing us to use
the solver as a black box, so as to exploit its full capabilities.

For each solution approach, the table reports the number of instances
solved to proven optimality, the average percentage gap, and the average
computing time (in seconds, with respect to instances that are solved to
optimality only). For a given instance of the problem, let L and U be
the best lower and upper bound, respectively, produced by an algorithm;
the resulting percentage gap is computed as 100U�L

U . For algorithm
BLM, detailed computational results are only available for the instances
of the first 7 scenarios. In addition observe that, for some scenarios,
this algorithm solves all the associated 5 instances to optimality though
returning a strictly positive percentage gap, due to the tolerance value
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that is used within the algorithm. Finally, for algorithm all-path we
also report the number of path variables enumerated by the labelling
algorithm. The enumeration time is always very small (at most 0.5
seconds) and it is included in the computing time of the algorithm.

base-model BLM all-path
([BLM17])

scenario # opt % gap time # opt % gap time # opt % gap time # path
1 30/120/90/MMMM 5 0.00 446.75 5 0.02 175 5 0.00 1.41 895
2 40/160/120/MMMM 4 0.21 1352.68 4 0.18 133 5 0.00 7.66 1098
3 50/150/150/MMMM 5 0.00 776.90 5 0.08 230 5 0.00 3.24 1409
4 50/200/100/MMMM 2 1.36 2953.33 4 0.43 1055 5 0.00 41.71 956
5 50/200/150/MMMM 1 5.93 2817.12 2 1.33 350 5 0.00 478.80 1455
6 50/200/200/MMMM 0 3.81 – 3 0.45 735 5 0.00 324.22 1898
7 50/250/150/MMMM 0 9.20 – 1 2.61 2631 4 0.38 171.85 1388
8 50/200/150/LMMM 2 3.09 2455.09 0.50 5 0.00 32.90 1249
9 50/200/150/HMMM 0 12.02 – 2.00 3 1.64 365.97 1795

10 50/200/150/MLMM 0 9.02 – 0.90 5 0.00 639.56 1455
11 50/200/150/MHMM 1 6.60 3557.67 0.10 5 0.00 782.21 1455
12 50/200/150/MMLM 5 0.00 1009.59 0.10 5 0.00 1.51 804
13 50/200/150/MMHM 0 10.68 – 1.90 4 0.64 345.37 2085
14 50/200/150/MMML 0 6.26 – 0.70 5 0.00 305.79 1421
15 50/200/150/MMMH 1 2.79 1902.54 0.70 5 0.00 100.74 1153
16 60/240/180/MMMM 0 10.68 – 0.70 5 0.00 603.16 1711
17 70/280/210/MMMM 0 11.91 – 2.50 2 0.54 686.22 1961
18 80/320/240/MMMM 0 15.86 – 2.40 2 1.25 951.94 2307

summary 26 6.08 1371.97 45⇤ 0.98 80 0.25 288.22 1472

Table 8.1: Results on instances from the literature.

The results confirm the outcome of the computational experiments
reported by [BLM17] for the first seven scenarios, i.e., that algorithm BLM
outperforms the base-model, which can solve only small instances and
has large percentage gaps for most unsolved scenarios. Instead, results
borrowed from [BLM17] show that the addition of valid inequalities and
the use of an effective heuristic yields to an algorithm which is able to
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solve 24 instances out of 35, with average percentage gap equal to 0.73.
Both these approaches are dominated by algorithm all-path, which solves
all but one instances in the first seven scenarios, and has a percentage
gap equal to 0.38 for the remaining instance. This is due to the fact that
the formulation is tight and that, for these instances, the number of path
variables does not grow up: this number is always smaller than 2000,
which makes the model solvable with a limited computational effort. All
instances for scenarios 1 and 3 are solved by both BLM and all-path: for
these scenarios, the average computing time of the former is two orders
of magnitude slower than the latter (although BLM was executed on a
slightly slower machine and used a different ILP solver).

For what concerns the instances in scenarios 8-15, the performances
of algorithm all-path remain satisfactory. The algorithm solves 37 of
the 40 associated instances, and has an average percentage gap equal to
0.28. Finally, for very large instances (scenarios 16 to 18), the algorithm
solves 9 instances out of 15 and has an average percentage gap equal to
0.60. Overall, our algorithm solves to proven optimality almost 90% of
the instances with an average percentage gap of 0.25. [BLM17] do not
report detailed results for all scenarios, but instead mention that BLM
only solves 45 instances (for this reason this figure is marked with an
asterisk in the summary line of the table) and has an average percentage
gap of 0.98.

8.3 Results on additional instances

The results in Table 8.1 show that, for the instances from the literature,
the number of feasible paths is quite small. Thus, not surprisingly, the
all-path approach is always better than base-model and BLM. Our second
set of experiments is aimed at evaluating the limits of applicability of
explicit enumeration of all path variables, and the alternative use of the
branch-and-price algorithm described in Section 7.2 when enumeration
is unpractical. Hence, we generated additional instances derived from
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the instances in scenarios 1–7, in which the number of feasible paths
is increasing. To minimize the number of parameters for defining the
additional instances, we simply introduce a parameter a � 1 that is used
to scale each upper limit Wkm for a commodity k and metric m. This has
the effect to make less binding the constraints defining the feasibility of
a path with respect to the metrics.

Table 8.2 reports aggregated results, summarizing 35 instances per
line, obtained with different values of a ranging from 1.00 to 3.00. We
compare the base-model, the all-path approach, and the branch-and-price
algorithm and report, for each solution method, the number of optimal
solutions, the average percentage gap and the average computing time
(with respect to instances solved to optimality only). For all-path we
also report the total number of feasible paths; this figure is averaged
over all the 35 instances of a line, provided that enumeration of all paths
was completed within the time limit for all the instances. Finally, for
branch-and-price we give the average number of path variables that have
been generated during the execution of the algorithm (with respect to
instances solved to optimality only).

base-model all-path branch-and-price
a # opt % gap time # opt % gap time # path # opt % gap time # path

1.00 17 2.93 1191.34 34 0.05 146.25 1300 31 0.38 401.20 1116
1.25 3 8.45 1680.47 21 1.45 410.74 6428 16 2.65 816.47 5896
1.50 6 6.01 976.83 20 1.72 514.40 33,178 14 2.64 667.09 10,816
1.75 9 3.97 903.57 19 1.71 480.65 169,286 17 2.15 539.52 11,209
2.00 14 2.40 798.33 17 1.97 449.87 855,441 21 1.55 830.85 10,110
2.25 18 1.53 613.12 14 – 673.01 – 23 1.19 522.94 9115
2.50 22 0.91 654.06 9 – 957.18 – 26 0.80 475.83 7743
2.75 23 0.70 554.46 5 – 998.54 – 27 0.68 577.48 7479
3.00 25 0.61 470.26 3 – 1627.80 – 28 0.58 628.28 7048

Table 8.2: Results on additional instances.
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The results in Table 8.2 show that, for values of a < 2, the total number
of paths is still manageable (below 200,000) and all-path remains the best
option. Conversely, for larger values of a, in many cases enumerating
all path variables within the time limit is not possible or the path-based
formulation has too many variables, and hence a method based on
column generation is advisable. Indeed, for a = 2, branch-and-price
solves 21 instances compared to the 17 solved by all-path, and this gap
increases for larger values of a. Finally, we observe that the performances
of the base-model as well improve for increasing a, which suggests that
the problem is easier when feasibility constraints are not too demanding.
This confirms the outcome of some observations by [BLM17] about the
structure of optimal solutions of the linear relaxation of this formulation,
as these solutions are allowed to use infeasible paths at a fractional level.

8.4 Strengthening the model

As already mentioned, the BLM approach is based on a branch-and-cut
algorithm in which the arc-flow formulation is iteratively strengthened
by means of valid inequalities, designed to cut off infeasible solutions of
the linear relaxation. [BLM17] showed that adding these inequalities is
beneficial to the algorithm, in terms of value of the dual bound at the
root node and number of instances that can be solved to optimality.

Our third set of experiments is thus aimed at evaluating the impact
of adding valid inequalities to the path-based formulation. Table 8.3
gives the outcome of our experiments on instances in scenarios 1–7 for
the branch-and-price approach without and with the addition of valid
inequalities (branch-and-cut-and-price).

The table is organized in two parts. In the first one, we report the
average percentage gap of the linear relaxation in the two configurations,
and the associated computing time reported by SCIP. For the version
of the algorithm with cuts, we borrowed from [BLM17] the following
families of inequalities: 3OR, 1CUT-IF and 1OR-IF, obtained by com-
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linear relaxation exact solution
without cuts with cuts branch-and-price branch-and-cut-and-price

scenario % gap time % gap time # opt % gap time # opt % gap time
1 5.38 0.26 3.22 31.39 5 0.00 17.90 5 0.00 52.00
2 4.77 0.48 2.43 102.27 5 0.00 63.27 5 0.00 164.91
3 2.79 0.49 1.24 102.82 5 0.00 46.46 5 0.00 146.63
4 6.11 0.70 3.79 186.62 5 0.00 380.83 5 0.00 454.94
5 6.58 1.52 4.00 286.55 3 1.11 220.35 3 0.98 419.83
6 5.02 1.60 2.64 357.34 4 0.58 250.27 4 0.48 549.92
7 7.31 2.25 4.37 600.73 4 0.99 2058.17 4 0.78 1702.62

summary 5.42 1.04 3.10 238.25 31 0.38 401.20 31 0.32 463.29

Table 8.3: Results on the addition of valid inequalities.

bining three OR conditions, one CUT with one or more IF conditions,
and one OR with one or more IF conditions, respectively. The reader is
referred to [BLM17] for the definition of these inequalities as well as to
their separation; additional inequalities from this paper showed to have
a very marginal effect in our preliminary computational experiments.
Separation is carried out at the root node until no violated cut is found,
according to SCIP tolerance. The results in Table 8.3 confirm that the
addition of valid inequalities produces a tighter formulation for which
the dual gap with respect to the optimum value is quite small, and
reduced by 42% with respect to the formulation without cuts (from 5.42%
to 3.10%). However, separating these inequalities is time consuming
in practice, which prevents the exhaustive separation of the cuts in an
enumerative approach.

For this reason, in the rightmost part of the table we consider a branch-
and-cut-and-price algorithm, in which separation is embedded into the
branch-and-price in a heuristic way as follows: cuts are added at the
root node only, and at most 25 rounds of separation are performed. At
each separation round, we consider in order 3OR, 1CUT-IF and 1OR-IF,
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and we stop the separation as soon as a valid inequality is obtained.
The inequality is added to the restricted master problem which is then
re-optimized. This heuristic approach is justified by some preliminary
experiments on each family of inequalities, where we evaluated the
computational effort required for deriving a valid inequality and the
relative effect of the inequality on the dual bound. Remind that a nice
property of our approach is that the addition of new cuts does not affect
the structure of the pricing subproblem, yielding a robust branch-and-cut-
and-price approach. For both branch-and-price and branch-and-cut-and-
price we report the number of optimal solutions, the average percentage
gap and the average computing time.

The results on the exact methods show that branch-and-cut-and-price
solves the same number of instances as branch-and-price, and produces
slightly better gaps for unsolved instances. Indeed, both algorithms solve
31 instances, the average percentage gaps being 0.38 (for branch-and-
price) and 0.32 (for branch-and-cut-and-price). Despite adding valid cuts
seems to be very effective in closing the gap at the root node, its limited
contribution within an enumerative scheme is due to the computational
overhead required for separating cuts and for solving larger models at
each decision node.
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9.1 Dense Subgraphs

In the fist part of the dissertation, we studied a non-linear graph opti-
mization problem that requires to determine the densest subgraph in
a given graph. While some prior work mentioned that the so-called
Greedy Peeling algorithm is good in practice, we concluded empirically
that Greedy Peeling finds dense subgraphs which are close to the opti-
mal subgraphs across a range of graph sizes. We provided a simple
connected instance for which the greedy algorithm shows its worst case
performance. We introduced a new heuristic algorithm that combines
this fast and effective greedy algorithm and an exact method from the
literature. The extensive experiments done to measure the performance
of this new heuristic suggest that, for a sizeable number of real world in-
stances, we can improve upon the solution provided by the Greedy Peeling
using our new heuristic. We have presented an efficient implementation
of the algorithms to solve both unweighted and weighted instances, with
the aim of attacking instances of very large size, like those arising, e.g.,
in social network applications. To the best of our knowledge, this is the
most comprehensive computational study on DSE problem involving
instances with tens of millions of vertices and hundreds of millions of
edges.
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9.2 NDSR

In the later part of the dissertation, we considered an NP-hard net-
work design problem with end-to-end service requirements that play
a fundamental role in many contexts, including telecommunications
and transportation. From a modelling viewpoint, we proposed a novel
ILP formulation in which variables are associated with feasible paths,
and discussed alternative ways for handling the exponential number of
variables in the model. From a methodological perspective, we showed
how a column generation algorithm can be embedded into a branch-and-
cut-and-price scheme, that is robust in the sense that the structure of
the subproblems is not altered by the branching conditions nor by the
addition of valid inequalities. Finally, we gave a comprehensive compu-
tational analysis of the performances of the proposed algorithm, which
is compared with a state-of-the-art approach proposed in the recent
literature. Our computational experiments showed that the proposed
algorithm outperforms its competitor and scales efficiently to larger size
of the network.

The introduced path-based formulation is quite general, as all the
nasty constraints appear in the definition of feasible paths only. For
this reason, it may be worthy to use this modelling approach for other
multi-commodity network design problems arising in different contexts.

9.2.1 Application of NDSR to Hop Constrained
Survivable Network

One potential application of NDSR is to solve Survivable Network Design
problems. [BMN09] describes Survivable Network Design (SND) as a
network design problem that tries to minimize the cost associated with
the network while ensuring that there are a required minimum number
of paths that are edge disjoint. In [BMN09] , the authors describe SND
as selecting the edges in a network which minimizes the total cost while
also meeting the connectivity requirements — namely number of edge
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disjoint paths between the desired nodes. For a more comprehensive
discussion of SND, reader can refer to the aforementioned [BMN09]

[Bot+13] discusses HOP-SND as a special case of SND where the
number of hops that the feasible paths can take are limited. While SND
ensures the necessary level of edge disjoint paths to protect against link
failures but this might lead to the case where the optimal solution can
have paths which have too many hops and hence can lead to prohibitive
delays. By introducing the hop constraint, we can eliminate these delays.

Both SND and HOP-SND can potentially be solved using the algo-
rithms developed in the previous problems to solve the NDSR problems.
We are currently modfiying the Algorithms 1 and 2 to solve the HOP-
SND problem.
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