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“Walking down a path without knowing where you really want to go...
Having a grace period like that isn’t so bad.”

Hatake Kakashi
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School of Engineering

Department of Electrical, Electronic, and Information Engineering “Guglielmo
Marconi” (DEI)

Doctor of Philosophy

Algorithms and Systems for IoT and Edge Computing

by Alex MARCHIONI

The idea of distributing the signal processing along the path that starts with the ac-
quisition and ends with the final application has given light to the Internet of Things
and Edge Computing, which have demonstrated several advantages in terms of scal-
ability, costs, and reliability. In this dissertation, we focus on designing and imple-
menting algorithms and systems that allow performing a complex task on devices
with limited resources.

Firstly, we assess the trade-off between compression and anomaly detection from
both a theoretical and a practical point of view. Information theory provides the rate-
distortion analysis that is extended to consider how information content is processed
for detection purposes. Considering an actual Structural Health Monitoring appli-
cation, two corner cases are analysed: detection in high distortion based on a feature
extraction method and detection with low distortion based on Principal Component
Analysis.

Secondly, we focus on streaming methods for Subspace Analysis. In this context,
we revise and study state-of-the-art methods to target devices with limited com-
putational resources. We also consider a real case of deployment of an algorithm
for streaming Principal Component Analysis for signal compression in a Structural
Health Monitoring application, discussing the trade-off between the possible imple-
mentation strategies.

Finally, we focus on an alternative compression framework suited for low-end
devices that is Compressed Sensing. We propose a different decoding approach that
splits the recovery problem into two stages and effectively adopts a deep neural net-
work and basic linear algebra to reconstruct biomedical signals. This novel approach
outperforms the state-of-the-art in terms of quality of reconstruction and requires
lower computational resources.
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1

Introduction

The world in which we are currently living and more so the one we are design-
ing for tomorrow is based on an interweaving of physical systems and information
flows [5]. One of the most relevant and practical applications of such an interweav-
ing is monitoring, which consists in the continuous collection of information from the
physical world [133, 96, 115, 179, 51], let it be a smart city, a human body, an infras-
tructure, to new a few. The general architecture of a monitoring system comprises
sensor nodes deployed close to the physical phenomena to monitor, data collectors
that gather the sensor readings and processing units that extract information from
the data to perform a task, make decisions, or enable a final service.

Sensor nodes are, in general, small devices that need to be low cost, as non-
intrusive and self-sufficient as possible, and their readings must be accessible so that
they can be deployed in large numbers with little cost for both installation and main-
tenance. These requirements imply limits on the geometry dimensions, weight, and
energy budget, leading to a shortage of computational resources for data processing.
That is the reason why, traditionally, sensor nodes are solely devoted to the acqui-
sition and transmission of the signal. However, advances in wireless communica-
tion, energy harvesting, smart power management, and ultra-low power processors
have enabled sensor nodes to process signals and transmit the extracted information
through the internet to make decisions, i.e., following the Internet of Thing (IoT)
paradigm [195], they are Things on the Internet.

Moreover, clusters of sensors may send their readings either by radio or wired
links to a middle layer that may be a single device as small as a sensor node, or it may
be organized as a hierarchical structure in case of complex systems [72]. However
implemented, this is a physically localized layer of processing elements that inter-
poses between the sensing and central processing units, often interpreted by a cloud
service. This layer takes the name of the edge of the cloud [167, 195]. Even though
computational resources available at the edge are typically much smaller than those
on the cloud service, they still provide the opportunity for local processing, i.e., Edge
Computing [167].

In conventional IoT frameworks for monitoring, the whole data is uploaded to
the central processing unit. This process may be critical for several reasons. The
connection between sensors and central unit may require high bandwidth to transfer
all data streams and guarantee stability to avoid data losses. Once in the central
node, data must be stored and processed, and this may lead to high managing costs
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in the case of cloud services. Moreover, the introduced delay may be critical in time-
sensitive applications that require prompt actions in response to occurring events.
In addition, some applications may need a certain level of privacy or security that is
harder to guarantee in a system that transfers data over the internet and centralize
storage and processing.

All these issues can be properly addressed by distributing the processing of the
signal along the signal chain, i.e., by moving the processing closer to where the data
is produced. Indeed, IoT and Edge Computing provide the technologies and the
strategies to effectively design systems and algorithms that effectively process infor-
mation and perform a complex task on devices with limited resources.

In this dissertation, we focus on designing and implementing algorithms and
systems that exploit the advantages provided by IoT and Edge Computing technolo-
gies. We focus on monitoring systems applications where local processing for tasks
like signal compression and anomaly detection is fundamental. This dissertation is
organized as follows:

Part I addresses the trade-off between compression and anomaly detection from
both a theoretical and a practical point of view. The aim is to show how the opti-
mal encoder in the rate-distortion sense does not address this trade-off effectively,
and we pursue a theoretical framework that can explain trends characterizing real
applications.

In Chapter 1 we propose a theoretical framework that extends the rate-distortion
analysis developed in the field of Information theory by including the concept of
distinguishability to model the possibility for a detector to discriminate between
ordinary and anomalous signal instances. Thanks to a Gaussian assumption, it is
possible to derive some analytical results, which are then confirmed by numerical
evidence.

On the other hand, Chapter 2 deals with two practical cases, each representing a
corner case of the compression-detection trade-off, i.e., detection with high and low
distortion compression. As a use case, we consider an actual Structural Health Mon-
itoring application concerning the assessment of the condition of an Italian highway
viaduct. The two approaches analyzed consist of a detector based on feature ex-
traction that distorts the signal so that recovery is improbable, and in a detector ex-
ploiting Principal Component Analysis, which allows preserving most of the signal
information.

Part II focuses on methods that perform the Subspace Analysis, of which Principal
Component Analysis is a particular case, in a streaming fashion, i.e., considering the
signal as a stream and processing one instance at a time. The main objective consists
in providing both an overview and a use case of this class of methods aiming at
low-resources devices as a target.
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In Chapter 3, we revise the state-of-the-art methods providing classification and
coherent framework in which discuss the several connections between the algorithm
and the relations with most of the subtle variants currently available in the Litera-
ture. The streaming methods are then compared to provide a picture of the pros and
cons of each method in the task of subspace identification. The final focus is on their
implementation on devices representative of the ones typical of acquiring systems
characterized by constraints on the computational resources.

This part also includes Chapter 4 which reports the employment of a streaming
method for Principal Component Analysis in the same real Structural Health Mon-
itoring system considered in the previous part of this dissertation. The application
aims to provide the monitoring system with the ability to tune the signal compres-
sion locally by tailoring the streaming method for the involved devices. Following
a discussion of compression methods for acquisition systems, different implementa-
tion strategies have been investigated, and the trade-off between them is assessed.

Part III focuses on an alternative compression framework whose encoding proce-
dure is suited for devices with limited resources. This framework is the Compressed
Sensing, whose theory is based on the sparsity and incoherence assumptions that
are so broad to find application in many acquisition scenarios involving physical
phenomena. In particular, this part of this dissertation focuses on the decoder and
biomedical signals.

In particular, Chapter 5 proposes an innovative idea that splits the traditional
recovery problem into two stages, allowing the replacement of iterative algorithms
with a deep neural network and basic linear algebra operations. This novel approach
outperforms the state-of-the-art decoders in terms of quality of reconstruction and
provides the decoder with a self-assessment capability that enables the estimation
of the recovery performance. Moreover, the implementation requires computational
resources comparable with the most lightweight methods available in the Literature.

The work is then extended in Chapter 6 where we generalize the model of the
signal in order to consider signals that satisfy the sparsity assumption only approxi-
mately. This extension leads to a slight change in the model and confirms the perfor-
mance improvement with respect to the competitors. This chapter also discusses the
implementation of the decoder in a context that considers only fixed-point arith-
metic. We show that the resulting performance loss can be limited by adopting
quantization-aware training techniques and iterative methods that replace the criti-
cal operation in the sense of numerical stability.
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Detection and Compression
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Chapter 1

Anomaly Detection and
Compression Trade-off

A typical monitoring system involves a physical phenomenon sensed directly or
indirectly through devices that transform physical quantities into bit-streams. The
generated data needs to be collected and transferred over a network to be stored
and/or processed in a facility that, in general, is remote as a central server or a cloud
service. Before reaching the destination, bit-streams may pass through intermediate
devices, and the communication is often a bottleneck in terms of either bandwidth
requirement or energy budget. For this reason, data may be compressed.

For a significant compression level, it is necessary to adopt lossy approaches that
exploit the monitored signal’s statistical characteristic to focus on the most infor-
mative part at the expense of the details. Hence, there is a trade-off between the
distortion imposed in the encoding stage and the number of bits employed to code
the signal information content. This trade-off is assessed by the well-known rate-
distortion analysis developed in the information theory field.

However, the rate-distortion trade-off considers the signal information as uni-
formly relevant. That is not the case of data collected for a specific task in which
some information content may be completely ignored. As an extreme example, the
extraction of features from a signal is a process that severely distorts the signal to
focus only on the information relevant for a specific task, such as classification or
anomaly detection.

Moreover, for latency or privacy reasons, some computational tasks may bene-
fit from their deployment at the edge of the cloud [167], i.e., the same devices de-
voted to data acquisition and dispatch. In general, one may want to analyze the
compressed stream of data locally for real-time processing but still transmit it to
the cloud for offline analyses. This need is especially true when dealing, for ex-
ample, with systems monitoring plants or structures in which data streams may be
processed at the edge to detect possible critical events that require immediate inter-
vention but also processed offline to analyze long-term historical trends.

Indeed, in monitoring systems, local anomaly/novelty detection is a fundamen-
tal task that identifies and recognizes something out of the ordinary in the acquired
signal that may be related to an unexpected in the monitored physical phenomenon
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or the monitoring system. A detector discriminates an ordinary signal from an
anomaly by observing the statistical characteristics of the signal, and, since anomaly
is usually completely unknown, the detector may only classify an instance as abnor-
mal when it significantly differs from the expected behaviour.

However, lossy compression bases its effectiveness on neglecting some of the
signal details that, in principle, could have been used to discriminate normal be-
haviours from anomalous ones. Hence, in this case, another trade-off goes in parallel
to the classic rate-distortion that is the one between compression and distinguisha-
bility between normal and anomalous signals.

In this chapter, we address this multi-faceted trade-off between rate, distortion,
and distinguishability with the information machinery employed in the classical
rate-distortion analysis.

In this sense, the pursued analysis here resembles the information-bottleneck
scheme [178, 170]. In that scheme, distortion is replaced with a general criterion
that indicates the features that should be preserved when compressing the original
signal’s information about a second (suitably introduced) signal. However, our dis-
cussion takes a different direction as, in the considered scenario, the statistics of the
anomaly may be completely unknown. Even if we have priors on that, the analysis
needs to be generalized for cases in which the mutual information between normal
and anomalous signals is null.

For the same reason, the analysis we propose is also different from other modi-
fications of classical rate-distortion theory that replace energy-based distortion with
perceptive criteria [33, 32].

It is also worthwhile to mention [159, 168], in which the original signal is as-
sumed to be characterized by some parameters (e.g., mean) and the authors study
how the estimation of such parameters is affected by lossy compression.

Other works also attempt to pair rate and distortion with additional figures of
merit considering relevant features of the system. An example is in [70], in which
the analysis of rate-distortion is paired with computational effort considerations in
the case of video coding based on wavelet decomposition.

In this chapter, we extend the rate/distortion analysis to discuss the trade-off
with anomaly detection. In detail, Section 1.1 presents the signal model as well as
defines two distinguishability measures that model the scenarios in which the detec-
tor may either know the statistical characterization of the anomaly or not. Section 1.2
specializes the model to the case of signals distributed as Gaussian random vectors,
revisits well-known results on Gaussian rate-distortion analysis, and derives some
analytical results about distinguishability for high-dimensional signals in both the fi-
nite and asymptotic regime. Finally, Section 1.3 reports some numerical evidence to
analyze how the distinguishability measures are affected by distortion in the case of
optimal and suboptimal encoding strategies in the rate-distortion sense. Theoretical
curves anticipate trends observed in the performance of practical decoder, show-
ing that compression optimized for the rate-distortion trade-off, in general, does not
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FIGURE 1.1: Signal flow in the model considered to assess the trade-
off between anomaly detection and compression.

necessarily address distinguishability at best.

1.1 Signal model and distinguishability

The observable signal is modelled as a discrete-time, n-dimensional stochastic pro-
cess x[t] ∈ Rn which, at any t, is either normal or anomalous. This bi-modal be-
haviour is modelled as two independent sources producing stationary, stochastic
processes xok[t] ∈ Rn and xko[t] ∈ Rn with different probability density functions
(pdfs) f ok

x : Rn 7→ R+ and f ko
x : Rn 7→ R+, where ok stands for normal and ko for

anomalous.

x[t] =





xok[t] ∼ f ok
x if ok

xko[t] ∼ f ko
x if ko

(1.1)

Note that this model fits both a case in which the entries of x[t] are the subsequent
samples of a signal in the t-th window, and one in which they are the simultaneous
readings of different sensors at time step t, as well as those intermediate cases in
which the vector x[t] is made of readings from different sources in a set of subsequent
time steps.

The observable x[t] is the input of an encoding stage which produces a com-
pressed version y[t]. The output of the encoder may be either decompressed into
x̂[t] ∈ R̂n, where R̂n ⊂ Rn is a finite subset of Rn, or fed to a detector with the
objective of discriminating between normal or anomalous behaviour, i.e., to decide
whether the original signal is x[t] = xok[t] or x[t] = xko[t]. A schematic representa-
tion of signal flow we consider is reported in Figure 1.1.

Since the compression mechanism is considered a lossy procedure, the encoder
is not injective. At the same time, the decoder is assumed to be injective so that, in
abstract terms, the detector may be thought to work on either y[t] or x̂[t].

The encoder is tuned on the normal behaviour, meaning compression is designed
assuming x[t] = xok[t] and thus x̂[t] = x̂ok[t] for every t. The average distortion D
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introduced by the encoding stage is the following:

D = lim
T→∞

1
T

T−1

∑
t=0

∥∥∥xok[t]− x̂ok[t]
∥∥∥

2
= E

[∥∥∥xok[t]− x̂ok[t]
∥∥∥

2
]

(1.2)

Since R̂n is finite so that one can assign a digital word with b[t] bit to each possible
values of x̂[t]. Since the decoder is injective the same holds for y[t]. Considering a
stream of compressed signals, it is possible to define the average rate as

R = lim
T→∞

1
T

T−1

∑
t=0

b[t] = E [b[t]] (1.3)

Distortion and rate are two elements of a trade-off. The lower the number of
available bits representing the information, the higher the distortion. The Pareto
frontier for this trade-off is called rate-distortion function ρ and it is defined as the
minimal rate given a distortion budget δ, i.e.,

ρ(δ) = inf R s.t. D ≤ δ (1.4)

To identify such a function, it is classical [56, Chapter 9] to consider the joint
probability of x̂[t] and x[t] denoted as f x̂,x : R2n 7→ R+. In such a way, it is possible
to model the cascade of encoding and decoding stage as the conditional pdf of x̂[t]
given the occurrence of x[t] indicated with f x̂|x, so that f x̂,x (α, β) = f x̂|x (α, β) fx(β).

As the compression is tuned on the normal behaviour x[t] = xok[t], the average
distortion is given by

D =
∫

R2n
‖α− β‖2 f ok

x̂,x (α, β)dαdβ (1.5)

where f ok
x̂,x (α, β) = f x̂|x (α, β) f ok

x (β) from which one may derive the marginal pdf of
the decompressed signal f ok

x̂ (α) =
∫

Rn f ok
x̂,x(α, β)dβ.

Considering the classical distortion theory (e.g., [56, Chapter 13]) and denoting
I
(
xok; x̂ok) as the mutual information between x̂ok[t] and xok[t] [56, Chapter 8], one

can write the rate-distortion function as:

ρ (δ) = inf
f x̂|x
I
(

x̂ok; xok
)

s.t. D ≤ δ (1.6)

With the introduction of anomalies, the model becomes more complex. One can
notice that anomalies are compressed with the encoder tuned on normal behaviour
modelled by f x̂|x. In this case, the input and output are characterized by the joint pdf
f ko
x̂,x (α, β) = f x̂|x (α, β) f ko

x (β) and the marginal pdf f ko
x̂ (α) =

∫
Rn f ko

x̂,x(α, β)dβ.
A detector observes the compressed version of the original signal that, assuming

the decoder injective, is equivalent of observing the decompressed signal. Therefore,
to discriminate between normal and anomalous behaviour, the detector works on
the difference between the distributions f ok

x̂ and f ko
x̂ .
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This dissertation proposes two information-theoretic measures to quantify the
difference between the two distributions that we will name distinguishability. One
measure considers the scenario in which the detector knows f ok

x̂ and f ko
x̂ (anomaly-

aware scenario) and one for the case in which only f ok
x̂ is known (anomaly-agnostic

scenario).
To define both measures, it is convenient to consider the following functional:

L(x′; x′′) = −
∫

Rn
fx′(α) log2 [ fx′′(α)]dα (1.7)

which represents the average rate for a source characterized by the pdf fx′ with a
code optimized for a source with pdf fx′′ . Note that H(x) = L(x; x) is equal to the
differential entropy of x [56, Chapter 8].

1.1.1 Distinguishability in anomaly-aware scenario

When the detector knows the statistical characterization of both normal and anoma-
lous sources, f ok

x and f ko
x respectively, the distinguishability between f ok

x̂ and f ko
x̂

may be measured as

κ = L
(

x̂ko; x̂ok
)
− L

(
x̂ko; x̂ko

)
=
∫

Rn
f ko
x̂ (α) log2

[
f ko
x̂ (α)

f ok
x̂ (α)

]
dα (1.8)

that concides to the Kullback-Leibler divergence of the anomalous decompressed
signal x̂ko from normal decompressed signal x̂ok.

The measure κ models a scenario in which the detector knows the optimal code
for both normal and anomalous sources. Then, the detector observes the anomalous
distorted stream x̂ko[t] and computes the increase in the encoding rate due to the
employment of the code optimized for the normal source. As a result, large values
for κ correspond to systems with high detection capability.

1.1.2 Distinguishability in anomaly-agnostic detection

When there is no knowledge on the anomaly and only f ok
x̂ is known, the distin-

guishability may be measured as

ζ = L
(

x̂ko; x̂ok
)
− L

(
x̂ok; x̂ok

)
=
∫

Rn

[
f ko
x̂ (α)− f ok

x̂ (α)
]

log2 f ok
x̂ (α)dα (1.9)

The measure ζ models a scenario in which the detector only knows the code
optimized for the normal source. An anomaly is then detected when the encoding
rate is different from the typical encoding rate of the normal source.

Note that, in the case of an anomaly source yielding a lower encoding rate com-
pared to normal signals, ζ may assume negative values. For this reason, when a
positive quantity is needed, |ζ| is considered.
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In the anomaly-aware and anomaly-agnostic case, we may want to assess av-
erage performance when the anomalies are randomly drawn from a certain set of
possible behaviours.

1.2 Gaussian framework

In this section the model is specialized for the case in which the signals have Gaus-
sian distribution.

An n-dinamesional Gaussian random vector x ∼ N (µ, Σ), i.e., with mean µ ∈
Rn and covariance matrix Σ ∈ Rn×n, is characterized by the following probability
density function:

N (ξ; µ, Σ) =
1√

(2π)n |Σ|
exp

(
−1

2
(ξ − µ)> Σ−1 (ξ − µ)

)
(1.10)

where | · | indicates the determinant of its matrix argument.
For any time instant t, both the normal xok[t] and anomalous xko[t] signals are

assumed to be n-dimensional random vectors with Gaussian distribution xok[t] ∼
N
(
0, Σok) and xko[t] ∼ N

(
0, Σko) where Σok and Σko are two n × n covariance

matrices. It is also assumede that, ∀t1, t2 such that t1 6= t2, the random vectors are
independent.

With no loss of generality, one may assume Σok diagonal as it is sufficient to
change coordinates to x[t] (and thus to both xok[t] and xko[t]) by applying a proper
orthonormal transformation. This means that Σok = diag

(
λok

1 , . . . , λok
n
)

with λok
1 ≥

λok
2 ≥ · · · ≥ λok

n ≥ 0.
In general, Σok 6= Σko, but we will assume tr(Σok) = tr(Σko) = n. This constraint

leads to signal instances that, on average, have l2 norm equal to n, i.e., on average,
each element of the random vector contributes with a unit energy.

The zero-mean assumption and the constraint on the trace of the covariance
matrices are required to focus on the scenarios where the anomalies cannot be dis-
tinuished from the normal signals by simply observing the mean or the energy.

First, the well-known results for rate-distortion trade-off in the Gaussian frame-
work are revised. Then, the Gaussian assumption is exploited to specialize the
model defined in 1.1 and derive the distribution of the normal and anomalous signal
in the case of an encoder tuned for the normal signal in the sense of rate-distortion
optimality.

Afterwards, the assumption of Gaussian signals is exploited to specialize distin-
guishability in the pointwise and average case. Some important considerations are
also shown for the asymptotic characterization of anomalies in the high-dimensional
case.
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1.2.1 Optimal rate-distortion trade-off

The derivation of the rate rate-distortion function ρ(δ) in the Gaussian case is well-
known [56, Chapter 13].

Considering the scalar case n = 1, the distortion constraint is quadratic, and it
is possible to derive that, given the constraint D ≤ δ, the minimum achievable rate
has the lower bound

I
(

x̂ok; xok
)
≥ H

(
xok
)
− 1

2
log2 (2πeδ) (1.11)

This lower bound is achievable only when the encoding is such that xok − x̂ok is
a Gaussian random variable [56, Chapter 13]. Assuming xok Gaussian with variance
σ2

ok = λok, its differential entropy is H(xok) = 1
2 log2(2πeσ2

ok). This leads to the
following rate-distortion function:

ρ(δ) =





1
2 log2

σ2
ok
δ if 0 ≤ δ ≤ σ2

ok

0 otherwise
(1.12)

Generalizing to the n-dimensional case, in which xok is a vector of independent
Gaussian variables, one must consider that the total distortion is the sum of the
distortions imposed to each component. This aspect leads to the well-known water-
filling result [56, Theorem 13.3.3]

ρ =
1
2

n

∑
j=1

log2


 λok

j

min
{

θ, λok
j

}


 (1.13)

δ =
n

∑
j=1

min
{

θ, λok
j

}
(1.14)

where θ ∈ [0, λok
1 ] is the parameter representing the water-level.

Note that the lower water level components are entirely distorted and do not
count for the rate, while the components that survive are distorted with energy equal
to the water level.

To track the effect of water filling, we consider In as the n-dimensional identity
matrix and define the following matrices:

• Tθ = min
{

In, θ(Σok)−1}, whose diagonal elements account for the fraction of
energy cancelled by distortion along each component;

• Sθ = In − Tθ = max
{

0, In − θ(Σok)−1}, whose diagonal elements account for
the fraction of energy that survives distortion along each component;

• Rθ = SθTθ .

Along the rate-distortion curve, the relation between compression and distortion
is due to an encoding mapping f x̂|x that is generally stochastic and produces a signal
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with a pdf f ok
x̂ . Both f x̂|x and f ok

x̂ are given by the following Property, whose proof is
in the appendix A.1.

Property 1.1. The optimal distortion is given by

f x̂|x(α, β) = N
(

α; βSθ , ΣokRθ

)
(1.15)

and the optimally distorted signal has the pdf

x̂ok ∼ N
(

0, ΣokSθ

)
(1.16)

The encoder characterized by f x̂|x that optimally addresses the rate-distortion
trade-off for the normal source is also employed for the anomalous signal xko[t] en-
coded into x̂ko[t]. The pdf of x̂ko[t] is given by the following Property, whose deriva-
tion is in the appendix A.2.

Property 1.2. If an anomalous source xko ∼ N
(
0, Σko) is encoded with the compression

scheme f x̂|x of Property 1.1, then

x̂ko ∼ N
(

0, SθΣkoSθ + θSθ

)
(1.17)

The distribution of the anomalous signal distorted by the encoder optimized for
the normal signal in the sense of the rate-distortion trade-off has two notable corner
cases.

• when the encoder introduces no distortion, i.e., θ → 0+, Property 1.2 gives
x̂ko ∼ xko that means that, as expected, the distribution of the anomaly is not
modified.

• when the anomaly is indistinguishable from the signal xko ∼ xok, i.e., Σok =

Σko, then

SθΣkoSθ + θSθ =
(

Sθ + θ(Σok)−1
)

ΣokSθ

= max
{

θ(Σok)−1, In

}
ΣokSθ = ΣokSθ

(1.18)

where the last equality holds since max{θ(Σok)−1, In} disagrees with In only
for the elements that are multiplied by zero by the last Sθ factor. As a result, if
xko ∼ xok, 1.17 corresponds to 1.16 and, therefore, x̂ko ∼ x̂ok.

1.2.2 Pointwise distinguishability

Properties 1.1 and 1.2 imply that when the normal and anomalous signals are Gaus-
sian before compression, the performance of anomaly detectors depends on how
much they are able to distinguish between the two distributions in (1.16) and (1.17).
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In the Gaussian framework, it is possible to obtain an expression for the distin-
guishability measures κ (1.8) and ζ (1.9) that only depends on the statistical char-
acterization of the normal and anomalous signals.

Properties 1.1 and 1.2 also demonstrate that x̂ok and x̂ko are both a Gaussian
n-dimensional random vectors. Depending on the water-level parameter θ, the op-
timal encoder cancels all the normal and anomalous components that correspond
to all j for which λok

j ≤ θ holds, i.e., the components that in case of normal signal
would be completely distorted.

Let us assume that the number of surviving components is kθ = arg maxj{λok
j >

θ}, and that they are distributed according to N
(
0, Σ̂ok

θ

)
in case of normal signal or

according to N
(
0, Σ̂ko

θ

)
in case of anomaly. Note that, Σ̂ok

θ is the kθ × kθ upper-left
submatrix of ΣokSθ in (1.16), and Σ̂ko

θ is the kθ × kθ upper-left submatrix of SθΣkoSθ +

θSθ in (1.17).
Then, before considering κ (1.8) and ζ (1.9), one may specialize the expression of

the functional L(x′; x′′) defined in (1.7) as in the following Property whose derivation
is in the Appendix A.3.

Property 1.3. If fx′(α) = N (α; 0, Σ′) and fx′′(α) = N (α; 0, Σ′′) then

L(x′; x′′) =
1

2 log 2

{
log
[
(2π)n ∣∣Σ′′

∣∣]+ tr
[
(Σ′′)−1Σ′

]}
(1.19)

By properly combining the definitions in (1.8) and (1.9) with (1.19) one obtains

ζ =
1

2 log 2
tr
[
(Σ̂ok

θ )−1Σ̂ko
θ − Ikθ

]
(1.20)

κ =
1

2 log 2

(
tr
[
(Σ̂ok

θ )−1Σ̂ko
θ − Ikθ

]
− log

∣∣Σ̂ko
θ

∣∣
∣∣Σ̂ok

θ

∣∣

)
(1.21)

It is evident that, as expected, both measures vanish when the distorted anomaly
is indistinguishable from the distorted normal signal, i.e., when Σ̂ok

θ = Σ̂ko
θ . More-

over, since both Σok and Sθ are diagonal matrices, one may derive that (Σ̂ok
θ )−1Σ̂ko

θ is
the kθ × kθ upper-left submatrix of (Σok)−1ΣkoSθ + Tθ .

A noteworthy particular case is when Σok = In that is when the normal signal
is white. In such a case, θ ∈ [0, 1] and that for any θ < 1, Tθ = θ In and kθ =

n. As a consequence, Σ̂ok
θ = (1 − θ)In, Σ̂ko

θ = (1 − θ)2Σko + θ(1 − θ)In, and the
distinguishability measures in (1.20) and (1.21) become

ζ = 0 (1.22)

κ = − 1
2 log 2

log
∣∣∣(1− θ)Σko + θ In

∣∣∣ (1.23)

Note that the measure ζ is null when the normal signal is distributed as Gaussian
noise. This aspect is not surprising because the ζ depends only on the statistics of
xok that has no exploitable structure.
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1.2.3 Average anomaly

In the considered model, Σko completely describes the distribution of the anomaly
signal. In general, Σko is unknown, so that one may be interested in the average
anomaly over all the possibilities.

Let us decompose Σko = QkoΛkoQko>, where Λko = diag(λko
0 , . . . , λko

n−1) is the
matrix containing the eigenvalues and Qko is the matrix composed by the corre-
sponding eigenvectors.

Since the model assume tr(Σko) = n, the set of all possible λko is

Sn =

{
λ ∈ R+

n|
n−1

∑
j=0

λj = n

}
(1.24)

The set of all possible Qko coincides with the set of orthonormal n× n matrices

On =
{

U ∈ Rn×n|U>U = In

}
(1.25)

Let now U (·) indicate the uniform distribution in the argument domain and
assume that when λko is not known, then λko ∼ U (Sn) and that when Qko is not
known, then Qko ∼ U (On), independently of λko. Then, one may note that Sn is
invariant with respect to any permutation of λj and, since λko ∼ U (Sn), also E[λko]

must be invariant with respect to the same permutations, i.e., for any j, l E[λko
j ] =

E[λko
l ]. Since E[λko

j ] must be the same for any j and the sum of λok
j is constrained to

n, one must conclude that E[Λko] = In. This result has the following implication:

E
[
Σko
]
= E

[
QkoΛkoQko>

]
= E

[
QkoE

[
Λko

]
Qko>

]
= E

[
QkoQko>

]
= In (1.26)

This implies that, in the considered Gaussian framework, the average anomaly
consists in white noise. Then, one may compute the distinguishability measures in
this specific case.

ζ̄ = ζ|Σko=In
=

1
2 log 2

kθ

∑
j=1

(
αθ,j − 1

)
(1.27)

κ̄ = κ|Σko=In
=

1
2 log 2

kθ

∑
j=1

(
αθ,j − 1− log αθ,j

)
(1.28)

where αθ,j = λok
j
−1
(1− θλok

j
−1
) + θλok

j
−1

, that in this specific case corresponds to
the j-th element of the diagonal of (Σ̂ok

θ )−1Σ̂ko
θ , which in turn consists in the kθ × kθ

upper-left submatrix of (Σok)−1Sθ + Tθ .
Note that, since ζ is linear and κ is convex [35, Chapter 3] with respect to Σ̂ko

θ ,
and exploiting the Jensen’s Inequality, it is evident that ζ̄ = E[ζ] and κ̄ ≤ E[κ]. This
implies that ζ̄ consists in the average ζ over all possible anomalies while κ̄ plays the
role of lower bound for κ.
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Furthermore, the simple expression of ζ̄ allows the derivation of the following
Property whose proof is in the Appendix A.4.

Property 1.4. If ` = arg maxl
{

λok
l ≥ λko

l = 1
}

, then ∃ θ ∈ [0, λok
` ] such that ζ̄ = 0

Property 1.4 says that if xko is distributed as Gaussian white noise, there exists at
least a critical level of distortion that makes the anomaly-agnostic detectors ineffec-
tive. Moreover, this level depends on how the energy is distributed along with the
signal components.

1.2.4 Asymptotic anomaly

One may also be interested in the anomaly’s distribution when the dimension of the
signal increases. This aspect is addressed with the following Property, whose proof
is in Appendix A.5.

Property 1.5. If λko ∼ U (Sn) and Qko ∼ U (On) then Σko = Qkodiag(λko)Qko> tends
to In in probability as n→ ∞.

Property 1.5 means that white noise is not only the average anomaly (as shown
by (1.26)) but also approaches the typical anomaly as the dimension n increases. This
aspect implies that, for large n, ζ ' ζ̄ and enjoys Property 1.4.

1.3 Numerical examples

In this section, the results derived in the theoretical analysis are compared to a quan-
titative evaluation of the performance of some anomaly detectors applied to com-
pressed signals.

Following the Gaussian framework, the normal signal is assumed to be xok ∼
N
(
0, Σok) and anomalies as xko ∼ N

(
0, Σko).

One may expect that the performance of an anomaly detector may be affected
by the non-whiteness of the normal signal as shown in Section 1.2.2. To analyze
the effect of different levels of non-whiteness, the covariance of the normal signal
is chosen as Σok

j,l = ω|j−l| where ω ∈]0, 1[ is a parameter that allows controlling the
whiteness of the distribution.

One may measure the distance of a generic signal x from the white distribution
with the localization [120] that is defined as

Lx =
tr(Σ2)

tr2(Σok)
− 1

n
=

∑n
j=1 λok2

j(
∑n

j=1 λok
j

)2 −
1
n

(1.29)

where Σ is the covariance of x and features λj with j = 1, . . . , n as eigenvalues.
Localization ranges from Lxok = 0 when the signal energy is equally distributed

in any direction, i.e., the signal is white, to Lxok = 1− 1/n when the energy is com-
pletely unbalance along a single component. In this dissertation, we consider three
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different values for ω that corresponds to realistic levels of localization [42], specifi-
cally Lxok ∈ {0, 0.05, 0.2}.

The anomalies are generated accordingly to the uniform distribution defined in
1.2.3. Firstly, the eigenvalues profile is drawn as λko ∼ U (Sn) by following [147]

λko
j =

log ξ j

∑n
l=1 log ξl

(1.30)

Then, the eigenvectors matrix is generated as Qko ∼ U (On) by following [134]. As
a start, we pick a matrix belonging to the Ginibre ensemble [76], whose elements are
independently drawn asN (0, 1). Afterwards, the matrix is orthogonalized through
QR-decomposition.

1.3.1 Asymptotic anomaly

As first numerical evidence, one may be interested in empirically assessing Prop-
erty 1.5, i.e., the typical anomaly tends to behave like white noise when the dimen-
sion of the signal increases.

To show such a behaviour, we compute the deviation from In of several Σko gen-
erated with n ranging from 27 to 217. The distances employed to measure the devia-
tion are the following

∆2 =
1
n

√√√√
n

∑
j,l=1

[
Σko

j,l − (In)j,l

]2
(1.31)

∆∞ = max
j,l

∣∣∣Σko
j,l − (In)j,l

∣∣∣ (1.32)

Figure 1.2 reports both metrics depending on the signal dimension n with solid
lines to represent the median trends and shaded areas to contain 98% of the popu-
lation. The figure shows that both metrics feature a vanishing trend as n increases.
Despite not being theoretically supported, the empirical results reveal a traditional
1/√n convergence.

1.3.2 Encoders

For the following analysis, the dimension of the signal x is set as n = 32 and three
types of encoding techniques are considered:

• Rate-Distortion Compression (RDC) which consists in the optimal encoding in
the rate-distortion trade-off sense, i.e., the encoder that yields the minimum
rate given a distortion level.

• Principal Component Compression (PCC) which projects the input signal x
onto the principal subspace, i.e., the subspace spanned by the eigenvectors of
Σok corresponding to the largest eigenvalues.
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FIGURE 1.2: Deviation of the anomaly from white noise depending
on the signal dimension n in term of ∆2 and ∆∞.

• Auto-Encoder Compression (AEC) which includes a family of auto-encoder
models [82, Chapter 14] to find a latent representation for the input signal.
The considered models are fully connected neural networks where the encoder
consists of four layers with dimension n, 4n, 2n, ` where ` is the dimension-
ality of the latent representation. The decoder is symmetric to the encoder
and therefore consists of four layers with dimensions `, 2n, 4n, n. In both en-
coder and decoder, the adopted activation functions are ReLU [82, Chapter 6]
in the hidden layers and Linear function in the output layer. The models are
trained with (1.2) as loss function so that distortion is minimized. To smooth
performance degradation, the models are trained sequentially with decreasing
dimensionality of the latent space. Firstly, an autoencoder with ` = n − 1 is
trained. Then, the node of the latent representation that features the most neg-
ligible variance is dropped to produce a model with an (` − 1)-dimensional
latent space. The resulting model is re-trained using the previous weights as
initialization. The procedure is repeated for each ` down to ` = 1.

Since the encoder is tuned on the normal signal source, all three compression
techniques are tuned to the normal signal.

Note that the three schemes address the trade-off between compression and dis-
tortion differently. To show that, we pair each compressor with a quantization stage
that ensures the rate is finite. In detail, each element of the compressed signal x̂ is lin-
early quantized with 16 bits so that the maximum rate is limited to 16× n = 512 bits
for each time instant. It is assumed that quantization is sufficiently fine to consider
x̂ approximately Gaussian. This assumption allows computing the mutual informa-
tion between the original and the compressed signal I(x; x̂) as if they were jointly
Gaussian with a covariance matrix estimated through Monte Carlo simulations [10].
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FIGURE 1.3: Rate distortion curves for the three encoding techniques
RDC, PCC, and AEC for different levels of signal localization.

Figure 1.3 shows the rate-distortion curves obtained as a result of such estimation
for different values of localization Lok

x . The plots are made against the normalized
distortion d = D/n in the range d ∈ [0, 0.64] since larger distortion levels are usually
not interesting for practical applications. As one may expect, RDC yields the lowest
rates while PCC produces the largest ones, and between the two, there is AEC. It is
also evident the effect of whiteness of the signal, which tends to flatten the curve as
the localization decreases.

1.3.3 Detectors

The compressed representation of the original signal is then given as input to a de-
tector whose task discriminates between normal and anomaly. To perform this task,
a detector computes a score that assumes low values for normal signals and high
values when the input behaves anomalously. Then, the detector matches the score
against a threshold to discriminate between the two classes.

As for the distinguishability measures, two families of detectors are considered
in this dissertation. The former consists of detectors that only rely on information
about the normal behaviour, while the latter considers detectors that can take ad-
vantage of some knowledge about the anomaly.

From the former class, the following detectors are considered:

• Likelihood Detector (LD) that computes the score as the inverse of the log-
likelihood of the instance x̂ with respect to the normal signal distribution f ok

x̂ ;

• One-Class Support-Vector Machine (OCSVM) [161] whose score is the distance
from the envelope of normal instances estimated during the training phase in
which 1% of unlabelled white instances has contaminated the training set.
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detector
training assessment

#Σko #instances×Σko #Σko #instances×Σko

ok ko ok ko

LD 1 000 1 000 1 000
OCSVM 1 99 000 1 000 1 000 1 000 1 000

NPD 1 000 1 000 1 000
DNN 50 100 000 100 000 50 100 000 100 000

TABLE 1.1: Composition and dimension of the data sets employed
for the training (when required) and the performance assessment of

the detectors.

Among the detectors that exploit information on the anomaly, we consider the
following:

• Neyman-Pearson Detector (NPD) [101, Chapter 3], whose score is the difference
between the log-likelihoods of the instance x̂ with respect to the anomalous
and normal distributions, f ko

x̂ and f ok
x̂ respectively;

• Deep Neural Network (DNN) consisting of 3 fully connected hidden layers with
kθ , 2n, n neurons with a ReLU activation and a single output neuron with a sig-
moid as activation function, which produces the score. The network is trained
with a dataset containing an equal number of labelled normal and anomalous
instances and considering the binary cross-entropy as a loss function.

Since LD and NPD rely on the knowledge of the pdf of the compressed signal, they
can be only applied on signal encoded by RDC or PCC and not by AEC as pdf is not
available after the nonlinear processing.

Table 1.1 reports the number of different anomalies and the number of signal in-
stances generated for the training (when needed) and the testing of the detectors.
In general, detectors performance is assessed by generating 1000 different anomaly
sources and 1000 instances each Σko. The only exception is DNN, for which the num-
ber of anomalies is limited to 50. This limitation is justified by the need of repeating
the training for each anomaly with 105 different anomaly samples. Note that, LD and
NPD do not require training since they rely on the signal pdfs.

Performance figure Performance assessment for a detector refers to the capabilities
of correctly classifying an anomaly among normal signal instances. Let us consider
the detection of an anomaly as a positive and of a normal signal instance as a neg-
ative event. Then, the detector makes a mistake when it classifies either a normal
instance as an anomaly (False Positive) or an anomaly as a normal instance (False
Negative). On the other hand, we have a True Positive or a True Negative when the
detector succeeds in detecting an anomaly or a normal instance, respectively.

In general, classification is performed by applying a threshold to the score that
the classifier associates to the input instance. In this dissertation, we focus on the
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receiving operating characteristic (ROC) curve which plots the True Positive Rate
(TPR) versus the False Positive Rate (FPR)[69]. TPR and FPR refer to the probability
of having a TP or a FP, denoted as pTP and pFP

TPR = pTP(ξ) = Pr
{

s(x) > ξ|x ∼ f ko
x

}
= 1− Fs|ko(ξ) (1.33)

FPR = pFP(ξ) = Pr
{

s(x) > ξ|x ∼ f ok
x

}
= 1− Fs|ok(ξ) (1.34)

where s(x) refers to the score associated by the detector to the signal instance x,
ξ acts as threshold that discriminates between anomaly and normal instance, and
Fs|× indicates the cumulative density function (cdf) of the score s given the input ×,
where × can be either ok or ko.

When Fs|ko and Fs|ko are not available, TPR and FPR are estimated by Monte
Carlo simulations as

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

(1.35)

where TP, FN, FP, and TN refer to the number of True Positives, False Negatives,
False Positives, and True Negatives.

Hence, each point of the ROC depends on the threshold employed to discrimi-
nate positives from negatives. Since thresholds often depend on the application, in
this dissertation, we focus on the Area Under the Curve (AUC) which provides an
independent measure as it takes into account all possible thresholds. AUC has also
a probabilistic interpretation as shown in [87]. Indeed, AUC can be computed with
the following integral

AUC =
∫ 1

0
pTP(p−1

FP (p))dp (1.36)

where p is the value on the horizontal axis of the ROC. Let us consider the change
of variable p = pFP(α) so that

AUC = −
∫ ∞

−∞
pTP(α)p′FP(α)dα

=
∫ ∞

−∞

(
1− Fs|ko(α)

)
fs|ok(α)dα

=
∫ ∞

−∞

∫ ∞

−∞
1[β>α] fs|ko(β) fs|ok(α)dβdα

= Pr {sko > sok}

(1.37)

where 1I refers to a function that is 1 in the interval I and 0 otherwise, and the nega-
tive sign in the first step is due to the fact that for an increasing score α the probabil-
ity of a FP decreases. Note that from (1.37) it is evident that AUC can be interpreted
as the probability for a randomly picked anomaly to score higher than a randomly
picked normal signal instance. For this reason, AUC is a positive performance index
that ranges from 0 (anomalies always score lower than normal instances) to 1 (ideal
setting).
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Clearly, if a detector yields AUC = 0 is as capable of discriminating between
normal and anomaly as an ideal detector, as it is sufficient to interpret the score in a
reverse way to obtain AUC = 1. Hence, one may measure the ability to distinguish
normal and anomalous signals as the distance from AUC = 1/2 that corresponds to
a detector that is no better than coin tossing. That is the reason for the definition of
the following measure

ψ = |AUC− 1/2| (1.38)

which is a positive index that ranges from ψ = 0 when performance is poor to ψ =

0.5 in the case of an ideal detector.
The performance of each detector in terms of ψ is matched with the trends of |ζ|

and κ to show how theoretical properties reflect on practical cases. Comparisons are
qualitative as the nature of ζ, and κ is different from the nature of ψ.

Rate-Distortion Compression (RDC) Figure 1.4 reports the distinguishability mea-
sures ζ, κ, and ψ in the settings considering RDC as encoder and all aforementioned
detectors. The plots are arranged in a grid of three rows and two columns. The plots
on the left column concern the anomaly-agnostic scenario in which only information
related to the normal behaviour is exploitable, i.e., from top to bottom, ζ, ψ for de-
tectors LD and OCSVM. On the right columns are plots concerning the anomaly-aware
scenario where some knowledge about the anomaly is workable, i.e., from top to
bottom, κ, ψ for detectors NPD and DNN. Colours refer to a different level of signal
localization Lxok , solid lines correspond to median trends, shaded areas to the span
of 50% of the Monte Carlo population, and dashed lines refer to the white anomaly
(i.e., white noise). There is no curve for |ζ| and Lx = 0 since in that case ζ = 0.

With no knowledge of the anomaly (left column), |ζ| anticipates that a limited
amount of distortion (d� 1) may cause distinguishability to vanish and thus detec-
tors to fail. This phenomenon happens for LD and OCSVM detectors, and the distortion
level at which they fail is also anticipated by theory and depends onLxok as predicted
by Property 1.4. Overall, |ζ| anticipates that, in the low-distortion region, more lo-
calized signals are more distinguishable from anomaly though they cause detector
failures at lower distortions than less localized signals.

Detectors leveraging the knowledge of the anomaly (right column) fail com-
pletely only at 100% distortion as revealed by the abstract distinguishability mea-
sure κ. Even in this case, by comparing the trend of κ with the zoomed areas in
the NPD and DNN plots, we see how theory anticipates that, in the low-distortion
region, more localized signals tend to be more distinguishable from anomalies but
cause more substantial performance degradation of detectors when d increases.

Principal Component Compression (PCC) From the rate-distortion point of view,
PCC is largely suboptimal, as shown in Figure 1.3. Yet, due to its linear nature x and
x̂ are still jointly Gaussian, allowing for the computation of the theoretical measures
|ζ| and κ by means of (1.20) and (1.21).
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FIGURE 1.4: Distinguishability measures ζ, κ and ψ against normal-
ized distortion d in case of RDC.
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FIGURE 1.5: Distinguishability measures ζ, κ and ψ against normal-
ized distortion d in case of PCC.

Figure 1.5 reports the distinguishability measure ζ and ψ along the lines of Fig-
ure 1.4. The qualitative behaviours seen in the previous case are confirmed, but the
values of the involved quantities change compared to the RDC case. The distortion
levels at which anomaly-agnostic detectors fail is lower than RDC, but the values of
|ζ| beyond breakdown are slightly higher. As a consequence, one may instead adopt
a sub-optimal encoding strategy in the rate-distortion sense in favour of better dis-
tinguishability as in the case of LD and OCSVM.

Autoencoder Compression (AEC) In the case of AEC as encoder, the non-linear pro-
cessing of x to encode it into x̂, in general, makes the relation between the two signals
non-linear, and therefore they may not be jointly Gaussian. This fact prevents from
computing the theoretical measures |ζ| and κ and from applying LD and NPD which
rely on the knowledge of the distribution of the signals.

For this reason, Figure 1.6 only shows the performance of OCSVM and DNN detec-
tors. Note that, even in this case, the qualitative trends still follows the theoretical
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FIGURE 1.6: Distinguishability measure ψ against normalized distor-
tion d in case of AEC.

profiles observed for the other compressors, though with a larger level of approxi-
mation.

Conclusion

Monitoring systems are often characterized by a data flow from sensors to a cen-
tral server for which compression strategies are adopted to meet the communication
requirements. However, the information in the acquired signals may be processed
locally for early detection of anomalies leading to edge devices implementing detec-
tors that operate on compressed bitstreams.

In this chapter, the trade-off between compression and performances of anomaly
detectors is addressed. The analysis first requires the definition of two information-
theoretic quantities κ and ζ that can measure the distinguishability between two
sources of signal distorted by an encoding stage in two different scenarios. A source
is associated with the observed normal behaviour and is exploited to tune the en-
coder. The other source refers to a generic anomaly whose statistical characterization
may be either known (anomaly-aware scenario) or not (anomaly-agnostic scenario).

Assuming the sources as Gaussian stochastic processes, it was possible to ana-
lytically derive an expression for the two distinguishability measures κ and ζ in case
of an optimal encoder in the rate-distortion sense. The Gaussian assumption also
allowed us to derive that the average anomaly and the anomaly with dimension
tending to infinity behave as a white distribution.

Numerical evidence then permitted to show that, in general, the trade-off be-
tween distinguishability and compression is not effectively addressed by an encoder
optimal in the rate-distortion sense and that the theoretical measures κ and ζ are able
to anticipate the trends observed in case of practical encoders (based on PCA and
Auto-Encoder) and practical detectors (One-Class SVM and Deep Neural Network).
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Chapter 2

Detection and Compression in
Structural Health Monitoring

In the previous chapter, we have seen how compression influences the performance
of an anomaly detector in the two scenarios in which the anomaly was either known
or completely unknown. The analysis was pursued from a general point of view that
includes quantities such as entropy, mutual information and average code length
typical of Information theory. Here, in this chapter, we delve into a more practical
point of view.

We will consider Structural Health Monitoring (SHM) as a use case. An SHM
monitoring system is a good representative of a deployment of a large number of
sensors that are generally heterogeneous and displaced in/on/nearby a structure to
gather information related to the health of that structure. The information may be re-
lated to either the static or dynamic properties, and both the environment and oper-
ational conditions influence it. Typically monitored structures are building, bridges,
roads, damns, and so on, sometimes in a remote area with no easy or stable internet
connection. Since the communication between the installation and the central pro-
cessing node may be critical, data compression and local processing play a vital role
in the effectiveness of the monitoring system.

In particular, here, we will consider a specific SHM system installed on a re-
mote highway viaduct counting a hundred sensor nodes equipped with a 3-axial
accelerometer, a temperature, and a humidity sensor. The sensors monitor both how
the structure oscillates in response to the passing traffic and the environmental con-
ditions. The data generated by the installation is wirelessly sent to a cloud facility
devoted to storage and processing. In this context, the system may benefit from
either compressing or processing data locally for the early detection of anomalies.

Here two approaches are investigated: detection based on feature extraction and
subspace analysis. The former summarises the signal in few quantities and gener-
ates an alarm when these quantities take abnormal values. Instead, the latter com-
presses the signal in lower-dimensional subspace by linear transformation and mon-
itors how this representation behaves. Both considered approaches are designed to
meet the low-resources constraint necessary to fit on the edge devices comprising
the monitoring system.
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In detail, this chapter starts with Section 2.1 that briefly introduces Structural
Health Monitoring and the characteristics of the monitoring system employed in
this field. Then, in Section 2.2, the use case is presented in detail. We describe the
structure of the considered highway viaduct along with the monitoring system and
its components that is the same reported in [78, 40, 38, 27, 127, 39]. We will also
depict the characteristics corresponding to the ordinary behaviour of the viaduct
and some of the anomalies occurring during the monitoring period used to assess
the detectors efficacy.

In Section 2.3, a first anomaly detection approach based on feature extraction is
described. Here, feature extraction is an extreme case of compression since an entire
signal instance is reduced to some significant quantities providing a summary and
not designed to recover the original signal. For this reason, we refer to this approach
as a detector with high distortion compression. The considered approach consider fea-
tures extracted in both time and frequency domains with techniques that fit the edge
devices resources.

As a counterpart, in Section 2.4, we report anomaly detectors that are based on
the principal subspace analysis of the monitored signal [127]. The signal is com-
pressed in a latent representation with a linear transformation that maximizes the
collected variance, corresponding to maximizing the information contained in the
compressed signal. For this reason, we refer to this approach as a detector with low
distortion compression. By observing the signal energy distribution in the latent space,
the detector may discriminate between normal or anomalous signal instances. This
method also has a dual version in which the linear transformation compressing the
signal minimizes the variance. However, minimizing variance translates into maxi-
mizing distortion that prevents signal recovery. The two methods are first assessed
in a Gaussian framework and then applied to Structural Health Monitoring signals.

2.1 Structural Health Monitoring

The role of civil structures and infrastructures is fundamental in modern societies.
People live and work in buildings or large factories; to commute, people use roads
and railways, which cross each other using bridges or tunnels. Besides ageing phe-
nomena, causing fissures in concrete or steel corrosion, various other factors can
damage a structure, often impacting them in a hard way to foresee. These factors
are, for instance, the case of natural hazards, such as earthquakes, storms, or floods,
which cannot be prevented and can generate a severe loss of structural integrity.
What is worse is that structural damages may not be immediately apparent and
may manifest themselves dramatically later.

Structural health monitoring (SHM) has been recently proposed as a viable solu-
tion to move toward continuous monitoring of critical infrastructures [183, 50, 68].
It concerns the continuous monitoring of infrastructures such as buildings, bridges,
aircraft, damns and so on, intending to provide a continuous flow of information
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about civil and mechanical structures to increase their safety and reduce their main-
tenance costs[67, 115].

Structural health information is extracted by produced by a heterogeneous sen-
sor network that is installed on/in/near the structure in a non-invasive manner. The
sensor network measures quantities related to both static and dynamic properties
of the structures and related to the environmental conditions. Typically, the mon-
itored physical quantities are humidity, temperature, vibration, acoustic emission,
tensile/compressing stress and material degradation.

Data is then fused and analyzed to determine the state of health of the structure
and to detect and then localize possible damages before they become critical. Dam-
ages can be caused by several factors such as material ageing, components wearing,
the action of the environment or even accidental events. An effective SHM system
is therefore able to promptly detect changes in the properties of the structure so that
timely action can be taken.

Over the last 40 years, the SHM field has been significantly growing due to
the considerable advances in sensing, communication and information technologies.
Thanks to these advances, the SHM systems have dramatically improved in efficacy
and have drastically lowered costs [49].

The SHM field is extremely varied as it concerns monitoring a wide range of
structures such as aerospace aircraft, buildings, industrial machinery, and bridges,
to name the most common ones. Moreover, an SHM may be applied directly to new
structures (so that the monitoring system can be designed with it) and applied to
already existing ones. Depending on the specific application, the challenges and
correspondent solutions can be different, leading to the fact that there is no standard
in the design of an SHM system [68].

A key open challenge in SHM is processing a massive amount of sensor read-
ings to allow human experts to evaluate the structural condition. It comes immedi-
ately apparent that SHM cannot succeed in real-life deployment scenarios without
an autonomous system for early anomaly detection that pre-processes the measure-
ments in real-time and can recognize the occurrence of an anomaly as opposed to
normal behaviour [190, 127]. However, even assuming the feasibility of automating
anomaly detection, scaling up to hundreds of sensors per infrastructure remains a
challenge. As the complexity of each installation is growing and the number of mon-
itored structures is increasing, a common approach is to process the whole data on a
cloud architecture [109].

Over the last ten years, the paradigm of the Internet of Things (IoT) let the SHM
field have a further boost [179, 164]. Sensors have become smart, which means they
are devoted to measuring physical quantities, processing data and transmitting the
extracted information through the internet to make decisions, i.e., they are Things
on the Internet.
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Once the information reaches the internet, the Big Data paradigm permits flex-
ibility, scalability and processing power for its management. These features pro-
vide significant advantages in controlling the monitoring system and performing
the analysis necessary to elaborate the complex information regarding the health of
a structure.

In general, we can divide an SHM system into three subsystems [179]:

1. sensing and data acquisition subsystem: data is generated by sensors that
measure physical quantities directly or indirectly related to the health of the
structure and the condition of the surrounding environment. The sensing el-
ements are often included in devices that take the measure and transmit it to
where the data is stored or analysed. This subsystem is therefore designed by
taking into consideration the physical quantities to measure, the number of
sensors, their placement, and how the data is transferred.

2. data management subsystem: the information content in the data generated
by the sensing subsystem must be collected and analysed. This subsystem
involves the procedures or protocols adopted for data collection and the pro-
cessing techniques to extract valuable information from the raw data. Note
that, especially in SHM systems that rely on high-frequency signals (such as
vibrations) that are often redundant, data compression or feature extraction is
performed at the gateway or even at the sensor level to reduce the cost of com-
munication. This approach leads to the need of sensors capable of performing
data processing.

3. data access and retrieval subsystem: the information extracted from the data
must be accessible from the user either online or offline. Online access is of-
ten required in the case of automatic decision-making systems, where action
must be promptly taken to respond to unexpected events. When the access to
data needs to be in real-time, there is the need for guarantees on stability and
latency, which are among the main issues of system transferring data over the
internet.

A typical cloud-based system can be depicted as in Figure 2.1 where there is a
large number of sensor nodes deployed on the monitored structure, a smaller num-
ber of gateways that gather the readings to send them to the cloud, which operates
as a central processing unit [5, 34].

2.2 Viaduct Health Monitoring system

The infrastructure considered in this dissertation is a highway viaduct located in
Italy, opened in 2006, on which many maintenance interventions have already been
undertaken. The construction, displayed in Figure 2.2, is a composite box girder
with external prestressed tendons used for reinforcement. The length of the viaduct
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sensors

sensors

gateway

gateway
cloud

FIGURE 2.1: blocks scheme of SHM system monitoring a viaduct.
Sensors send their reading to a main cloud platform via intermedi-

ate gateway.

is 580m, and five concrete piers hold up the six spans. The height of the cross-section
varies from 6m near each pier to 3m on the centre line of each span. The external pre-
stressing is provided by unbonded tendons (each consisting of 27 strands) anchored
at the abutments, with several deviators along with the structure. Figure 2.2b shows
a plan view of the viaduct, while Figure 2.2b depicts the piers of the central span.

The structural safety of a prestressed viaduct depends on the durability of its
prestressing cables to a large extent; thus, the monitoring is performed with sensors
placed on the tendons. All the cables have roughly the same mass-over-length ratio,
and they have been equally prestressed. The tendons belonging to the first four
spans are 20 m length, and their natural vibration frequencies are about 7-8 Hz; while
the cables in the last span have a reduced length of about 7.30 m that increases the
natural vibration frequency up to about 20 Hz.

The SHM system analyzes the indirect dynamic response of the viaduct structure
during operating conditions, using the online measurement of the natural vibration
frequency of the tendons. A triaxial MEMS accelerometer is placed on each side of
the external tendons selected for the measures, and the final deployment consisted
of 90 sensors with a sampling rate of 100 Hz. Each triaxial MEMS measures the
acceleration in three orthogonal directions (x, y, z), and is characterized by a range
of ±2 g, a 1.8 kHz band, and features the lowest noise density (50 µg/

√
Hz) for its

class of devices [132]. The signal is initially sampled at a frequency of 25.6 kHz,
then filtered using a low-pass filter with 50 Hz cutoff, and downsampled to 100 Hz
data rate. Buildings are usually designed for low-frequency normal modes, typically
0 Hz to 20 Hz bandwidth, whereas external stresses (e.g., earthquakes) can increase
typical frequencies up to 20–45 Hz [77]. This aspect motivates the final 100 Hz data
rate, and the whole procedure improves the signal to quantization noise ratio and
increases the acquisition resolution [78, 27].
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(A) Plan view of the monitored viaduct

(B) Photo of the monitored viaduct showing span s2 and s3 and
the piers P2 and P3.

(C) Photo of the sensor nodes installed on the external steel
tendons.

FIGURE 2.2: Monitored viaduct and adopted SHM system.



2.2. Viaduct Health Monitoring system 33

TABLE 2.1: Devices adopted for sensors and gateways in the viaduct
health monitoring system.

Sensor Node Gateway

Quantity 90 2
MCU/Module STM32F405RG Raspberry Pi 3 Model B+
CPU ARM Cortex M4 4× ARM Cortex A53
Memory 192 kB 1 GB
Clock freq. 168 MHz 1.2 GHz

Sensors are custom embedded systems based on the STM32F405RG microcon-
troller unit (MCU) and are deployed in the upper part of the prestressed cables, as
in Figure 2.2c. Each node is placed with z-axis orthogonal to the road surface, y-axis
parallel to the tendon and pointing to the centerline of each span. After processing
the output accelerations, each sensor encodes and sends the data through a CAN
bus network to the local gateway, where they are stored, aggregated and further
analyzed.

The gateway is realized with a Raspberry Pi 3 Model B+ and is responsible for
the sensors’ acquisition and synchronization. Two gateways are employed, each
collecting and managing 45 sensors. Both gateways and sensors are powered by
wire. Table 2.1 reports a summary of the devices involved in the SHM system.

The samples are transmitted over the CAN bus, and a software module is dedi-
cated to packing the data by sensor in binary files of 20 000 samples each. When a file
is complete, it is sent to the cloud through the MQTT protocol [173]. The dimension
of the packet is determined by the max payload supported by the protocol that is
120 kB (20 ksample of 3-axis acceleration, each one represented with 2 B are equal to
120 000 B are about 118 kB). Data is paired with another MQTT message containing
the metadata in JSON format. Metadata consists of info about the data, such as the
timestamp of the first sample, average temperature and humidity, and binary file
format.

The data collected by the gateways is sent via Ethernet to a “Ubiquity Nano M5”
station located halfway between the viaduct ends. M5 station is also connected via
5 GHz point-to-point Wi-Fi to the access point, which transfers the entire data to the
cloud. The cloud system comprises a storage platform and a computing machine
allocated to the IBM cloud service. IBM Cloud Object Storage is employed to store
data as parquet files and, currently, a virtual machine with 2 nodes, each featuring
4 cores with 16 GB RAM. Acceleration, temperature and humidity data are stored
in a cloud monitoring infrastructure, allowing real-time access and analysis. Data
is processed to detect unusual patterns that do not fit the normal behaviour of the
structure, such as abrupt damages or progressive degradation.
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2.2.1 Normal behaviour

Figure 2.3 shows the typical profiles in the time and frequency domain of the ac-
celeration measured on each axis concerning a sensor placed in the first span of the
viaduct. Figure 2.3a displays a 200 s window (corresponding to a MQTT payload) of
the acceleration a over time split in the three components a1 (x-axis), a2 (y-axis), a3 (z-
axis). Figure 2.3b reports the power spectral densities (PSDs) of the acceleration on
each axis estimated over 1 hour interval (concatenation the content of 18 successive
MQTT messages) employing Welch’s method with a window length of 1024 samples
and 50% overlap.

Although curves in Figure 2.3 are not representative of the entire dataset, these
are an example of profiles associated with normal behaviour with some common
characteristics:

• time-domain waveforms can be modelled as damped oscillations correspond-
ing to the structure’s elastic response to an occurred stimulus (the response to
the vehicle traffic);

• in the sensors placement phase, the y-axis is aligned with the tendon such that
in normal behaviour, the signal on the y-axis is negligible, and the x-z plane
contains the main part of the damped oscillations. The z-axis is aligned with
the gravity vector;

• estimated power spectral densities exhibit peaks at the natural frequencies of
the monitored structure. In particular, for each sensor, it is common to observe
either 4 or 5 peaks couples with frequencies, amplitudes and shapes depending
on the monitored tendon and the sensor placement.

2.2.2 Anomalies

The infrastructure has been monitored since September 2017, and data considered
in this dissertation refers to the first two years of the monitoring activity. In such
period some anomalies have been observed, and the following analysis refers to
three representative cases:

• earthquake: an earthquake with 4.4 magnitude and epicenter at a distance of
16 km from the viaduct with a depth of 22 km. The event excited the structure
so that the tendons vibrated with a typical amplitude on the x-z plane but
significantly higher on the y-axis.

• tendon break: a destructive event occurred in the first span of the viaduct
during the structure monitoring period. As a consequence of the event, a con-
siderable amount of energy was released that made vibrate not only the first
span but also the entire structure. The event did not lead to a sensitive change
in the structure properties but was destructive for the tendon involved.
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FIGURE 2.3: 3-axes acceleration signal in ordinary conditions.
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• strand break: an event with much lower intensity compared to the previous
anomalies that are only detectable by the sensor placed on the involved ten-
don. More than one event of this type occurred during the monitoring period,
but we refer to a strand break in the last span tendon in the specific case.

Figure 2.4 depicts chunks with length 30 s of the acceleration acquired during the
occurrence of the three anomalies taken from a sensor placed in the last span of the
viaduct (i.e., in the opposite span with respect to where the tendon break occurred).
Earthquake and tendon break are events causing a high energy release throughout
the entire structure which the sensor detects as damped oscillations, while, for the
strand break, the energy release is limited in time.

2.3 Detection with High Distortion Compression

An extreme case of compression is the extraction of features. Features are quantities
derived from the original signal that captures most of the input’s valuable infor-
mation for a representation in a space with a much lower dimension. In general,
features are not designed to allow the recovery of the input as they are just used to
avoid working with high dimensional data that may be computationally intractable
or affect the performance of the algorithm that suffer from the curse of dimension-
ality. Therefore, features are a kind of compression that introduces a high level of
distortion.

In this section, we consider a typical anomaly detection procedure based on fea-
tures computed in time and frequency domain and applied to the vibration data
collected from the system described in Section 2.2. Features in the time domain
consist of typical statistical quantities that prompt the detection of unusual and evi-
dent events. The frequency-domain analysis allows extracting features related to the
modal frequencies that are characteristic of the dynamic properties of the structure.

All the analyses consider a reference sensor placed in the last span of the viaduct
(the opposite span with respect to where the tendon break occurred).

2.3.1 Time domain analysis

In the time domain analysis, the sensor readings are split into windows of 1 s so that
for each axis i a window of ni = 100 samples that are aggregated in a single signal x
with dimension n = 300.

The choice of n results from the trade-off between system responsiveness and
feature stability. Short windows allow a low delay between the unusual event oc-
currence and its detection, while long windows have better features estimations.
This trade-off is addressed by imposing ni = 100 samples, i.e., each MQTT payload
A aggregates 200 successive signal instances with a maximum detection delay of 1 s.

The signal x is then compressed into a 9-dimensional feature vector y. The fea-
tures are computed computed component-wise, and consist of mean m, variance s2,
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FIGURE 2.4: 30 s of acceleration signals for all axes that contains
anomalous events.
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and peak-to-peak value p. Considering xi,j as the j-th sample of the i-th axis, the
features are defined as:

mi =
1
n

n

∑
j=1

xi,j (2.1)

s2
i =

1
n− 1

n

∑
j=1

(xi,j −mi)
2 (2.2)

pi = max
j

xi,j −min
j

xi,j (2.3)

The mean m = (m1, m2, m3) allows to determine the actual orientation relative
to the ground, so it is helpful to detect sensor movements or rotations. The vari-
ance s2 = (s2

1, s2
2, s2

3) is an indicator of the oscillation energy while peak-to-peak
p = (p1, p2, p3) vectors are useful to detect spike-like events.

Along with the physical meaning, the choice of the features is also driven by the
computational cost. Indeed, all three features can be computed in an online fashion
with a memory footprint independent from n, i.e., O(1). The online implementation
of the peak-to-peak measure is trivial, while Welford’s algorithm [182, 103] allows to
update mean and variance at each new incoming sample by making use of only two
state variables.

As a result of the feature extraction stage, the input signal x is compressed into
the 9-dimensional feature vector y = (m, s2, p). y can result from the compression of
either a normal instance yok or an anomaly yko. In order to discriminate between nor-
mal or anomalous behaviour, the detector should know the distribution of both yok

and yko (anomaly-aware detector) or the distribution of only yok (anomaly-agnostic
detector). As in most real SHM applications, we here deal with the latter scenario
in which the distribution of the anomaly, and therefore of its compressed version, is
unknown.

Normal behaviour characterization To identify a normal behaviour region in the
features space, we infer the data structure by applying an unsupervised clustering
method. We choose DBSCAN algorithm [64, 163] because it does not require any
assumption on the shape of the clusters, and it is a density-based clustering method
that exhibits solid performance with 3D spatial data. The clustering algorithm finds
that the data is structured in a single cluster. In Figure 2.5 the features space is split
into three 3D spaces to allow a graphical representation.

The distribution of m presents the typical shape of a 3D Gaussian probability
density function. Since structural vibrations have a null mean, the main contribu-
tion to this feature variability in normal conditions is the acquisition noise, which
approximately has a white Gaussian distribution. Both s2 and p distributions pos-
sess a high-density region close to the origin representing the structure behaviour in
case of no stimulus. Otherwise, oscillations produce s2 and p values that move away
from the origin along the main direction.
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FIGURE 2.5: Distribution of the times domain features m, s2, p esti-
mated over a week of data. Warmth of colors is proportional to the
population density and the bounding boxes define the regions of nor-

mal behaviour.

TABLE 2.2: Alarm thresholds obtained in training for the reference
sensor.

feature
x-axis y-axis z-axis

u.o.m.
low high low high low high

m -59.1 -57.9 -67.9 -66.8 995.4 996.7 mg
p 0.0 57.7 0.0 7.8 0.0 71.7 mg
s2 0.0 233.6 0.0 2.7 0.0 304.3 mg2

Once the normal behaviour is traced, a mechanism to detect anomalies is needed.
To meet the low complexity requirement, we chose to draw a bounding box in the
feature space that contains all the cluster elements (shown in Figure 2.5 with the light
coloured parallelepiped) such that two thresholds for each feature define the interval
containing the normal behaviour instances. The thresholds result from the trade-
off between robustness to outliers in the training set and operative false positive
rate (FPR), i.e., the probability for a normal instance to trigger a threshold once the
algorithm is deployed.

We chose a normal behaviour region including 99.999% of the training set ele-
ments, which correspond to FPR = 10−5, i.e., approximately one FP per day per
sensor. Experiments confirm this rate: considering the reference sensor and the 20
weeks following the one used for training, the median and the 95-th percentile of
the number of FP per day result 0.56 and 2.13 respectively. Even though this may
seem a too sensitive threshold that may result in a high rate of FP, it is a conservative
solution that avoids the missing of significant anomalous events (false negatives,
FN).

Table 2.2 reports the thresholds obtained considering as a training set a week of
historical data (∼600k features vectors) of the reference sensor. Their visual repre-
sentation is depicted in Figure 2.5 as bounding boxes surrounding the feature distri-
butions.

Thresholds for each mi identify intervals of length 1-2 mg, while, for both pi and
s2

i , thresholds for x and z axes are much higher than what we have for y, confirming
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FIGURE 2.6: Characterization of the anomalous events in the feature
domain for 30 s of acceleration signals containing anomalous events.
The height of the points represents the over-threshold ratio, and size

counts for the number of instances triggering the alarms.

the fact that oscillations mainly occur on the x-z plane. Similar behaviour character-
izes all sensors in the system.

Detection of the anomalies The characterization of the events in the domain of
the features is reported in Figure 2.6. The scatter plot shows how much and how
many times the recorded features exceed the thresholds in the 30 s reference inter-
val. The point’s height represents the ratio between maximum recorded value and
the threshold it triggers1 while the size is proportional to the number of instances
triggering the alarms. For the first two events, the signal manifests anomalous be-
haviour mainly in the y axis where variance and peak-to-peak reach values of one or
two orders of magnitude higher than the threshold and the alarms are triggered for
several seconds. Conversely, the strand break is detected only in one instance, and
all features exceed the thresholds except for my.

2.3.2 Frequency domain analysis

Frequency analysis is a powerful tool to extract information on intrinsic properties
of civil structures [67, 50, 8, 47], and the algorithm considered here focuses on the
identification and tracking of the tendons natural frequencies. Since each tendon has
practically different mass and tension, their frequency response is slightly different,
and the analysis is performed on each sensor independently.

Features consist of the position, amplitude, and width of the peaks composing
the frequency response to distinguish peaks and track their movements. As men-
tioned, the analysis is performed on 1 h basis, i.e., on data packages containing 18
successive MQTT payloads. The algorithm is split into two steps: first, the frequency

1For over-threshold ratio values associated to mi, we refer to the ratio between the distance of the
current value from the average of mi and the distance of the triggered threshold from the average of
mi.
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response is obtained every hour by estimating the acceleration Power Spectrum
Density (PSD), then a peak picking stage extracts the natural frequencies and their
properties.

Note that, in this analysis, the signal coincides with the data contained in a 1 h in-
terval, i.e., on each axis i a window consists of ni = 3600 ksamples so that the whole
signal x aggregating the acceleration of the three axes has dimension n = 10.8× 106.
We refer to the elements of x regarding the i-axis as xi. High dimensionality is
needed to obtain a sufficient frequency resolution to distinguish the different peaks
in the spectrum with a low estimation variance.

Given its non-parametric nature and low computational cost, Welch’s method is
one of the most common methods for acceleration PSD estimation in SHM applica-
tion. The method works independently on each axis i and consists in dividing the
entire period into Ns overlapping segments ai[j] with j = 1, . . . , Ns and in applying
the Fast Fourier Transform (FFT) with an appropriate window function w. Then, the
squared module of each element is averaged over the different segments.

In the considered application, FFT is computed adopting the Hann window func-
tion, and the period on which the method is applied is 1 h which is split into Ns = 18
non-overlapping windows (corresponding to a frequency resolution of 5 mHz). As
a result, at each hour, the PSD of the acceleration on the i-axis Pi is estimated as
follows:

Pi =
1

Ns

Ns

∑
j=1
|FFT (w ◦ ai[j])|2 (2.4)

where ◦ represents the element-wise product between two vectors.
The choice of non-overlapping segments allows computing FFTs and accumu-

lating the results of every new MQTT message with a L× memory usage reduction
with respect to the straightforward approach where the entire data package is stored.

The task of finding peaks in a frequency response obtained through FFT-based
methods is not trivial due to a large number of additional peaks introduced by the
spectrum estimation. Here we perform the task by imposing the following con-
straints: i) minimum peak height, fixed to 5× the noise floor (estimated with the
median of the frequency response); ii) minimum distance between peaks, fixed to
0.02 mHz; iii) minimum peak height-prominence2 ratio, set to 0.7. The output con-
sists of a list of peaks features: amplitude, frequency, width, and prominence.

In the considered SHM system, batch PSD estimation and peak picking are cal-
culated by the gateways while tracking peaks frequency, amplitude, width, and
prominence is a task executed on the cloud platform in the decision-maker block.
The latter block provides long-term structural health monitoring based on features
in the frequency domain, and an alarm is generated, with human supervision, when
a deviation from the current state is observed.

2We refer to prominence as the minimum height necessary to descend to get from the summit to
any higher terrain.
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FIGURE 2.7: x axis acceleration PSD estimated in the hour before and
after the strand break event.

TABLE 2.3: Frequency of the peaks detected in the PSD of the accel-
eration signal before and after the strand break.

1st peak 2nd peak 3rd peak 4th peak

before 8.160 16.505 25.070 33.160 Hz
after 8.140 16.470 25.005 33.265 Hz

Detection of the anomalies In the frequency analysis, we consider only the case of
the strand break since the event’s effect is significantly evident in the frequency do-
main. Indeed, although non-destructive, the considered strand break modified the
tendon elastic proprieties. On the other hand, the earthquake and the tendon are not
localized in the monitored tendon, and, despite the high vibration throughout the
structure, they did not cause an evident change in the characteristics of the reference
tendon.

Figure 2.7 shows the PSD for the hour before the event (darker colour) com-
pared with the PSD estimated in the next hour (lighter colour). As highlighted in
the zoomed area, the event has changed the peak position, slightly shifting. This
phenomenon is more evident in Table 2.3. We have the main four peaks at the top,
while the row below shows the correspondent peaks in the hour after the event. De-
spite apparently not being significant, the frequency variations are higher than the
typical variation observed on adjacent windows that are at most 5-10mHz.

2.4 Detection with Low Distortion Compression

This section focuses on a specific type of detector proposed in [127] that aims at
detecting changes in an observed physical phenomenon with performance similar
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to methods based on spectral analysis but with a limited computational effort to fit
device resources available at the sensor node or at the edge.

As a working principle, the method observes how the signal’s energy is dis-
tributed over the signal space and detects an anomaly when the energy along a suit-
ably defined subspace of the signal space differs significantly from what is expected
in normal conditions.

The compression mechanism consists in considering a specific subspace of the
signal that, by definition, has a lower dimension with respect to the whole signal
space. In this dissertation, we refer to this method as low distortion because when
the considered subspace is the principal one (i.e., the one that contains most of the
signal energy), the transformation that encodes and decode the original signal is the
linear mapping that introduces the minimum distortion as defined in (1.2). Indeed,
such a compression principle is exploited in several applications to reduce the di-
mensionality of a signal.

2.4.1 Lack and Excess of Energy Detectors

Two different detectors are considered, and they differ in the considered subspace.
The first measures the energy along the principal subspace to get a quantity that
can discriminate the typical behaviour from abnormal. The second considers that,
under some circumstances, the projections along the anti-principal subspace may
yield information about the system’s state. By taking advantage of this, the second
detector relies on observing the energy on the anti-principal subspace.

The input signal is modelled as a sequence of n-dimensional vectors x[t] ∈ Rn

as in (1.1). Here, we suppose that f ok
x and f ko

x are unknown but we assume that
xok[t] and xko[t] are realizations of a ergodic (and thus stationary) stochastic vec-
tor processes characterized by null mean vectors and constant covariance matrices
Σok 6= Σko defined as

Σ× = Ex

[
x×[t]x×[t]>

]
= lim

N→∞

1
N

N

∑
t=1

x×[t]x×[t]> (2.5)

where × stands for either ok or ko.
Such matrices are symmetric and positive-semidefinite and thus admit a spectral

decomposition Σ× = Q×Λ×Q×> with Q× =
(

q×1 q×2 . . . q×n
)

an orthonormal
matrix with eigenvector columns q×j and Λ× a diagonal eigenvalue matrix Λ× =

diag
(
λ×1 , λ×2 , . . . , λ×n

)
such that λ×j q×j = Σ×q×j and λ×1 ≥ λ×2 ≥ · · · ≥ λ×n ≥ 0.

The observable is the energy of the signal along a predefined subspace. To for-
malize this concept, let U =

(
u1 u2 . . . uk

)
be an n × k (with k ≤ n) matrix

with orthonormal columns uj. For each time instant t, the input signal x[t] is com-
pressed as y[t] = U>x[t]. For each integer τ and for a given number m of subsequent
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FIGURE 2.8: Block diagram of the Lack/Excess of Energy detectors.

instances, the observable is following value

EU,m[τ] =
1
m

mτ

∑
t=1+m(τ−1)

∥∥∥U>x[t]
∥∥∥

2
=

1
m

mτ

∑
t=1+m(τ−1)

EU,1[t] (2.6)

where ‖·‖ is the standard `2 norm of a vector.
Anomalous instances are identified as those corresponding to anomalous val-

ues of EU,m[τ], i.e., of the average over m subsequent energies of the compressed
representation y[t] that is the projection of x[t] on the k-dimension linear subspace
spanned by the columns of U. The discrimination between a normal or anomalous
set of instances is determined by a threshold θ so that an anomaly is declared when
either EU,m[τ] ≤ θ or EU,m[τ] ≥ θ.

Figure 2.8 summarizes the mechanism behind the proposed detector showing
its main blocks. For each incoming vector x[t], the energy of the projections U>x[t]
is computed, and the average of m successive windows is adopted to establish if
an anomalous event is occurring. From the scheme, one may get that the number
of multiply-and-accumulate (MAC) operations is determined by the projection of
the signal x onto U (nk MACs), the computation of the energy (k MACs) and the
computation of the average (1 MAC for each signal instance). As a result, every nm
elements m(k(n + 1) + 1) operations are required, i.e., at most k + 1 MACs for each
incoming sample.

To see that EU,m is linked to the correlation between entries of x[t], note that its
average conditioned to either ok or ko is, by direct computation from (2.5),

µEU,m|× = Ex [EU,m[τ]|×] = tr
(

U>Σ×U
)

(2.7)

where the assumption of stationarity allows dropping time indications from the
statistics of EU,m[τ], and where tr(·) indicates the trace of a matrix.

A possible choice for U is uj = qok
j for j = 1, . . . , k. Since λok

1 ≥ λok
2 ≥ · · · ≥

λok
n ≥ 0 this amounts to take U as the principal k-dimensional subspace of the pro-

cess xok[t] and implies µEU,m|ok = ∑k
j=1 λok

j , that is the largest possible average energy
collected by projecting xok[t] onto any k-dimensional subspace. By the very defini-
tion of principal subspace the instantaneous energy of the corresponding projection
EU,m[τ] is expected to be large in normal cases, whereas anomalies can be revealed
by the fact that EU,m[τ] falls below a certain threshold θE . This method is indicated
as Lack of Energy Detection (LoED).
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From a dual point of view, we may think of choosing uj = qok
n−(j−1) for j = 1, . . . , k

so that µEU,m|ok = ∑k
j=1 λok

n−(j−1), implying that U is the anti-principal k-dimensional
subspace, i.e., the subspace along which projections of normal instances have the
least possible average energy. By the very definition of anti-principal subspace the
instantaneous energy of the corresponding projection EU,m[τ] is expected to be small
in normal cases, and anomalies can be revealed by the fact the EU,m[τ] exceeds a
certain threshold θE . This method is indicated as Excess of Energy Detection (EoED).

The effect of signal localization Both LoED and EoED rely on the fact that some
subspaces exhibit distinctive features from an energetic point of view, i.e., that the
signal’s energy distribution is not uniform over the signal space. For this reason, we
expect them to behave poorly for close-to-white signals with almost equal eigenval-
ues λok

1 ' λok
2 ' · · · ' λok

n . Indeed, in that case, the average energy collected by the
projection on any k-dimensional subspace is close to k/n times the total energy of the
signal and little discrimination is possible.

On the contrary, when the eigenvalues are substantially unbalanced, principal
and anti-principal subspaces are distinguishing features of the process that may help
to identify deviations. The unbalancing of the eigenvalues implying concentration
of energy along a preferential direction in the signal space is often quantified by
localization [120] defined in (1.29). Localization is minimum (Lxok = 0) for white
signals with λok

1 = λok
2 = · · · = λok

n , while it reaches its maximum Lxok = 1− 1/n

when all the energy of the signal is concentrated along the first eigenvector qok
1 , i.e.,

λok
1 > 0 and λok

1 = λok
2 = · · · = λok

n = 0.

The effect of uncorrelated additive white noise Let us assume that each signal in-
stance is affected by additive white noise, uncorrelated with the signal, and with av-
erage energy per sample equal to σ2. With this, each possible observation can be ex-
pressed as x×[t] = x̄×[t] + ν[t] such that Σ̄× = Ex̄× [x̄×[t]x̄×[t]>] and Eν[ν[t]ν[t]>] =
σ2 I, where I is the identity matrix and the overbar indicates the noiseless quantities.
Since noise and signal are assumed to be uncorrelated, we concentrate on a signal
without anomalies and write

Σok = Σ̄ok + σ2 I (2.8)

in which tr(Σ̄ok)/nσ2 represents the Signal-to-Noise Ratio (SNR).
Note that the eigenvectors of Σok coincide with those of Σ̄ok while the eigenval-

ues are such that λok
j = λ̄ok

j + σ2. Due to the offset, the observed normal signal is
less localized compared to the noiseless normal signal, and detector performance is
expected to decrease in small SNR scenarios.
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2.4.2 Performance in a Gaussian Framework

To derive analytical and semi-analytical guidelines, we consider the classical theo-
retical setting in which the process produces vectors x[t] that are independent real-
izations of a zero-mean Gaussian vector whose correlation matrix is either Σok (in
the normal cases) or Σko (in the anomalous cases).

Since detectors rely on spotting significant deviations from most common be-
haviours, their performance is qualitatively related to the observable variance in the
non-anomalous case. The lower such a variance, the closer the observable to being
an invariant of the process, and deviations from invariant behaviours are reliable
indicators of anomalies.

This guideline leads us to consider EoED along with LoED. In fact, we may rec-
ognize the following property whose proof is in the Appendix.

Property 2.1. Let x ∈ Rn a jointly Gaussian random vector with zero mean and covariance
matrix Σ with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and corresponding orthonormal
eigenvectors q1, q2, . . . , qn. Let 0 ≤ j1 < j2 < · · · < jk < n be any choice of k indices,
U =

(
qj1 qj2 . . . qjk

)
and EU,1 =

∥∥U>x
∥∥2. Setting µEU,1 = Ex[EU,1] = ∑k

j=1 λjk , we
have

σ2
EU,1

= Ex

[(
EU,1 − µEU,1

)2
]
= 2

k

∑
l=1

λ2
jl (2.9)

With this, since the x[t] are independent and equally distributed Gaussian vec-
tors, from (2.6) we have

σ2
EU,m

= Ex

[(
EU,m − µEU,m

)2
]
=

2
m

k

∑
l=1

λ2
jl (2.10)

where no time indication is needed as we deal with statistics of stationary quantities.
As a consequence, the variance of the energy observed along the anti-principal

subspace is smaller than the variance of the energy observed along the principal
subspace. This difference indicates that EoED has the potential of performing better
than LoED. In both cases, increasing m decreases the variance (presumably increas-
ing performance) at the expense of a lower time resolution.

To assess the capabilities of EoED and LoED, we shall explore the detectors’
design space exploiting the Gaussian assumption further to derive precise distri-
butions for EU,m. Since x is Gaussian, also y = U>x is Gaussian with zero av-
erage and covariance matrix U>Σ×U, where × is either ok or ko. Such a matrix
can be given a spectral decomposition as in U>Σ×U = RDR> with R ∈ Rk×k

orthonormal and D = diag (d1, . . . , dk). We may now consider the k-dimensional
vector z = D−1/2R>U>x that is also a zero-mean Gaussian vector with covariance
D−1/2R>U>Σ×URD−1/2 = Ik, i.e., its entries are independent normal variables with
zero average and unit variance.
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Since U>x = RD1/2z, the observed energy can be recast in terms of z obtaining

EU,1 =
∥∥∥U>x

∥∥∥
2
= z>D1/2R>RD1/2z = z>Dz =

k

∑
j=1

djχ
2
j (1) (2.11)

that is a linear combination with non-negative coefficients of 1-degree-of-freedom,
independent chi-square random variables χ2

j (1).
For m > 1, we may consider (2.6) in which, since the x[t] are independent and

equally distributed Gaussian vectors, so are the summands EU,1[t]. Hence

EU,m[τ] =
1
m

k

∑
j=1

djχ
2
j (m) (2.12)

that is the average of a linear combination of m-degree-of-freedom independent ran-
dom variables χ2

j (m) with the same coefficients as in (2.11).
A plethora of analytical and numerical results are available for linear combina-

tions in (2.12) (see [139, 66] and references therein) allowing the numerical evalua-
tion of the cumulative distribution function (cdf) of EU,m as

FEU,m(ξ) = Pr {EU,m ≤ ξ} =
∞

∑
l=0

cl

Γ
(

mk + l, ξ
2d1

)

Γ (mk + l)
(2.13)

where Γ(a, b) =
∫ b

0 ξa−1e−ξdξ is the lower incomplete Gamma function, whose com-
plete version is Γ(a) = Γ(a, ∞), and the sequence of coefficients cj for j = 0, 1, . . .
is computed from the coefficients d1, . . . , dk following [139]. The method yielding
(2.13) allows to compute figures of merit such as the pTP and pFP (defined in (1.33)
and (1.34)) and therefore metrics such as the AUC.

Performance figures Similarly to what was done in Section 1.3.3, to quantify detec-
tion performance independently from the choice of thresholds, we employ a figure
of merit that is related to the area under the ROC curve (AUC). In detail, we employ
the following loss

L = 1−AUC (2.14)

which corresponds to the probability for the detector to be faulty, i.e., the probability
for a normal instance to score higher than an anomaly, as it can be directly induced
from (1.37). The loss L also corresponds to the area under the DET curve that is some-
times preferred to the ROC as it highlights a difference in detectors performances in
the critical regions [129].

Design Space Similarly to the analysis in Section 1.3, a semi-analytical assessment
may assume that the normal process is made of independent zero-mean Gaussian
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FIGURE 2.9: The loss L of LoED (a) and EoED (b) as a function of k
for m = 1, with different levels of signal localization and deviation of
the anomaly from the signal. Lines are median values while shaded

areas show where 99% of the values fall.

vectors with Σok
j,k = ω|j−k| for j, k = 1, . . . , n so that the parameter ω controls the sig-

nal localization defined in (1.29). A rather straightforward computation [122, Chap-
ter 2] allows to obtain the localization Lx = 2ω2

n
n(1−ω2)+ω2n−1

n(1−ω2)2 that we use to choose
values for ω implying normal signals with three different levels of localization, i.e.,
Lx = 0.02 (indicated as Low Localization - LL), Lx = 0.05 (indicated as Medium Lo-
calization - ML), and Lx = 0.1 (indicated as High Localization - HL). As reported in
Section 1.3, we expect higher localization to benefit the identifiability of anomalies.

The covariance of the anomalous process Σko is randomly built as a perturbation
of Σok. In formulas, we extract the square root A = (Σok)1/2 such as the matrix
that A>A = Σok and consider its columns aj for j = 1, . . . , n that are such that
a>j aj = Σok

j,j = 1. We then rotate each aj in a random direction by a certain angle α to
obtain the columns of a matrix Aα from which we set Σko = A>α Aα, that can be seen
as a perturbation of Σok preserving the average energy of each component of x[t],
but gradually departing from its second-order statistics as α increases. We explore
configurations with α ∈ {0.1π, 0.25π, 0.5π}.

Exploration of the Design Space The detector depends on a couple of parameters
k and m from which it is possible to obtain the cdf of EU,m and then evaluate the
loss L. Monte Carlo simulations are needed to average over the possible Σko for
each given value of α, and performance is assessed by averaging the loss L over
1000 trials. Moreover, due to the complexity of the design space, signal dimension
is assumed as n = 64 that allows running simulations in an amount of time that is
reasonable but sufficiently large to resemble a real-world signal window.

Figure 2.9 shows what happens to the loss L of both detectors, LoED and LoED,
when the dimensionality k of the projection subspace sweeps from its minimum
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k = 1 to its maximum k = 64, with m = 1. In both plots, lines correspond to median
values, while the shaded areas contain 99% of the values.

We may observe the same trends for both EoED and LoED. First, plots show that
the higher the α, the better the maximum performance that detectors may attain.
Indeed, given a localization, i.e., given a colour in Figure 2.9, dotted lines (α = 0.5π)
can produce lower losses with respect to dashed lines (α = 0.25π) that, in turn, do
the same compared to solid lines (α = 0.1π). This behaviour is expected since, as α

increases, each anomalous x[t] contains more information that can be used to reject
the ok hypothesis in favour of the right ko hypothesis.

The same happens when the localization of the normal signal increases. Given a
perturbation angle, i.e., given a line style in Figure 2.9, pink tracks (HL signals) reach
lower losses with respect to yellow tracks (ML signals) that, in turn, reach lower
losses compared to blue tracks (LL signals). As expected, more localized normal
signals concentrate a more significant fraction of the energy in smaller dimensional
subspaces and thus are easier to distinguish from anomalies.

Beyond these shared features, the vertical ranges of the two figures are different
and highlight that EoED can perform much better than LoED. However, minimum
losses localize at different values of k, especially for high localization cases.

To explain this aspect, consider an extreme case in which λok
j > 0 only for

j = 1, . . . , ̄ with a certain jb � n. An EoED with k = 1 exploits the fact that the
normal signal has no energy λok

n = 0 along qok
n and declares an anomaly when the

instantaneous energy is larger than a certain θE . Such a detector never yields a false
positive. However, an instance can be anomalous because it has energy along qok

n−1

(that a normal signal does not have since λok
n−1 = 0 if n− 1 ≥ ̄). Such an anomaly

would go unnoticed unless we set k = 2. This increase still causes no false positive
but, assuming n − 2 ≥ ̄, leaves out anomalies that distribute their energy along
qok

n−2. Following this path k can be increased until k = n− ̄ to yield no false positive
but capture all anomalies that feature energies in all the directions along which the
normal signal does not. On the contrary, if we set k = n− ̄ + 1, then a normal signal
that has energy along qok

̄ may produce a false positive, thus increasing the detector
loss. Therefore, maximum performance is at k = n − ̄, which is quite high since
̄� n.

LoED would behave in a precisely complementary way since increasing k be-
yond ̄ causes the detector to aggregate energy along with the directions that do not
contribute in the normal case and thus may cause false negatives when those direc-
tions contain energy from anomalous instances.

Figure 2.10 shows the effect of averaging on the performance of the detectors. In
particular, the loss L is plotted against k for both LoED and EoED when trying to dis-
criminate a LL signal from an anomaly whose second-order statistics is only slightly
different from the normal one, i.e., for α = 0.1π. The trends show how reducing the
observable variance can be fundamental, improving detectors’ performance.
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FIGURE 2.10: The loss L of LoED (a) and EoED (b) as a function of
k of the projection subspace, for LL signals, a small difference α =
0.1π between the normal and anomalous statistics, and various level
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2.4.3 Performance in SHM

Considering the SHM system described in Section 2.2, the application of the LoED
and EoED methods focus on the analysis of a single sensor. The streams of sam-
ples corresponding to the three axes of the acceleration are partitioned in chunks
of 100samples corresponding to a time window with length 1 s. Every second, the
chunks corresponding to the three axes are arranged in a single vector, generating
a sequence of n = 300-dimensional vectors. These vectors account for the struc-
ture’s time- and space- behaviour as perceived by that sensor. Since the traffic on the
viaduct is intermittent, windows are pre-filtered to guarantee that those contribut-
ing to anomaly detection exhibit a good signal level compared to background noise.
Moreover, to focus on the correlations without the bias of the signal magnitude, each
window is normalized to have zero mean and unit energy. As a consequence, x[t]
refers to a zero-mean and unit-variance vector with dimension n = 300.

Using such a sieved sequence of normalized windows, Σok is estimated with the
following formula

Σok
∗ =

1
N − 1

N

∑
t=1

x[t]x[t]> (2.15)

where N is the number of signal instaces employed in the computation that, in this
specific case, is N = 4.5× 105.

As a result of a tuning phase, we fix the dimension of the principal and anti-
principal subspaces of Σok

∗ to k = 20 and k = 70, respectively. When analyzing the
anti-principal subspace, we realize that the 30 less energetic directions collect av-
erage energy that is negligible (≤ 0.01%) compared to what projects on the other
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directions. This observation means that, despite the overall signal being n = 300-
dimensional, it can be safely embedded in a 270-dimensional space. Accordingly,
from now on, the anti-principal subspace used in EoED will span only the 40 di-
rections obtained by discarding the 30 least energetic components from the least
70. Finally, let us refer to the matrix containing the eigenvectors spanning the k-
dimensional principal and anti-principal subspace as U↑ and U↓, respectively.

Here we consider the three kinds of anomalies occurred in the monitoring period
and described in Section 2.2.2 that are tendon break, strand break, and earthquake.
Differently from the analysis in Section 2.3, here we consider a sensor in the first
span of the viaduct that is where the tendon break occurs.

Figure 2.11 shows how the three different anomalies are observed through an
established analysis in the frequency domain [67, 50, 171] as well as with the LoED
and EoED methods. Each column of the figure regards a different anomaly, while
each row refers to a different detector. The same figure also reports the behaviour of
two scores defined by previous PCA-based detectors [191, 94, 194]: T2 and SPE. The
former accounts for the energy of the weighted projection along the first principal
components, while the latter accounts for the energy on the orthogonal subspace.
Scores are such that high values hint at anomalies.

The first row, i.e., Figures 2.11(a)-(c), shows the signal’s spectrum along the x-axis
(the one parallel to the ground and orthogonal to the tendon length) before and after
the anomalies. The spectrum is estimated by averaging the periodograms over 18
non-overlapping Hanning windows of 200 s each. Hence, the computation of each
spectral profile requires 18 Fourier Transforms of 2× 104 samples. The frequency
sensitivity is 5 mHz and is needed to detect variations of peak frequencies that are
themselves in the order of few Hertz.

The evolution of the observable of both LoED and EoED for k = 20 are shown in
Figure 2.11(d)-(f) and Figure 2.11(g)-(i) respectively. Tracks of different colors corre-
spond to different averaging, namely, m = 1 (no average), m = 1800 (i.e., average
over 30 minutes) and m = 43200 (i.e., average over 12 h). In each plot, dashed lines
indicate the expected value of the observable under normal conditions, computed
as the sum of the eigenvalues of Σok corresponding to the eigenspaces spanned by
the columns of U↑ and U↓. Profiles for the reference scores T2 and SPE are reported
in Figure 2.11(l)-(n) and Figure 2.11(o)-(q) respectively. To keep the computational
complexity unaltered with respect to the LoED and EoED cases, these scores are
computed considering the first 20 principal components for T2 and the correspond-
ing residue for SPE. In all cases, the trends run for 14 days centred on the day on
which the event happened, and Σok is estimated by considering a week of data pre-
ceding the observation period.

Firstly, we consider the tendon brake, which is the more evident anomaly that
any detector should notice. The tendon break drastically changes its elastic proper-
ties, as confirmed in Figure 2.11(a), in which the spectrum after the event is notice-
ably different from the one before. The event is also immediately detectable both
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FIGURE 2.11: The tendon break, strand break and earthquake anoma-
lies observed by means of conventional spectral analysis (PSD), both
EoED and LoED (κ = 20), and scores T2 and SPE (20 principal com-
ponents), for different values of m. Dashed lines indicate the expected

value of the observables in normal conditions.
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from EoED and LoED observables shown in Figure 2.11(d) and 2.11(g) where the
new regime of the observables is utterly different from the previous one. According
to their definitions, the observable of LoED decreases while the observable of EoED
increases. This behaviour is also the case of the score SPE in Figure 2.11(o) while the
profile of T2 in Figure 2.11(l) shows a decrease in the score that makes T2 insensitive
to the tendon break.

The second column of Figure 2.11 refers to the strand break. Figure 2.11(b) shows
that the occurred event results in a ' 2% downshift for all the harmonics. Though
this is a subtle change, it is still detectable from an accurate analysis of the tendon
frequency response that considers suitably long data windows. The anomaly is also
visible in both the EoED and LoED observables depicted in Figure 2.11(e) and Fig-
ure 2.11(h). A permanent deviation from the observables expected values could be
seen in both plots, even if their magnitude is smaller than those measured after the
tendon break. Considering the cases of T2 and SPE, plots in Figure 2.11(m) and Fig-
ure 2.11(p) show that, as before, a permanent deviation is evident in SPE only while
T2 exhibits a feeble drop that, again, makes it insensitive to this anomaly. In both
tendon and strand cases, the comparison between trends for different values of m
shows how averaging is fundamental in reducing the variance of the observables.
Averaging does not impair detection capabilities if the events to reveal either have a
non-negligible duration or have long-lasting effects whose period is larger than the
averaging window while it filters out impulsive anomalies.

A representative of this last class of anomalies is an earthquake that hit the
viaduct. The earthquake lasted few seconds and the frequency response of Fig-
ure 2.11(c), as well as the averaged observables of Figure 2.11(f), Figure 2.11(i), Fig-
ure 2.11(n) and Figure 2.11(q), do not give any hint of it. However, when m = 1,
EoED highlights that something anomalous was happening. This behaviour is pos-
sible because, even for small m, the observable of EoED features a small variance that
lets the high-energy event stand out from normal conditions. On the other hand, a
much higher variance characterizes LoED, T2 and SPE scores, and thus, they exhibit
values comparable to those assumed during the earthquake even in normal condi-
tions.

Conclusion

This chapter considers a real Structural Health Monitoring System as an application
for detectors operating on compressed signals. The monitoring system installed on
the highway viaduct acquires the oscillation of the structure induced by the traffic,
and the data collected during the monitoring period permits defining a normal be-
haviour with different embodiment depending on the detection approaches. Some
anomalous events occurred over the monitoring period, and we consider three of
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them: earthquake, strand break, and tendon break. These structural anomalies man-
ifested differently and had different consequences, allowing us to validate and test
the detection methods.

The two investigated approaches for anomaly detection on compressed signals
explore two corner cases: detection with high and low distortion compression. The
former approach squeezes the information in very few quantities that summarize
the informational content of the signal for the detector to distinguish between nor-
mal and anomalous signal instances. We split the features into two categories de-
pending on the domain: for each acceleration axis, three statistical measures in the
time domain (mean, variance and peak-to-peak) and the frequency of the peaks in
the acceleration spectrum. Those features do not allow signal recovery, and, for this
reason, we refer to it as high distortion compression. However, Section 2.3 shows
how these features can be effectively employed in an anomaly detector.

We refer to the other approach as detection with low distortion compression and
consists of a detector based on Principal Component Analysis. PCA is employed
for compression, i.e., representing the signal in a latent space with a lower dimen-
sion. The principal components represent the typical patterns and are the directions
of the signal space bringing the most information. Projecting the signal onto these
components makes it possible to capture the information content necessary for sig-
nal recovery. The higher the energy collected, the closer the signal is to the typical
patterns encoded in the principal components, i.e., the more ordinary is the instance.
The proposed detector LoED exploits this mechanism to discriminate between nor-
mal and anomalous signal instances: the amount of energy collected by the principal
components indicates how normal the instance is, and classification is achieved by
appropriately setting a threshold. The dual detector EoED is also investigated. In-
deed, considering the anti-principal component, one may expect to observe very low
energy, and the instance is likely to be an anomaly when the energy is over a certain
threshold.

For both LoED and EoED, we first assess their performance in a synthetic setting.
This framework allows us to control the input signal localization and the deviation
of the anomaly from normality. Then both methods were tested on the data set
provided by the considered SHM system. The methods can identify anomalies gen-
erated by destructive events causing permanent structural changes and slight alter-
ations in the viaduct elastic properties. Moreover, EoED can even identify anomalies
that do not permanently affect the structure.
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Part II

Streaming Principal Component
Analysis
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Chapter 3

Streaming Subspace Analysis

The idea behind Subspace Analysis (SA) consists of finding a subspace of the sig-
nal space with some unique properties. SA divides into principal (PSA) and minor
(MSA) subspace analysis depending on the type of subspace. In PSA, the wanted
subspace is the one that explains most of the signal variance, i.e., when the signal
is projected in such subspace, the energy of the new representation is maximized.
MSA seeks the dual subspace, i.e., the subspace representing the signal’s direction
vanishing energy/variance. When the sought subspace is represented with a basis
whose elements are uncorrelated, the basis elements takes the name of components,
and PSA specializes in Principal Components Analysis (PCA) while MSA turns into
Minor Component Analysis (MSA).

Historically, PCA/PSA has a wide variety of applications, among which, for ex-
ample, pattern identification in computer network traffic analysis [200], as well as
anomaly detection [127], biomedical application [165, 193], blind source separation
[204], surveillance [177, 59], though the list is by far not exhaustive. In Chapter 2
and in particular in Section 2.4, we have seen an application of both PCA and MCA
for anomaly detection. Indeed, LoED observes the signal energy along the principal
components to distinguish between a normal or anomalous signal instance. At the
same time, EoED performs the same task by focusing on the energy on the minor (or
anti-principal) components.

Identifying and tracking principal and minor subspaces is becoming especially
important as data availability and redundancy increase. It may be highly inefficient
to transport and store all this data when a large part is eventually discarded when
processed to extract the information content. For this reason, it is essential to reduce
the data dimension close to where the data is generated.

In monitoring systems, signals are typically highly-dimensional with a notewor-
thy level of redundancy and are usually acquired by devices with limited compu-
tational resources. Hence, lightweight methods should be adopted to exploit the
advantages of early dimensionality reduction. In this sense, subspace analysis is
an attractive solution as it only requires the projections of the n-dimensional signal
onto the k principal/minor components (with k < n) modelled as a linear transfor-
mation. Moreover, the same linear transformation is also the only operator needed
to transform the compressed version back to the original signal space.
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FIGURE 3.1: General scheme of a streaming algorithm for subspace
analysis.

However, the principal/minor subspace must be first determined, and this op-
eration often requires a considerable amount of memory and computing resources.
Indeed, the most straightforward solution consists of batch methods, such as Eigen-
value Decomposition (EVD) or Singular-Value Decomposition (SVD) [98]. Both tech-
niques require acquiring and storing many signal instances and their processing
by algorithms that use standard linear algebra computations. Hence, batch meth-
ods imply extensive memory usage and have a complexity in the order of at least
O(Nn2), where n is the original dimension of the data, and N is the number of sig-
nal examples composing the data set.

In this light, a number of streaming algorithms (e.g. [17, 128, 108]) have been
recently presented. Here, data instances are not stored but processed as they are
available, resulting in complexity of O(nk2) or even O(nk) at the price of some ap-
proximation. Figure 3.1 aims at representing a general scheme of streaming algo-
rithms for subspace analysis, in which the current estimate of the sought subspace is
represented by a matrix Ut that is updated at each element xt of the data set viewed
as a stream.

The algorithm that updates Ut is a streaming subspace analysis method, and in
this chapter, we review some of the many proposals. Often the different approaches
only differ for subtle details. For this reason, we here select the algorithms that incar-
nate main principles, that are sufficiently lightweight to fit in a low-resources device,
and have performances that are representative of what can be obtained even by more
specialized implementations. For example, we only consider purely streaming ap-
proaches as block-wise methods are usually a straightforward extension of sample-
wise methods but require more extensive memory and computation resources with-
out significantly improving subspace identification.

The chapter starts with Section 3.1 that provides a possible classification of the
streaming algorithms from different points of view. Then, in Section 3.1 the selected
methods are introduced and described with emphasis on the relation between the
different methods and highlighting the differences with the other methods not con-
sidered in this dissertation. All methods are expressed within the same coherent
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framework that facilitates comparisons in terms of both functionality (estimation ac-
curacy) and resource needs. This comparison is then discussed in Section 3.3 for the
task of Subspace identification. Finally, we investigate and discuss in Section 3.4 the
deployment of these methods on edge devices distinguishing high-end from low-
end devices. The former class of devices usually features an operating system that
supports high-level programming languages, while the latter requires direct pro-
gramming.

3.1 Streaming Methods Classification

We model the data stream as a discrete-time stochastic process that generates oc-
currences xt ∈ Rn with t = 1, 2, . . . . The algorithms we describe process vectors xt

sequentially to extract a characterization of the whole data-set. We assume the statis-
tical characterization of xt to be constant or slowly variant, such that, x can represent
any possible xt. We also limit the analysis to the case E[x] = 0n, where 0n is the n-
dimensional null vector and E[·] indicates the expectation operator. As a result, the
covariance/correlation matrix is Σ = E[xx>], where ·> indicates transposition.

As for any correlation matrix, Σ has an EVD Σ = ΨΛΨ>, Λ is a diagonal matrix
with diagonal entries λ0 ≥ λ1 ≥ · · · ≥ λn−1 ≥ 0, and the columns of Ψ ∈ Rn×n are
the corresponding eigenvectors {ψ0, . . . , ψn−1} in orthonormal form.

Streaming algorithms aim at identifying a matrix U ∈ Rn×k that is tied to ei-
ther the so-called principal subspace, i.e., the one spanned by the m < n eigenvectors
associated with the largest eigenvalues, or the so-called minor subspace or noise sub-
space, i.e., the one spanned by the remaining n−m eigenvectors associated with the
smallest eigenvalues. Note that k = m or k = n− m for the principal or the minor
case. In several applications, m � n[191] such that the size of U drastically changes
in passing from the principal to the minor subspace identification task. To identify
the target matrix U, streaming algorithms follow an iterative procedure that updates
an estimation Ut every time a new vector xt is acquired such that Ut → U when t
grows.

The methods we review estimate U in different ways. Here we list some key
features that can make distinctions or draw connections.

principal and minor subspaces Most algorithms are able to target principal sub-
spaces. Some of them can also target minor subspaces, and few methods are de-
signed for the minor subspace only.

eigenvectors or subspaces When the target matrix U is Ψ|m = [ψ1, . . . , ψm] (princi-
pal components) or Ψm| = [ψn−m+1, . . . , ψn] (minor components), we refer to eigen-
vectors estimation. Alternatively, subspace estimation relates to U spanning the
same subspace of the eigenvectors in either Ψ|m or Ψm|.
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objective function As for many iterative methods, some streaming algorithms
for subspace estimation derive from iterative procedures solving a minimization or
maximization problem. We provide a classification according to the objective func-
tion characterizing the optimization problem.

Identifying the k-dimensional principal (minor) subspace consists in finding the
column-orthonormal matrix U ∈ Rn×k that maximizes (minimizes) the variance of
the projection y = U>x [175, 180]. Hence, some approaches consider the objective
function

JVar(U) = E
[∥∥∥U>x

∥∥∥
2
]
= tr

[
U>ΣU

]
(3.1)

where ‖·‖ denotes the l2 norm, and U is constrained to be column-orthonormal.
Maximizing (minimizing) projection variance is equivalent to minimizing (max-

imizing) the average norm of residual vector r = x−UU>x. Hence, some methods
[11, 186] consider the objective function

JMSE(U) = E
∥∥∥x−UU>x

∥∥∥
2

(3.2)

As a further alternative, it is possible to define an objective function based on
the so-called spiked model [97] whereby the observable x is assumed as an expansion
of an m-dimensional signal s such that s = Ψ>|mx [18, 53]. Despite their obvious
link, some methods consider x and s separately and minimize (3.3) to enforce their
relationship.

JSM(U) = E
[
‖x−Us‖2

]
(3.3)

As a remark, the signal model behind (3.3) make this objective function effective
only in case of principal subspace identification, i.e., JSM(U) = 0 implies span(U) =

span(Ψ|m).

column-orthonormality Given that the target U is column-orthonormal, it is pos-
sible to distinguish between two classes of algorithms depending on the properties
of the current estimate Ut: i) every Ut is constrained to be column-orthonormal,
ii) Ut is only approximately column-orthonormal. In general, algorithms ensuring
orthonormality have complexity O(nk2), while algorithms limiting to approximate
orthonormality are able to achieve O(nk).

Those ensuring orthonormality can be further distinguished depending on the
technique used. Some do so by applying a specific orthonormalization procedure
(typically a QR-decomposition) at each step. In this case, if the update produces a
matrix U′t that is not column-orthonormal, then the columns of the final Ut span the
same subspace as the columns of U′t , while being orthonormal.

Some others do so by projecting onto the Grassmannian manifold [62, 180] that
contains all possible n× k orthonormal matrices. Using projection implies that the
span of the result of the non-orhonormal update U′t is not necessarily the same as that
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of the final orthonormal Ut, and some of the improvements in selecting U′t might be
lost.

As a third option, orthonormality can be guaranteed by constraining the updates
of Ut to be along Grassmannian geodesics. In this case, the updated estimation im-
proves over the previous one without leaving the acceptability region.

Table 3.1 classifies the methods, whose detailed description is given in the next
Section, along directions from 1) to 4) above. In the same Table, we also report the
computational complexity and the field of interest in which the methods were orig-
inally conceived.

3.2 Streaming Methods

This section describes the methods we then test and implement. For each method,
we give the update step, i.e., the sequence of operations leading from the matrix Ut−1

that is the estimate of the subspace after t− 1 input observations, to the matrix Ut

that is the current estimation and takes into account also the occurrence associated
to xt.

Most update steps compute intermediate quantities such as yt = U>t−1xt that is
the vector of coefficients expressing the projection of xt onto the subspaces as it is
estimated at time t− 1, and rt = xt −Ut−1yt that is the residual of such a projection.
Note that if Ut−1 is orthonormal, the two vectors yt and rt are orthogonal.

For the sake of brevity, the computation of yt and rt are not explicitly mentioned
in the descriptions of the methods.

3.2.1 Oja’s method

Originally proposed in [145] for the principal subspace estimation with k = m =

1, and then extended to the rank-k cases in [146] it starts from a random column-
orthonormal U0 ∈ Rn×k. At the t-th sample it updates the estimation of U = Ψ|k
according to the input data xt as

Ut = Ω
(

Ut−1 + γtxtx>t Ut−1

)
(3.4)

where Ω(·) is an operator that orthonormalizes the columns of its argument, e.g.,
gives the the Q matrix in the QR decomposition of its argument [90, Chapter 2]. The
parameter γt is the step size or learning rate that may change with time.

Notably, authors of [11, 137, 88] show that Oja is an extension of the well-know
power method [81] that, in turn, is equivalent to solving a maximization problem
where the objective function is (3.1) and Ut is constrained to be column-orthonormal.
In particular, the gradient of (3.1) with respect to U is ΣU such that (3.4) is equiv-
alent to the update of a stochastic gradient descent algorithm where Σ is approxi-
mated by xtx>t , γt is the learning rate, and Ω(·) forces the update to yield a column-
orthonormal matrix.
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Actually, to save some computation, one may think of applying Ω only after
a certain number of updates [11]. However, proper sizing of the number of steps
without orthonormalization depends on the application.

Furthermore, when minimization is considered instead of maximization, with
the same objective function and constraint, one may aim at identifying the minor
subspace U = Ψk| with k = n − m. With respect to (3.4), here stochastic gradient
descent algorithm performing minimization follows the opposite of the gradient of
(3.1), i.e.,

Ut = Ω
(

Ut−1 − γtxtx>t Ut−1

)
(3.5)

Lastly, since the convergence of the method depends on the choice of the initial
matrix U0, [6] proposes a procedure of warm start that avoids the random initializa-
tion.

3.2.2 Krasulina’s method

Originally proposed in [106, 105] and recently revised in [175] to include the k > 1
case, it also starts from a random column-orthonormal U0 ∈ Rn×k. The update step
is

Ut = Ω
(

Ut−1 + γtrtv>t
)

(3.6)

According to [186, 175], the update in (3.6) converges to a matrix that approxi-
mates the minimizer of (3.2).

As for Oja, a warm start approach has been proposed in [175] and the minor
subspace can be targeted by simply changing sign of the last equation in (3.6) to
yield

Ut = Ω
(

Ut−1 − γtrtv>t
)

(3.7)

In this case the method converge to U = Ψk| with k = n−m.
Oja and Krasulina are deeply linked. In fact, [144] proves that the

Ω
(

Ut−1 + γtxtx>t Ut−1

)
= Ut−1 + γtrty>t + o(γ2

t ) (3.8)

thus ultimately establishing equivalent convergence properties for (3.4) and (3.6) as
γt → 0 for growing t.

3.2.3 HFRANS

The analogy of the two previous methods highlighted by (3.8) has led to a class of
methods that try to provide column-orthonormality avoiding the Ω operator.

Since Ut = Ut−1 + γtrty>t tends to be column-orthonormal for t→ ∞ an extreme
option is to consider o(γ2

t ) negligible and simply avoid orhonormalization.
Such a choice can be acceptable when targeting U = Ψ|k. However, when aiming

at identifying U = Ψk|, the minimal amplitude of the projection of the signal on the
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minor subspace makes the whole procedure extremely error-prone and may spoil
convergence.

To overcome this impasse, [2] first proposed a term to approximate the o(γ2
t )

residue in (3.8) giving raise to the so-called OOja method that is then extended
[13] with a policy that adapts γt to both Ut and xt, leading to the so-called NOOja
method.

OOja and NOOja further evolved [12] into HFRANS. This method is also an ad-
justment of FRANS, a previous Rayleigh quotient-based adaptive noise subspace
method [14]. In HFRANS, Househölder transformations are introduced to grant the
numerical stability needed to cope with the minor subspace case.

The method starts from a random U0 ∈ Rn×k matrix and uses the following
update rule that depends on a given 0 < γ < 2,

τt =
1

‖yt‖2



(

1− (2− γ)γ
‖yt‖2

‖xt‖2

)− 1
2

− 1




ût =
(

1 + τt ‖yt‖2
)

xt −
τt ‖xt‖2

γ
Ut−1yt

ut =
ût

‖ût‖
Ut = Ut−1 − 2utu>t Ut−1

(3.9)

3.2.4 PAST

The Project Approximation Subspace Tracking (PAST) [187, 186] is an algorithm ob-
tained by minimizing (3.3) in which the expectation is unrolled in time as an expo-
nentially weighted sum, i.e., by setting

Ut = arg min
U∈Rn×k

t

∑
l=1

βt−l ‖xl −Usl‖2 (3.10)

without the constraint of Ut being column-orthonormal and where β ∈ [0, 1] is the
forgetting factor that weights the prior samples. Equation (3.10) is based on the
fact that signal observances xl are generated accordingly to a spiked model, i.e.,
sl = Ψ>|k x.

Since, at each signal occurrence, only xl is known, sl is approximated by the
projection vector yl = U>l−1xl , i.e., by adopting the last estimated U. Thanks to this
approximation, the problem has a closed solution, and Ut can be retrieved by mean
of recursive least squares (RLS) methods, which allow for a computational cost as
low as O(nk).

Iterations start from a random U0 ∈ Rn×k and P0 = δIk for some δ > 0 and the
update step is
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gt = Pt−1yt/
(

β + y>t Pt−1yt

)

Pt = β−1 (Pt−1 − gtPt−1yt)

Ut = Ut−1 − rtg>t

(3.11)

Though Ut is not guaranteed to be column-orthonormal for any finite t, [186,
135] show that column-orthonormality is achieved asymptotically as t increases. In
applications where columns-orthonormality is essential at each step, PAST variants
can be adopted. For instance, PASTd in [186] is a version based on the deflation tech-
nique that comes at the cost of an increase in complexity. Otherwise, in [2] nearly-
orthonormality is provided by correction terms applied to each update of U that
keeps complexity at O(nk).

PAST is the base for other approaches such as [84] that deal with the case in which
data is perturbed by coloured noise, [53] that is designed to cope with the missing
components in the vectors xt, and [16, 15] where the Approximated Power Iteration
(API) extends the standard power method by exploiting the same approximation
used in PAST.

3.2.5 Incremental SVD

Given any n× t matrix A, Singular Value Decomposition (SVD) [81, Chapter 2] finds
three factors P, D and Q such that A = PDQ> with P and Q being square orthonor-
mal matrices of size n × n and t × t respectively, and D is a diagonal n × t ma-
trix whose diagonal entries are called singular values. SVD is symbolized as A SVD→
P, D, Q.

Let also Xt =
[

x1 . . . xt

]
be the matrix containing samples up to the t-th.

Subspace analysis has to do with the SVD of Xt with a very large t. In fact, if
Xt

SVD→ Ūt, S̄t, V̄t, then the singular values σj(t) in S̄t are such that σ2
j (t) → λj and

Ūt → Ψ as t→ ∞.
In [37] it is shown that the SVD of Xt can be effectively computed from the SVD

of Xt−1. Even more, [36] shows that this is possible even if we focus on the so-called
thin SVD (tSVD), i.e., on a decomposition that computes only the first k columns of
Ūt and V̄t, the former set of columns being exactly the matrix U we look for when
targeting the principal subspace.

The method relies on the decomposition Xt−1
tSVD→ Ut−1, St−1, Vt−1 to express the

data matrix Xt as

Xt =
[
Ut−1

rt
‖rt‖

] [St−1 yt

0>k ‖rt‖

] [
V>t−1 0k

0>k 1

]
(3.12)

The equality in (3.12) holds exactly only if the rank of Xt−1 is k and is otherwise an
approximation. Moreover, (3.12) is the foundation of ISVD method, which compute
the SVD of the inner matrix at each update. With more details, the method computes
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the SVD of [
βSt−1 yt

0>k ‖rt‖

]
,

which represents an adjusted version of the inner matrix in (3.12) where the param-
eter 0 < β < 1 is added to control the memory of the algorithm. The computed SVD
yields two orthonormal factors P and Q and a diagonal factor D whose product can
be plugged into (3.12) to obtain an internal diagonal factor and thus yield the up-
dated tSVD of Xt. Such a representation is then shrunk to the minimum by keeping
only the first k columns of the left and right factor and only the first k columns and
rows of the central factor.

Overall, starting from a random orthonormal U0 ∈ Rn×k, the update step com-
putes

[
βSt−1 yt

0>k ‖rt‖

]
SVD→ P, D, Q

St = (D)pk

Ut =
([

Ut−1
rt
‖rt‖

]
P
)
|k

(3.13)

where (·)|k is the same operator used before which selects the first k columns of its
argument, while (·)pk selects the first k columns and the first k rows of its argument.

Besides, the speed of convergence is highly affected by the condition number
of Xt. To partially overcome this problem authors in [102] propose the Polar Incre-
mental Matrix Completion (PIMC) algorithm which adapts the memory factor to the
norm of the observed samples β = at

‖St‖F
where a2

t = a2
t−1 + ‖xt‖2

2, a0 = 1 and ‖·‖F

denotes the Frobenius norm of a matrix.

3.2.6 GROUSE

Grassmaniann Rank-One Update Subspace Estimation (GROUSE) is a streaming al-
gorithm for subspace tracking proposed in [18]. Although it is designed to deal
with the case in which some components of xt are unknown, we here consider the
version for complete data. The idea consists in applying the stochastic gradient de-
scent to minimize (3.3) while making moves that do not exit the set of all possible
column-orthonormal matrices, i.e., the Grassmaniann manifold of the k-dimensional
subspaces of Rn.
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Starting from one of such matrices, the update rule when all the components of
xt are known is

pt = Ut−1yt

θt = arctan
[
(1− αt)

‖rt‖
‖pt‖

]

zt = cos(θt)
pt

‖pt‖
+ sin(θt)

rt

‖rt‖

Ut = Ut−1 +

(
zt

‖zt‖
− pt

‖pt‖

)
y>t
‖yt‖

(3.14)

where the expression for θt is derived from eq. (3)–(4) in [196] and where αt is meant
to mitigate the effect of noise.

Convergence of GROUSE is analyzed in [19, 196] and [20] shows that GROUSE
and ISVD are strictly linked. In particular, the application of the ISVD to the missing
data case is equivalent to GROUSE for a particular choice of its parameters.

3.3 Subspace analysis performance

In this section, we test the functional performance of the methods described in Sec-
tion 3.2 by asking each method to detect a subspace characterizing a set of signal
observations.

Data are generated according to the spiked model [97] with the subspace struc-
ture of the signal that does not change in time, meaning that

xt = Φst + νt (3.15)

where Φ ∈ Rn×m, with m < n, is a column-orthonormal matrix that expands in-
stances st ∈ Rm of a zero-mean random Gaussian source with zero mean and co-
variance Im, while νt ∈ Rn represents realizations of a zero-mean Gaussian noise
term with covariance νIn such that ν > 0 controls the noise level.

With this model we have Σ = E
[
xtx>t

]
= ΦΦ> + νIn, and since Φ is column-

orthonormal and ν < 1, then Φ itself spans the m-dimensional principal subspace,
while its orthogonal complement Φ⊥ spans the (n − m)-dimensional minor sub-
space. As a result, the target n× k matrix U is Φ in the case of principal subspace
estimation, and it is Φ⊥ for the minor subspace.

To quantify the effectiveness in subspace analysis, for each method we monitor
the sequence of reconstruction errors

et =
∥∥∥U −UtU>t U

∥∥∥
F

(3.16)

where ‖·‖F indicates the Frobenius norm of its argument.
In case of correct estimation we have Ut = U and thus et = 0 while the error is

maximum when Ut is orthogonal to U, yielding et = k.
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TABLE 3.2: Algorithm parameters, tuned value with corresponding
ranges and update times (average and std) for the RPi edge-oriented

implementation

update time [µs]
method parameter value range ave. ± std

Principal Subspace identification

Oja γ 1 [0.001, 100] 354± 10
Krasulina γ 0.1 [0.001, 100] 378± 11
PAST β 0.99 [0.7, 0.999] 116± 5
ISVD β 0.9 [0.7, 0.999] 585± 13
GROUSE α 0.2 [0, 0.5] 304± 10

Minor Subspace identification

Oja γ 0.1 [0.001, 100] 3446± 60
Krasulina γ 0.1 [0.001, 100] 3472± 27
HFRANS γ 1 [0.001, 100] 540± 29

Simulations consider n = 100, m = 10 and noise amplitude ν = 10−3. For each
task, 100 Montecarlo trials are performed where random column-orthonormal Φ and
random column-orthonormal initialization matrices U0 are drawn independently.
Each single Montecarlo trial is composed by a stretch of 1000 sample windows xt

generated independently following (3.15).
The parameters controlling each method are set as reported in Table 3.2: Oja and

Krasulina need a learning rate γt, PAST and ISVD need to set a forgetting factor β,
and finally GROUSE and HFRANS depend on α (controlling the effect of noise) and
γ (that can be seen as a re-scaled learning rate). Parameters are tuned to optimize
the capability to identify the target subspace.

For the methods adopting a learning rate we tested the classical trend γt = c/td

with d ∈ {0, 1/2, 1} and c selected to increase convergence speed. Since, in the fixed
subspace case, performances are approximately the same for the three values of d,
we selected d = 0 and report in Table 3.2 only the value of γt = γ = c. Such a con-
stant learning rate allows for substantial updates even when t grows. For HFRANS,
the learning rate tuning does not depend on t while the value of α in GROUSE is
set to cope with the noise level. Finally, the forgetting factors of ISVD and PAST are
selected as the largest possible values that make the fixed subspace case converge.

Results in terms of et are shown in Figure 3.2. Figure 3.2a is for the principal
subspace while Figure 3.2b is for the minor. Solid lines represent median values of
the Montecarlo trials while shaded areas indicate the spread containing 50% of the
values.
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As expected, all methods can deal with the subspace identification task. As ex-
pected, ISVD and PAST are the fastest to converge, while GROUSE is in the order
of the two historical approaches Oja and Krasulina. This behaviour reflects that the
former are based on the spiked model employed to generate the signals, and the
main GROUSE novelty is its ability to manage the missing data case.

3.4 Implementation on edge devices

Since edge devices are employed on various applications and for many different
tasks, different solutions are available, ranging from a single-board system equipped
with a microcontroller to more complex systems composed of different modules.
Two subsections report details of two reference platforms to cope with both scenar-
ios.

3.4.1 High-end edge devices

Here, we focus on the Raspberry pi 4 model B, which could be considered a reference
for the high-end edge devices family. In detail, we refer to the board equipped with
1GB of RAM and Raspberry Pi OS (32-bit) Lite 5.4.51-v7l+ as an operative system.
Clock frequency ranges from 600 MHz to 800 MHz1. Methods are implemented in
Python (version 3.7.3), employing the packages Scipy (version 1.1.0) and Numpy
(version 1.16.2) for the required algebraic manipulations.

We set n = 100 and m = 10 (as in Section 3.3) reminding that the target matrix U
has dimensions n×m for PSA and n× (n−m) for MSA. For each method, update
time is reported in Table 3.2 as mean and standard deviation over 1 000 updates.
As expected, updates for MSA methods take longer than PSA. For PSA, the fastest
method is PAST, while the most time-consuming is ISVD which computes an SVD
of an (k + 1)× (k + 1) matrix at each update. For MSA, the method to be preferred
is HFRANS since, like PAST, no complex operation, such as orthonormalization or
SVD, is required.

The analysis is enlarged by considering different values for n and k, keeping
constant their ratio. Fig. 3.3 shows how the average update time increases with n
in case of n/k = 100/10 for PSA and n/k = 100/90 for MSA. In both cases, the
gap between the methods imposing the estimate Ut to be column-orthonormal (Oja,
Krasulina, and ISVD) and the other ones (HFRANS, GROUSE, and PAST) increases
with n. This trend confirms the difference in the complexity of the methods.

1The firmware dynamically manages clock frequency depending on the CPU temperature.
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3.4.2 Low-end edge devices

The implementation of the discussed methods on low resources devices is here pre-
sented. In detail, we developed a C library2 targeting the ARM Cortex microcon-
troller (MCU) family of devices. The library back-end is mainly based on the well-
known ARM CMSIS-DSP library3.

We implement the methods by adopting specific techniques, described in Sec-
tion 3.4.2, to minimize memory footprint and processing time. Both GROUSE and
PAST implementations adopt all these gimmicks while Oja, Krasulina and ISVD re-
quire extra care due to QR decomposition or SVD, as reported hereafter.

Then, performances in terms of update time, energy consumption and memory
requirements on the MCU are analyzed, along with an assessment of the error in
estimating the target matrix U in both PSA and MSA.

QR decomposition Oja and Krasulina methods employ QR decomposition to im-
plement the Ω(·) operator in (3.4) and (3.6) that makes the current estimate Ut

column-orthonormal. Here we consider three common algorithms to implement the
QR decomposition: Householder (Hous-QR) [162], Modified Gram-Shmidt (MGS-
QR) [111], and Cholesky (Chol-QR) [176].

They all are iterative algorithms that differ from addressing the trade-off be-
tween the orthogonality of the output and computational complexity. Hous-QR
provides excellent numerical stability that guarantees a column-orthonormal out-
put even with ill-conditioned matrices, but it is the most computationally expensive.
Chol-QR is the other corner case that sacrifices stability in favour of computational
complexity. At the same time, MGS-QR is in the middle.

Since Oja and Krasulina methods results to be robust to estimates Ut being only
approximately orthonormal, we select Chol-QR for implementing the Ω(·) operator
on MCU as reported in Algorithm 3.1.

Algorithm 3.1 Cholesky-based QR decomposition

1: cholesky(A>A)→ LL>, L lower triangular matrix
2: R← L>

3: R−1 ← BS(R) (BS: backward substitution)
4: Q← AR−1

The implementation of Cholesky decomposition is based on the ARM CMSIS-
DSP library. In addition, we implement the inversion of the upper triangular matrix
R with the backward substitution technique [191]. Since R−1 is a lower triangular
matrix, we store R and R−1 as the two triangular parts of a single square matrix.

SVD SVD is required in ISVD (3.13). We adopt the Golub-Reinsch technique (GR-
SVD) [80], whose computational complexity is comparable to Chol-QR, and employ

2online repository https://github.com/SSIGPRO/streaming_pca
3online repository https://github.com/ARM-software/CMSIS_5



3.4. Implementation on edge devices 73

Daniel Matterson’s CControl library4 for implementing GR-SVD on the MCU. We
slightly modify this library to reduce the memory footprint by eliding the Q matrix
in (3.13), which is unnecessary for ISVD, and by overwriting the input matrix with
the P matrix.

Arithmetic operations The implementation of the streaming methods on the se-
lected MCU is based on the ARM CMSIS-DSP library, which stores any n× k matrix
as a linear vector of size nk to maximize memory contiguity and minimize the num-
ber of memory accesses.

Hereafter, we overview the techniques used to improve the efficacy of vector-
matrix multiplications.

• Loop unroll Since loops are massively employed, loop-unrolling significantly
increases the performance by reducing the amount of data transferred and the
number of loop index updates. This technique is automatically adopted at
compile time by using -Ofast gcc option.

• Register blocking Matrix-matrix multiplication scales down to multiple sub-
sequent vector-vector dot products performed through a sequence of multiply-
and-accumulate operations whose result is an entry of the output matrix. By
employing multiple accumulators simultaneously, i.e., by interleaving two or
more dot products, local registers are utilised more efficiently, leading to a
shorter execution time. Figure 3.4(a) illustrates a graphical representation of
this technique.

• Buffered multiplication Multiplying a n× k matrix by a k× k matrix and its
transposition (k × k times k × n matrix-matrix) is common, e.g., in Oja, Kra-
sulina, and ISVD methods. Classical implementation requires (2n + k)k oper-
ations, which, however, can be almost halved if n � k by storing the output
matrix in the same memory location of the first input matrix. This overwrit-
ing procedure is possible if, for each output row, the input row is temporarily
copied in a k-sized buffer and, therefore, it comes at the cost of a slight increase
in the computation time. This technique is illustrated in Figure 3.4(b).

• Vector outer product and matrix addition merging Some methods (Krasulina,
PAST, GROUSE, HFRANS)require operations of the type A = A + ab>, where
A ∈ Rn×k, a ∈ Rn and b ∈ Rk. Instead of firstly evaluating the outer product
B = ab> and then performing the sum A = A + B, one can directly sum
each entry of ab> to each entry of A while performing the outer product, thus
reducing memory needs and the number of operations. This is shown in Figure
3.4(c).

• Transposition of square matrices In general, the transposition of a rectangular
matrix requires the copy of the entire matrix in another memory space. In

4online repository https://github.com/DanielMartensson/CControl
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FIGURE 3.4: Matrix arithmetic optimization techniques: (a) register
blocking, (b) buffered multiplication, and (c) vector outer product and

matrix addition merging.

the case of a square matrix, transposition can overwrite the original matrix by
swapping each value in the two triangular parts.

• Transposed multiplications The operations AB> and A>B can avoid by mod-
ifying the multiplication operation and scanning the transposed matrix row-
first instead of column-first (or vice-versa).

• Column concatenation ISVD method requires the concatenation of a column
vector. Columns are not memory-contiguous while rows are. Therefore, trans-
posing the whole method to turn column concatenation into row concatenation
reduces memory space and computation time.

3.4.2.1 Performance

All methods are tested on a STM32H743ZIT (rev. V), an MCU based on ARM Cortex
M7 family with a 32-bit floating-point unit, fCLK = 480 MHz, and both instructions
cache and data cache enabled5.

With this setup, the energy consumption of a single update has been estimated as
Eupdate = VDD × IDD × tupdate, where VDD is the supply voltage, IDD is the absorbed
current and tupdate is number of clock cycles necessary for a single update divided
by the clock frequency. Values are obtained from datasheet. In particular, we refer
to current values corresponding to VDD = 1.8 V and with either no peripherals or
all the peripherals enabled. Table 3.3 reports time and energy for a single update of
each method. Figure 3.5 instead shows how the update time scales with n with a
fixed n/k ratio.

For what concerns memory footprint, we can split each method’s contribution
into three parts: i) stack memory, fixed cost negligible compared to the other contri-
butions and independent from either the adopted method or the values of n and m;
ii) input vector x and matrix Ut, equal for any method; iii) buffers of various sizes
necessary for computation. This last contribution is what characterizes the memory

5code is compiled with fast target gcc option (-Ofast) in order to maximize the speed performance.
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TABLE 3.3: Performance per update on STM32H743ZIT (rev. V)
@1.8 V, 480 MHz, cache ON (n = 100, m = 10)

Method Clock cycles Time Energy Energy
(no periph.) (all periph.)

[# ] [µs] µJ] [µJ]

Principal subspace

Oja 110 k 229 45.4 90.7
Krasulina 115 k 239 47.4 94.8
ISVD 136 k 283 56.1 112.2
PAST 20 k 42 8.3 16.7
GROUSE 23 k 49 9.5 18.9

Minor subspace

Oja 8711 k 18148 3593.4 7186.8
Krasulina 8749 k 18226 3608.8 7217.5
HFRANS 235 k 490 97.0 194.1
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FIGURE 3.5: Maximum update time on MCU against the signal di-
mension n with fixed compression ratio CR.
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TABLE 3.4: Memory requirements rule for each method (memory ex-
ample with n = 100, m = 10, 32-bit scalars)

Method Size of extra buffers Overall memory rule Memory footprint

Principal subspace

Oja k× k nk + k2 + n 4.80 kB
Krasulina k× k nk + k2 + n 4.80 kB

ISVD
(k + 1)× (k + 1), nk + k2 + n + 4k + 3 4.97 kB
(k + 1), (k + 1)

PAST k× k, n, k nk + k2 + 2n + k 5.24 kB
GROUSE n, k nk + 2n + k 4.84 kB

Minor subspace

Oja k× k nk + k2 + n 17.20 kB
Krasulina k× k nk + k2 + n 17.20 kB
HFRANS n,k nk + 2n + k 9.29 kB

footprint of each method. Table 3.46 reports the size of extra buffers, the size of the
overall memory, and the actual memory requirement for n = 100 and m = 10.

Finally, Figure 3.6 shows the performance in terms of the estimation error of
each method for subspace identification implemented on MCU with the same setup
reported in Section 3.3. This figure confirms the trends observed in Figure 3.2.

3.5 Conclusion

This chapter reviews six major approaches for streaming subspace identification
tackling either principal or minor analysis. The aim is to give a coherent presen-
tation of the methods giving rise to most of the subtle variants currently available
in the Literature. We also perform comparisons with an eye to deployment at the
edge of a system that concentrates data from distributed nodes. Beyond functional
testing, we implement the methods in high-end and low-end edge devices to as-
sess their resource requirements and compatibility with nowadays data collection
systems.

At least two of the methods reviewed (PAST and HFRANS) excel in principal and
minor subspace identification, delivering substantial accuracy with limited compu-
tational requirements. If heavier computations are tolerated, faster convergence in
PSA is obtained by ISVD.

6In Table 3.4 values refer to memory footprint for methods implemented without buffered multi-
plication technique described in Section 3.4.2. With buffered multiplication, memory requirements for
Oja and Krasulina are about 45% higher, while computation is about 19% faster compared to the results
shown in this section.
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Chapter 4

History PCA for SHM systems

Principal Subspace Analysis (PSA) in general and Principal Component Analysis
(PCA) play a fundamental role in acquisition systems as they reduce the signal di-
mension with a lightweight encoding procedure. Indeed, the compression can be
performed employing a linear transformation that projects the signal onto the direc-
tions that gather most of the signal energy, i.e., most of the signal information.

The linear transformation representing the core of the compression algorithm
needs to be tuned on the data to compress. This tuning consists in estimating the
principal subspace of the signal, and the straightforward approaches include the
storage and processing of a great amount of historical data. Hence, the need for
a large amount of storage and computational resources prevents the implementa-
tion of the tuning phase on edge devices. This aspect is common to other adapted
compression techniques such as the one based on auto-encoders and implies that, in
practice, the edge devices can easily compress the signal only if the linear transfor-
mation is previously provided.

However, in the case of PCA, there exist algorithms that estimate the principal
subspace by processing the data set not as a whole but as a stream, i.e., by consider-
ing each signal instance separately and sequentially. They are methods that update
the estimate one sample at a time and tend to approach the principal subspace as
the number of observations increases. The availability of streaming approaches that
allow for a tuning performed locally is another aspect that fuels the appeal of PCA-
based compression.

In Chapter 2, we described an application in which PCA is employed to compress
the signal and then detect anomalies. In Chapter 3 we review different methods to
find the principal subspace with a focus on possible solutions for the implemen-
tation on the edge devices. Here in this chapter, we consider the application of a
PCA-based compression algorithm to the signal acquired by the Structural Health
Monitoring (SHM) system described in Section 2.2, focusing on the adoption of a
novel streaming method, namely History PCA [188], for the identification of the
principal subspace.

More specifically, here we consider PCA-based compression as a solution to re-
duce the traffic on the sensor network composing the monitoring system that would
allow higher scalability. To perform compression, a first tuning phase is necessary,
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and History PCA (HPCA) is one of the streaming solutions that allow the implemen-
tation of this phase on an edge device.

HPCA is a streaming PCA method that has been recently proposed and can be
viewed as a modification of the traditional Oja’s method [145, 146] in the block-
wise version [137]. Among the possible streaming PCA methods, HPCA has the
advantage of being very robust to the choice of the parameter. In Chapter 3, all
revised methods depend on at least one parameter and especially the ones seeking
the eigenvectors are particularly sensitive. As it will be shown later, HPCA address
this issue by introducing the concept of history.

This chapter reports works published in [40, 39] and starts with Section 4.1 that
introduce and review the compression algorithms targeting edge and IoT devices in
the context of Structural Health Monitoring. Together with the above considerations,
we demonstrate that the PCA-based compression is suited for the SHM application.
Then, Section 4.2 describes in detail the HPCA algorithm and reports the process
to tune the parameter showing that HPCA robustness to parameter variability. Af-
ter that, Section 4.3 is devoted to the implementation on edge devices. SImilarly to
Chapter 3 the target devices are both high-end and low-end edge devices. Finally,
in Section 4.4 the results are reported. The experimental results consider both func-
tional requirements and performance in terms of time and energy spent running the
update on the target devices for the proposed solutions.

4.1 PCA-based Compression in SHM

Large IoT sensor networks managing significant data flows are getting widespread,
leading to high demand for methods and architectures able to gather and process
large streams of data continuously. When these streams are collected at a central
unit to be stored or processed, the communication or the cost for storage space often
represents the system bottleneck [100].

This bottleneck can be solved by data reduction proposed in several real-time
systems, by either compressing it or distributing part of the processing throughout
the network [203, 57]. Many techniques are also proposed to optimize the workload
of the node in a network, especially in the deep learning field for the production of
smart data [73, 110].

This trend has filtrated to the SHM field. In [86], a system-level co-design be-
tween sensors installation and algorithm resolution allows for a reduction of the data
gathered, streamed, and stored when demanded. Further moving the processing to
the edge, [113] proposes a distributed execution for the eigensystem realization al-
gorithm (ERA), a classical SHM algorithm. The proposed implementation relieves
the central unit from the computation and allows to stream only “smart” data, which
already contains the diagnosis information. As a drawback, this class of algorithms
prevents the system from storing either the raw or an approximation of the recorded
data, which can be helpful for additional analysis.
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Data compression represents an alternative solution to limit the bandwidth re-
quired for communication. Lossless methods ensure no loss of information at the
cost of a low compression ratio [160, 125]. For instance, LZMA [83], LZ4, and De-
flate [31], widely accepted lossless methods used in file compression algorithms,
reach average compression ratios (CRs) lower than 3.

On the other hand, lossy methods, which achieve a higher CR [157], leverage the
fact that only part of the entire information contained in the signal is helpful for the
analysis. A well-known lossy method is Compressed Sensing (CS), which allows
the implementation of energy-efficient encoders [156]. The upside is that with few
linear projections and low computational cost, CS captures the primary information
contained in the signal, thus being very suitable for SHM applications [93]. The
downside is that the energy efficiency comes at the cost of a lower compression ratio
(CR) compared to other methods such as wavelet-based, as shown in [117, 41].

For instance, [112] combines wavelet transformation with distributed source cod-
ing to increase the compression performance further, reaching a compression factor
of 50 with synthetic vibration data. However, this high CR is mainly due to the very
high correlation between the generated synthetic data, which are not representative
of other different monitoring scenarios. Indeed, in [112], the data are collected from
a five-layer civil infrastructure laboratory model, with a distance as small as 15 cm
between each layer and a vibration exciter.

A new promising alternative comes from the machine learning field. In [58],
it is shown that an autoencoder (AE) can outperform other classical methods such
as the ones based on PCA, wavelets, and Discrete Cosine Transform (DCT) with a
comparable or lower computational cost. Note that in SHM, auto-encoders have
already been successfully employed for temperature and humidity data [3] or em-
bedded in a more complex damage identification system [151]. The main drawback
of using autoencoders embedded on edge devices is the need for large training data
sets. Moreover, structures often change over time (e.g. due to ageing), forcing the
compression algorithms to be re-trained over time.

In this chapter, we focus on PCA-based compression [98], which exploits the cor-
relation between signal components to extract the primary information. The Achiev-
able CR is similar to the wavelet-based method, as shown in [58, 3], but, similarly to
CS, PCA-based encoders require few linear projections to compress the raw signal.
As a counterpart, similarly to autoencoders, PCA requires a considerable amount
of data to estimate the principal components accurately. However, differently from
autoencoder, PCA may be trained in streaming fashion by considering a sample (or
small blocks of samples) at a time [106, 145, 137, 88, 6, 180, 36, 17, 188]. The simplicity
at the encoder side and the possibility to conduct the training phase in a streaming
fashion make PCA a method suited to be embedded on resources constrained de-
vices typically involved in IoT networks and SHM systems.

To validate the effectiveness of the PCA-based compression method in an SHM
application based on vibration sensing, we compared its performance with some
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FIGURE 4.1: Comparison of lossy and lossless methods apllied to sig-
nals from a vibration-based SHM system.

of the algorithms previously presented. The assessment is based on our use case
dataset, and Figure 4.1 shows a figure of merits regarding the quality of reconstruc-
tion of the signal (Reconstruction Signal to Noise Ration – RSNR) depending on
the compression ratio (CR). We selected LZ4 [83], LZMA and Deflate methods [31]
as lossless methods, while for lossy approaches we considered compression based
on Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) [4], Com-
pressed Sensing (CS) [61] and autoencoder [3]. For the DWT implementation, we
consider Symlet, Coiflet, Daubechies, and Haar families, but in Figure 4.1, we only
show Symlet 10 and Coiflet 5 that outperform the others. For the Compressed Sens-
ing approach, along with the standard method [61], we also consider the rakeness
method that adapts the encoder stage to the class of signals [118].

The average RSNR obtained with the PCA-based method is comparable with
the performance of the autoencoder while outperforming all the other methods for
CR > 4. On the other hand, the PCA has a twofold advantage compared to the
autoencoder: it requires less data for the training, and the streaming approaches
allow to avoid storage of the complete training dataset, which would be prohibitive
on an end-node device.

4.2 History PCA

As already extensively discussed, Principal Component Analysis PCA methods aim
to estimate the principal subspace of the monitored signal in the form of a set of
the eigenvectors corresponding to the k most significant eigenvalues of the signal
correlation matrix. A streaming PCA method performs this task by processing input
data sequentially so that at each incoming input instance, the estimate is updated
with no need to store the entire data set.

Among them, History PCA (HPCA) [188] has recently emerged. HPCA is based
on the block-stochastic power method [137], which in turn may be viewed as a
modification of the traditional Oja’s method [145]. Compared to the other meth-
ods, HPCA has been developed to improve the principal subspace estimation accu-
racy by using a compact representation of the historical data, from which it takes
the name. This representation of the history includes both the eigenvectors and the
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corresponding eigenvalues. Since most streaming PCA methods only focus on esti-
mating the eigenvector, HPCA is an alternative when knowledge about eigenvalues
is required. Another feature of HPCA is the ability to work with blocks of data gen-
eralizing the typical streaming processing to consider one sample at a time. This
generalization allows for a more efficient implementation in terms of execution time
as it allows the device to run the algorithm at each block instead of each instance.

The HPCA algorithm is proposed in [188] and here is reported in Algorithm 4.1.
Let us consider a data block Xt ∈ Rb×n at time instant t where b is the number
of instances composing a data block, and n is the dimension of the input signal.
The algorithm runs for each incoming data block and updates the eigenvectors’ and
eigenvalues’ estimates. The former are stored as columns of Ut, and the latter are
arranged on the diagonal of the matrix Λt. With N the number of signal instances
composing the dataset, after B = N/b runs, the algorithm returns the final estimate
UB and, optionally, ΛB.

Algorithm 4.1 History PCA

1: Input: X1, . . . , XB, block-size: b.
2: S0 =

[
S(1)

0 . . . S(k)
0

]
with S(j)

0 ∼ N (0n, In)

3: U1 ← Ω(S0)
4: for i← 1, . . . , M do
5: S1 ← U1 +

1
b X>1 X1U1

6: U1 ← Ω(S1)
7: end for
8: λj ←

∥∥∥S(j)
1

∥∥∥
2

for j = 1, . . . , k

9: Λ1 ← diag(λ1, . . . , λk)
10: for t← 2, . . . , B do
11: Ut ← Ut−1
12: for i← 1, . . . , M do
13: St ← t−1

t Ut−1Λt−1U>t−1Ut +
1
t

1
b X>t XtUt

14: Ut ← Ω(St)
15: end for
16: λj ←

∥∥∥S(j)
t

∥∥∥
2

for j = 1, . . . , k

17: Λt ← diag(λ1, . . . , λk)
18: end for
19: Output: UB

HPCA algorithm consists of a first initialization part that employs a first data
block X1 to build the first historical representation, followed by the algorithm’s core
that refines the estimation at each new incoming data block Xj with j = 2, . . . , B.

The core is described in lines 13–14 and somehow resembles the Power Iteration
[81, Chapter 7], which multiplies a diagonalizable matrix by its current eigenvectors’
estimate and orthogonalizes the result to obtain a new estimate. One may recognize
two diagonalizable n× n matrices multiplied by the current eigenvector estimate Ut

in line 13 and the orthogonalization in line 14. The first of the two diagonalizable
n× n matrices is Ut−1Λt−1U>t−1 which is a rank-k approximation of the correlation



84 Chapter 4. History PCA for SHM systems

matrix of the data already processed and embodies the history. The second diagonal-
izable n× n matrix is X>t Xt/b which is an estimate of the signal correlation matrix
by means of the current data block Xt. The two contributions are weighted and com-
bined into the matrix Stso that history is weighted proportionally to the number of
processed blocks.

The core of the algorithm (i.e., lines 13–14) is iterated for a fixed number of times
M (or until convergence). Then, since the matrix St contains the current estimate of
the eigenvectors scaled by the corresponding eigenvalues, the norm of the j-th col-
umn of St is a current estimate of the j-th eigenvalues λj. This procedure is repeated
for each of the B blocks composing the data set.

The original HPCA algorithm starts from an initial matrix U1 that comes from a
random initialization (see lines 2–3). However, in other streaming PCA methods, it
is possible to speed up the convergence by starting with a warm start [6, 175], and
a possible warm start for HPCA consists of a matrix U1 obtained as the left-singular
vector from the rank-k thin SVD computed on an initial data block.

In HPCA, computational complexity is dominated by the matrix multiplications
O(nk(k+ b)) and by the QR decompositionO(nk2) while memory footprint is in the
order of (3nk + k2 + nb) where nb accounts for the input block Xt, 3nk and k2 for the
intermediate data to compute the Ut matrix.

Computational complexity and memory footprint are consistent with the re-
quirements of other streaming PCA algorithms that retrieve the eigenvalues other
than the eigenvectors. In addition, HPCA is robust to parameter tuning. Indeed, it
has no learning rate and performance variability due to the choice of the number of
iterations of the internal loop M and block-size b is very limited, as discussed later.

Similarly to the analysis in Chapter 2, here we consider as input signal instances
the n-dimensional time-windows of the x-axis acceleration recorded by a sensor
node in the SHM system described in Section 2.2.

Note that, in a real application like the one here, data instances come at a con-
stant rate fs/n, the block-size parameter b plays an important role. Increasing b, the
memory requirement slightly increases, but the algorithm is to be run less frequently
(i.e., every nb/ fs seconds).

4.2.1 Parameter Tuning

For effective deployment of the HPCA method, the involved parameters need to be
tuned on the specific application. We consider the x-axis acceleration recorded by a
sensor node in two different weeks for this task. The week is chosen to account for
the daily periodicity and the different traffic conditions of the weekdays.

The recording of one of the two weeks is employed to estimate the matrix U
through the HPCA method, while the data from the other week is employed to
assess the quality of service (QoS), measured in terms of Reconstruction Signal to
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Noise Ratio (RSNR), defined as:

RSNR = 20 log10

( ‖x‖2
‖x− x̂‖2

)
(4.1)

where x indicates a generic signal instance and x̂ = UU>x is the correspondent
recovered vector following PCA-based compression.

In PCA-based compression, there are two intrinsic parameters: n, which is the
dimension of the signal, and k, that is the dimension of the compressed version of
the signal, i.e., the number of the considered principal components.

In general, for signals coming from physical phenomena, the larger the time win-
dow, the more redundancy in each window can be exploited to increase the compres-
sion ratio CR = n/k given a minimum RSNR. As a consequence, the parameter n
is bounded from above by the maximum processing delay that, in this particular
application, consists of tW = 5 s. This constraint leads to a windows length n = 500
and N ∼ 120 000 signal instances per week.

The parameter k affects the compression level and reconstruction quality. Con-
sequently, k is determined by the minimum value of RSNR that is retained accept-
able for the application. In this specific case, the application consists in detecting
the frequency, and the amplitude of the peaks in the signal spectrum and a prelim-
inary analysis showed that RSNRmin = 16 dB is sufficient, as it is shown in Sec-
tion 4.4. PCA-based compression (with U matrix estimated with traditional batch
PCA) meets the requirement (RSNR = 16.13 dB) with k = 32 principal components,
i.e., with a CR = 15.6.

HPCA relies on two additional parameters: the block-size b, and the number
of iterations in the internal loop M. Figure 4.2 shows the average RSNR when M
varies for different values of b and number of principal components k. As expected,
the higher k, the higher the average RSNR and all trends saturate for M ≥ 3 indepen-
dently from the adopted block size b. This behaviour demonstrates the robustness of
HPCA to variation in the parameters. Note that the parameters M and b are strictly
related.

With k = 32 (same of the PCA), M = 3 and b = 1 the average RSNR measured on
a validation set is 16.11 dB, i.e., just 0.02 dB below the value reached by batch PCA
and still above RSNRmin.

4.3 HPCA Implementation

As other streaming PCA algorithms, HPCA fits devices with scarce computational
resources. In this specific SHM application, target devices may be the gateways or
the sensor nodes. Since PCA is applied independently to each acceleration axis of
each sensor node of the installation, i.e., HPCA must be run a number of times equal
to the number of sensors (45 for each gateway, hence 90 in total) times the number
of acceleration axes to be monitored (nax = 3 axes).
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FIGURE 4.2: HPCA performance in terms of RSNR depending on the
number of internal loops m for different block-size b and number of

principal components k.

TABLE 4.1: Specs of the target gateway devices.

device
CPU Memory Cache L2

#core type freq size type freq size
GHz MB GHz kB

RPi3 4 Cortex A53 1.2 1000 DDR2 900
ARTIK 710 8 Cortex A53 1.4 512 DDR3 800 256

As a result, when gateways are the target devices, they must have enough mem-
ory to run nSnax HPCA algorithms (with nS = 45 sensors) and the execution time of
the latter must be shorter than the period between two signal instances tW = n/ fs =

5 s. Alternatively, if the HPCA implementation is distributed to the sensor nodes,
requirements relax to nax HCPA execution. Both memory and time constraints are
addressed in this Section.

4.3.1 Implementation on gateway

In the current installation, the IoT gateways consist of a Raspberry Pi 3 module B
[71] (RPi3), but the analysis in this dissertation also includes the Samsung ARTIK 710
Module [65] as an alternative. The former is a single-board computer actively used in
many fields, such as robotics, smart sensor control, and structural health monitoring,
while the latter is a System-in-Module developed by Samsung that targets high-end
gateways with the capabilities of local processing and analytics. Specifications of
both devices are reported in Table 4.1.

Two implementation versions are proposed and analyzed. Both versions are im-
plemented in Python 3.5 and exploit NumPy library [99] which relies on optimized
BLAS [30] and LAPACK [9] libraries for linear algebra computation.

The first version (GT1) runs each HPCA algorithm sequentially and exploits par-
allelization to optimize the linear algebra operations. Consequently, all cores are em-
ployed to execute a single HPCA algorithm for a single trace. This choice leads to a
minimal memory footprint, but computational time does not scale with the number
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of core nC since some operations (e.g. QR decomposition) can not be fully paral-
lelized.

The latter (GT2) runs a different HPCA algorithm on each available core, allow-
ing to process different traces simultaneously. As a result, GT2 achieves a near-ideal
speed-up (which is only limited by the simultaneous accesses to the memory) but
requires a nC times higher memory space.

4.3.2 Implementation on sensor node

Sensor nodes are based on the STMicroelectronics STM32F405RG microcontroller
unit (MCU). Due to the relatively high operating frequency and the floating-point
unit (FPU) with a full set of DSP instructions, the STM32F405xx MCU family is
prevalent for embedded computing. STM32F405RG MCU is equipped with an ARM
32 bit Cortex-M4 CPU @168 MHz with FPU, 192 kB of SRAM, and 1 MB Flash mem-
ory.

A first implementation (SNS1) consists of the straightforward porting of HPCA
in C code, which, however, does not fit the constrained memory resources of the
MCU, so it requires a reduction of the signal dimension n.

A second version (SNS2) is proposed to solve this memory issue. It employs
16 bit fixed point arithmetics and exploits CMSIS-DSP software library [55] that lead
to a reduction in execution time and a halving of the memory footprint. As a draw-
back, SNS2 requires a quantization of the quantities involved, resulting in a loss of
accuracy that must be carefully addressed. In particular, the critical points are the
matrix multiplications (line 13) and the orthogonalization (line 14)1.

In matrix multiplications, the loss in accuracy has been addressed by increasing
the integer part of the fixed-point representation from 1 bit to 5 bit. This solution
allows to capture the high dynamic range of the input signal2 and the value has
been determined after a grid search on a validation set composed by 4 h recording.

Orthogonalization is implemented by mean of QR decomposition with House-
holder reduction, which, due to better numerical stability, has been preferred to
Cholesky decomposition, Gram Schmidt [74]. Following implementation in [74],
the computation of the reflection vectors has been performed with an 4 bit for the
integer part, while 2 bit integer part is employed for the actual Householder reflec-
tions. All value for the integer parts of the fixed-point representations is determined
after a grid search on a validation set composed by 4 h recording.

The performance loss due to fixed-point arithmetic is addressed by increasing
k, the dimension of the compressed signal, from 32 to 50. This leads to RSNR =

16.02 dB that satisfy the constraint RSNR > RSNRmin.

18 bit fixed-point is not taken into account as the approximation error is such that the HPCA algo-
rithm fails in reaching the minimum acceptable RSNR.

2input signal is normalized with mean and standard deviation estimate estimated on a training set.
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4.4 Experimental Results

This section first shows that the adoption of HPCA as a streaming method to esti-
mate the matrix U employed for PCA-based compression has negligible influence on
peak detection performance in the spectrum of an acceleration signal for SHM. Then,
the performance in terms of execution time and memory footprint are assessed for
the different target devices and different versions of HPCA implementation.

4.4.1 Functional Performance

When subjected to external forces, structures tend to vibrate at their natural frequen-
cies [50]. Even a subtle variation in how the structure vibrates can be a symptom of
structural damage or deterioration. Here we monitor natural frequency by tracking
the highest peaks in the acceleration spectrum. The target SHM system monitors the
vibration of the pre-stressed tendons that feature slightly different behaviours since
they have different lengths and tension. That is why traces from different sensors
are processed independently from one to another.

The Power Spectral Density (PSD) is estimated by averaging the periodograms
over 18 non-overlapping Hanning windows of 200 s each. Hence, every hour, an
estimate is produced with a frequency resolution of 5 mHz, which is needed to detect
relatively low variations of peak frequencies. The resulting profiles are smoothed
by a Savitzky-Golay filter (length 11, degree 3) and processed by a peak-picking
method. The peak-picking method extracts the highest 15 local maxima that have
prominence3 lower than half of their height. Finally, peaks with a maximum distance
of 0.2 Hz and belonging to successive time frames are grouped.

Figure 4.3 shows an example of spectrum estimation from original and recon-
structed signals of the x-axis vibration signal from one of the viaduct tendons. Both
the floating-point and 16 bit fixed-point implementation of HPCA are considered
and compared to the classical PCA method with the set of parameters that guaran-
tees the target RSNR. All four spectra share the same profile in the region near the
peaks, but they significantly differ in the other bands. Both PCA and floating-point
HPCA show a filtering effect, while the profile of fixed point HPCA remains at the
same level as the original one but with a more noisy trend.

The performance of the peak-tracking algorithm is tested on an additional 1-
week test set following the two 1-week periods used as training and validation sets.
The figure of merit used to validate the approach is the error in the peaks detection
made on reconstructed signals compared to the case where the original signal is con-
sidered. The error regards both frequency (err f ) and amplitude (errA) of the peaks

3In topography, prominence is a measure of the independence of a peak and is computed as the
height of a peak relative to the lowest contour line encircling it but containing no higher peaks.
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FIGURE 4.3: Power Spectrum Density of the x-axis acceleration signal
of one of the sensors in the viaduct SHM system.

TABLE 4.2: Peak detection performance over 1 week in terms of esti-
mation error for frequency (err f ) and amplitude (errA).

frequency [mHz] amplitude [dB]
mean std max mean std max

PCA 0.21 1.17 20 0.03 0.07 0.71
floating-point HPCA 0.21 1.18 20 0.03 0.06 0.80
fixed-point HPCA 0.41 1.78 25 0.52 0.50 2.27

and it is computed in terms of difference between the uncompressed and recon-
structed cases: err f =

∣∣ f ref − f
∣∣, errA =

∣∣Aref
dB − AdB

∣∣, where the pair ( f ref, Aref
dB) rep-

resents frequency and amplitude in the uncompressed case, and ( f , AdB) the peak
characteristic in the case of interest.

Table 4.2 summarizes the results in terms of mean, standard deviation (std), and
max value observed over the ten peaks and the whole test set. All investigated
approaches obtain a low mean error for both frequency and amplitude. It is worth
noting that the max err f recorded in the test set is just 4-5 times the PSD frequency
resolution which is lower than the resolution needed to detect physically meaningful
frequency shifts.

To better appreciate the performance, Figure 4.4 depicts the frequency and ampli-
tude profiles of the peak at frequency fref ∼ 39.9 Hz over the 1-week test set period
for the different approaches along with the no compression case. Despite being the
peak with the highest err f and errA, the difference between the curves is negligible.
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FIGURE 4.4: Peak tracking of the peak at frequency fref ∼ 39.9 Hz
over an 1 week period applied to the original signal and reconstructed
with different compression matrix: PCA, floating point HPCA and
fixed point HPCA. Panels (a) and (b) show the tracking of frequency

and amplitude, respectively.

Damage detection The algorithm is also tested to assess the capability of identify-
ing damages in the viaduct structure. In particular, during the monitoring period,
one of the tendons in the viaduct experimented with a strand breakage. The vibra-
tions natural frequencies are tracked before and after this event. Figure 4.5 reports
the tracking of the three main modes. In detail, Figure 4.5(A) depicts the variation
computed with the usage of the original signal, while Figure 4.5(B) consider the re-
constructed signal with floating-point HPCA with k = 32. Noteworthy, both plots
show a ∼ 2.0% down-shift for all involved natural frequencies with a negligible loss
of average shift accuracy (less than 0.1%).

4.4.2 Execution time and energy consumption

This Section considers the different target devices and the different implementations
in executing an HPCA update. GT1 and GT2 are the algorithm versions targeting
RPi3 and ARTIK 710 as gateway devices, while SNS1 and SNS2 are the versions
for the sensor nodes equipped with STM32F405RG as MCU. Comparisons regard
energy consumption and execution time. In the case of parallelization, the execution
time tex refers to the inverse of the throughput that is the number of results produced
per unit of time.

Firstly, we compare the gateway implementations GT1 and GT2 on RPi3, which
is currently employed in the SHM system. Then, the best implementation is em-
ployed to compare RPi3 with ARTIK 710 Module. Finally, the sensor node imple-
mentations SNS1 and SNS2 are compared.
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FIGURE 4.5: Tracking of the three main natural frequencies of a ten-
don of in the week before and after a tendon strand break. The track-
ing is applied on the PSD computed from the original signal (A), and

the reconstructed signal using HPCA (B).

TABLE 4.3: Comparison of GT1 and GT2 implementations in terms
of execution time and energy consumption on Raspberry Pi 3 with

n = 500, b = 1, k = 32, M = 3.

# core
GT1 GT2

time [ms] energy [mJ] time [ms] energy [mJ]

1 44.6 18.8 44.6 18.8
2 38.4 (1.2×) 26.9 (+43%) 24.1 (1.9×) 16.8 (-11%)
4 35.3 (1.3×) 44.0 (+134%) 13.3 (3.4×) 16.5 (-12%)

GT1 vs GT2 For GT1, since acceleration traces are processed sequentially, tex is
equivalent to the latency of a single HPCA instance. Conversely, in GT2, tex is com-
puted as the time needed to run nC HPCA instances and dividing the total time by
nC. The experiments are conducted considering the set of parameters obtained as
result of the tuning procedure (Section 4.2.1), i.e., n = 500, k = 32, b = 1, M = 3 and
the results are reported in Table 4.3.

Parallelization at sensor level (GT2) achieves better performance than paralliliza-
tion of the internal linear algebra operations (GT1) in terms of execution time and
memory consumption. That is why GT2 is later employed to compare RPi3 with
ARTIK 710 Module. Note that, parallelization on RPi3 is necessary since the single
core implementation of HPCA would lead to tCPU = nSnaxtex = 6.02 s which does
not satisfy the constraint tCPU < tW = 5 s.
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TABLE 4.4: Comparison of RPi3 with ARTIK 710 in terms of execution
time [ms] of HPCA with GT2 implementation and n = 500, b = 1,

k = 32, M = 3.

# core 1 2 4 8

Samsung ARTIK 710

total 34.7 17.7 (2.0×) 9.0 (3.9×) 4.9 (7.1×)
MM 11.1 5.7 (1.9×) 3.0 (3.7×) 1.6 (6.9×)
QR 22.6 11.5 (2.0×) 5.9 (3.9×) 3.1 (7.2×)

Rasberry Pi 3 Model B

total 44.6 24.1 (1.9×) 13.3 (3.4×)
MM 16.2 9.3 (1.8×) 5.1 (3.2×)
QR 27.0 14.1 (1.9×) 7.8 (3.5×)

Rpi3 vs ARTIK 710 Here RPi3 is compared with its alternative ARTIK 710. Ta-
ble 4.4 portraits a detailed comparison of the HPCA execution with the GT2 imple-
mentation on the two platforms. Single-core implementations have comparable exe-
cution time, while parallelization on all available cores let ARTIK 710 run 2.7× faster.
This result is due to the higher number of cores and a more efficient parallelization
provided by the faster DDR3. Note that, considering their most performing HPCA
implementation, both ARTIK 710 and RPi3 platforms allows a single gateway to
process all 90 sensors of the installation. Therefore, the system bottleneck remains
the sensors-gateway communication that limits to ∼ 50 the number of sensors per
gateway.

The relation between energy and the size of the input block b of the HPCA it-
eration is also evaluated, and Figure 4.6 shows the trade-off between memory oc-
cupancy and energy consumption. Increasing b reduces the number of processed
blocks, and consequently, the number of HPCA iterations for the estimation of U.
For instance, by increasing b from 1 to 50, the HPCA necessitates 1.5×memory (from
198 kB to 296 kB) and saves almost 50× energy consumption on both the platforms.

Figure 4.6 also shows that ARTIK 710 consumes more energy than RPi3 when
HPCA runs on a single core due to a more power-hungry memory. However, the
more efficient parallelization allows ARTIK 710 to drastically reduce the energy,
while RPi3 cannot benefit from a slower DDR2.

SNS1 vs. SNS2 As previously anticipated, the SNS1 version of the HPCA algo-
rithm does not fit the memory of the STM32F405RG microcontroller unit. SNS2
cannot halves the memory footprint since hte accuracy loss due to the fixed-point
implementation is balanced with reducing the compression ratio CR. However, it
reduces the memory requirement from 200 kB to 156 kB.

For a fair comparison between the two implementations, we decrease n to 100
while keeping CR = 15 for SNS1 and CR = 10 for SNS2. This settting does not
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FIGURE 4.6: Trade-off between energy consumption and memory oc-
cupation after a full pass over the training for both RPi3 and AR-
TIK 710 with GT2 implementation of the HPCA algorithm and n =

500, k = 32, M = 3.

TABLE 4.5: Comparison between SNS1 and SNS2 implementation of
HPCA algorithm on STM32F405RG with n = 100, b = 1, M = 3.

CR k nmax time [ms] energy [mJ]

SNS1 15 7 450 40.4 11.6
SNS2 10 10 500 18.0 5.2

allow to reach the RSNRmin but allow for a comparison in terms of time execution
and energy consumption and highlights the benefit of adopting SNS2.

As expected, the SNS2 runs 2.2× faster and consumes 55% lower energy when
compared to the SNS1 floating-point implementation as shown in Table 4.5. Hence,
the fixed-point implementation makes the HPCA runnable on the uC and outper-
forms SNS1 in terms of execution time and energy consumption. As a counterpart,
the SNS2 reaches a lower compression ratio that could be preferable in an MCU with
a larger memory.

4.5 Conclusion

Principal Component Analysis can be an effective tool to reduce the dimension of the
signal in monitoring systems which may benefit from compressing the data close
to where it is produced, i.e., on edge devices. The advantages consist of both the
lightweight encoding procedure and the possibility of performing the tuning locally.

In this chapter, we analyze the effectiveness of History PCA algorithm for PCA-
based compression in a Structural Health Monitoring application. First, we compare
PCA-based compression with other lossy and lossless compression methods in the
SHM context. The comparison shows that PCA-based compression is a valid alter-
native that is just slightly less performing with respect to the autoencoder, which
cannot be locally trained.

Then, following a discussion about the features characterizing the HPCA algo-
rithm, we tuned its parameters on the SHM data set, demonstrating that this method
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is robust to parameter variability. We show that it is sufficient to choose a sufficiently
large number of internal iterations to be almost independent of the block size.

In this dissertation, we propose four different implementations for HPCA. Two
are designed for the high-end edge, and two for low-end edge devices such as
microcontroller-based sensor nodes. The high-end implementations differ from how
parallelization is exploited. One solution distributes the linear algebra computation
over the multiple cores available on the two considered edge devices. The other
option takes advantage that more than one HPCA instance must be run at once,
assigning one to each core. This latter solution has a higher memory footprint but
permits a more effective parallelization resulting in a shorter computation time and
less energy consumption.

The other two implementations targeting the low-end device differ from the
arithmetic employed to run HPCA. One is the straightforward translation of the
HPCA in code that requires the usage of the Floating point unit. This solution, how-
ever, does not fit the device memory and requires a reduction of the window length.
To address this issue, a 16 bit fixed-point solution is proposed. The adoption of in-
teger arithmetic and the reduction from 32 bit to 16 bit for quantities representation
leads to a further loss in the quality of compression that needs to be balanced with
an increase in the number of principal components employed.

All implementations are tested on the SHM use case. First, a functional assess-
ment is performed to show that signal compression has a negligible effect on modal
analysis and on the capability to detect anomalies. Then we perform an exhaustive
and quantitative comparison in terms of execution time and energy consumption
between the different implementations and devices. In particular, we show that de-
ploying HPCA to the sensor nodes leads to higher scalability that would allow gate-
ways to manage a higher number of sensors. However, only the fixed-point version
of HPCA fits sensor devices, which degrades the quality of compression that can
only be balanced by decreasing the compression ratio. Hence, the trade-off between
scalability and compression ratio needs to be carefully addressed.
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Part III

Compressed Sensing Decoder
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Chapter 5

Trained Support Oracle for
Compressed Signals

Compressed Sensing (CS) is a relatively new paradigm for the acquisition of signals
violating the intuition behind the theorem of Shannon CS [61, 45, 22], i.e., CS affirms
that the minimum number of digital words to be used to represent a signal instance
is less than the number of samples acquired with a sampling rate double the signal
band.

CS theory requires two surprisingly general conditions: sparsity, which is related
to the signals of interest, and incoherence, which relates to the mechanism behind
the acquisition/compression process where the outputs of this encoding phase are
usually named measurements. Sparsity is a requirement that is associated with the
idea that many natural signals have a very parsimonious representation when ex-
pressed in an appropriate sparsity basis. Incoherence says that it is possible to limit
the number of acquisitions of a waveform that have a sparse representation if the
sampling process projects the input signal on an appropriate basis, which may be
incoherent with the one characterizing the sparse representation such that each new
measurement can capture a non-null part of the information content. As a result, the
two identified domains are that the signal is always sparse in the former and dense
in the latter.

Based on these concepts, it is possible to devise an innovative protocol for sam-
pling/compression [21, 7] able to capture the information content and produce mea-
surements in a number connected to the number of non-zero coefficients in the
sparse representation of the signal of interest. Consequently, if the sampling proce-
dure is directly performed in the analog domain, the most significant feature consists
in allowing a sensor to capture the information content of a signal without going
through the acquisition of its entire profile, thus performing acquisition and com-
pression at the same time.

In other words, CS features an encoder block that can sample sparse signals at
a reduced rate with a very simple and efficient procedure. Therefore, CS employs
fewer resources than standard sampling paradigms required for Analog to Digital
conversion.

Sparsity characterizes many signals of interest. For example, many signals enjoy
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the sparsity property in biomedical applications and can be efficiently acquired us-
ing CS, i.e., less energy, less time, or fewer samples. Possible application domains are
Electrocardiographic (ECG), Electromyographic (EMG) [60] and Electroencephalo-
graphic (EEG) [202] signals. In particular, CS paves the way for the redesign of
smart wireless sensor nodes [75, 150]. Another class of signals that is well suitable
for the CS framework is the one containing waveforms acquired through magnetic
resonance imaging (MRI) [114], for which CS permits the acceleration of the overall
MRI acquisition [92].

All these advantages in the encoder design are balanced by a more complex de-
coder, especially when compared to the simple low-pass filtering in a standard D/A
conversion. Indeed, the CS decoder inverts the acquisition/compression phase, a
fundamental problem in several heterogeneous applications. In detail, the problem
is recovering an n-dimensional sparse representation of the signal x from a set of m
measurements y representing the CS encoder’s output.

More specifically, sparsity means that a proper S ∈ Rn×n sparsity basis exists
such that each possible vector x when represented on S, i.e., x = Sξ, is associated to
a vector of coefficient ξ with only κ � n non-null elements. The encoder Enc : Rn →
Rm is a linear dimensionality-reduction operator (m < n) and produces y = Enc(x).
Signal recovery is possible by finding the sparsest n-dimensional vector ξ among
the infinite solutions of the hill-defined system y = Enc(Sξ), which, regrettably, is
an NP-hard problem.

However, CS theory [46] says that the solution can be obtained by solving a min-
imization problem, called Basis Pursuit (BP)1, using linear programming. In other
words, the result in [46] is a key enabling point since it guarantees that the BP prob-
lem can be solved in polynomial time, thus making the use of CS practical. More-
over, the computational resources needed by the numerical algorithm solving BP
may be so demanding to make its solution practically unfeasible in low-complexity
nodes, like a typical gateway. To cope with this, several dedicated BP/BPDN solvers
have been proposed, such as the Spectral Projected Gradient for L1 Minimization
(SPGL1) [26], and the Generalized Approximate Message Passing (GAMP) [155].

Alternative solutions rely on the observation that the central issue in the recov-
ery of x is finding a vector with a proper sparse representation. Following this path,
iterative greedy approaches, which iteratively adjust their sparsity at each step, have
been proposed to reduce computational costs. Possible examples are the Orthogo-
nal Matching Pursuit (OMP) [181] and the Compressive Sampling Matching Pursuit
(CoSaMP) [142]. Methods investigating another direction try to adapt the decoding
process to the class of signals to acquire (see, e.g., [153, 198, 126] where the decoder
stages are tuned on the reconstruction of ECGs). These schemes exploit statistical
priors on the signal to favour reconstructions close to what is typical in the class of
acquired signals.

1The problem is called Basis Pursuit with DeNoising (BPDN) if noise corrupting y is also considered
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More recently, it has been demonstrated that additional advantages in terms of a
lower computational complexity or improvement in the quality of the reconstructed
signal can be obtained by adopting a (Deep) Neural Network (DNN) for recon-
struction [136, 107, 140, 166, 141, 91, 199, 174]. More specifically, in [141], authors
have shown a probabilistic relation between CS and a stacked denoising autoen-
coder (SDA) implemented as a 3-layer neural network. Once adequately trained,
the SDA can directly recover a sparse image from its linear (or mildly non-linear)
measurements and has offered, in some cases, advantages in terms of the quality
of the reconstructed images compared to the most common greedy reconstruction
algorithms. A similar approach that employs fully-connected DNNs can be found
in [91], where CS has been applied to videos, and the proposed approach enables
fast recovery of video frames at a significantly improved reconstruction quality. In
[199], authors have proposed a DNN called ISTA-Net and inspired by the Iterative
Shrinkage-Thresholding Algorithm (ISTA) [23], which has been designed to opti-
mize the solution of BP to reconstruct compressed images. Another deep learning
model (BW-NQ-DNN) applied to CS acquisition/reconstruction of neural recording
has been presented in [174]. Here, three networks have been jointly optimized to
perform binary measurement matrix multiplication, non-uniform quantization, and
reconstruction. Despite the advantage shown in terms of quality of reconstruction,
this approach has a few drawbacks: i) it requires a pre-processing stage detecting
signal peaks, which adds complexity to the encoder and specializes it to spiky sig-
nals; ii) it quantizes CS measurements after a programmable non-linearity, which
adds further complexity.

This chapter proposes an innovative use of DNNs in a CS framework. Unlike
all the cases mentioned above that use DNNs to reconstruct the input signal di-
rectly, our model only provides a divination of the support of the input signal, i.e.,
the positions of the non-null components characterizing the sparse representation ξ.
Knowing the signal support drastically reduces the complexity of the signal recov-
ery and increases achievable performances. Moreover, the approach presented here
not only improves reconstruction quality compared to state of the art adapted CS
frameworks but also introduces a self-assessment capability that allows estimating on
the fly the quality of reconstruction. Furthermore, signals can be successfully recon-
structed even when they refer to very short acquisition windows, a crucial feature
that further reduces the complexity and a mixed-signal implementation of the ac-
quisition stage. The discussion reported here also refer to the following publications
[119, 124].

5.1 Compressed Sensing

This section formalizes a generic CS framework. Let us assume to work input in-
stances that can be derived by chopping time series (or waveforms) into subsequent
windows or collecting readings from several sensors at the same timestamp. In any
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case, each instance is represented by a vector x ∈ Rn. Say that x is k-sparse means
that the sparsity basis S exist such that x = Sξ, with the vector ξ = (ξ1, . . . , ξn) does
not contain more than k < n non-zero entries.

The fact that x depends only on scalars that are less than its actual dimensionality
makes the compression possible. CS compresses x by applying a linear operator
Enc : Rn → Rm with m < n named acquisition (or encoding) matrix. Enc is defined
in such a way that x ∈ Rn can be retrieved from y = Enc(x) with y ∈ Rm. The ratio
n/m is the compression ratio and will be indicated by CR.

One can intuitively accept that a less sparse signal with a larger κ requires a larger
number of measurements m to guarantee the recovery of x from y and achieves
a lower CR. This relationship is asymptotically identified by CS theory as m =

O (κ log (n/κ)) [45]. In the finite and practical cases, one may often aim at using a
m value proportional to κ. Nevertheless, the worst-case theoretical guarantees fail
for m < 2κ. Indeed, despite the infinite number of counterimages of y = Enc(ξ),
signal recovery requires that only one of them survives when we add the k-sparsity
prior. Hence, given any two k-sparse vectors ξ ′ an ξ ′′ it cannot be y = Enc(ξ ′) and
y = Enc(ξ ′′), i.e., Enc (ξ ′ − ξ ′′) must be non-zero. Hence, ξ ′ − ξ ′′ cannot be in the
kernel of Enc. Since, in the worst-case scenario, ξ ′ − ξ ′′ is 2κ-sparse, the only way
to guarantee this condition is that AS is a maximum rank operator when restricted
to any 2κ-dimensional coordinate subspace of Rn. However, this is not possible be-
cause m < 2κ and the sparsity prior can no longer guarantee signal recovery when-
ever the worst-case scenario is hit. In practice, though worst-case scenarios seldom
appear, classical reconstruction algorithms fail before the limit m = 2κ is reached.

Clearly, compression by Enc must be coupled with a signal reconstruction stage2

Dec : Rm → Rn such that ideally x = Dec (Enc(x)). In practice the chain of the
encoding and decoding step is a lossy process and x̂ = Dec (Enc(x)) is only an
approximation of x.

5.1.1 Encoder

The class of linear operators Enc that can be effectively paired with a decoder Dec
is extremely large. Most notably, if A is an instance of a matrix whose entries
are independent zero-average and unit-variance Gaussian random variables, then
Enc(x) = Ax is known to work [61, 45, 122] with very high probability. Yet, if the
matrix A± is defined as A±j,k = sign(Aj,k), then Enc(x) = A±x is also known to work
with very high probability [85]. In the following, we will focus on Enc(x) = A±x as
this makes the computation of Enc(x) multiplierless and is thus the best option for
very low resources implementations of the encoder stage.

The Literature shows that there is plenty of room for optimizing A [63, 185, 118,
120], and suitably designed matrices can increase compression considerably com-
pared to naive random instances. This aspect paves the way to applications in all

2Terms like decoding or recovery are also used to described this stage.
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settings where the computational complexity of compression must be kept at bay,
e.g., in wireless sensor networks, for which reduced computation and compression
before transmission are essential to fit within a tight resource budget.

Pros/Cons of short windows It is worth stressing that, to best express its potential
in reducing computational complexity at the encoder, CS should consider the short-
est possible acquisition windows. To understand why, consider the processing of N
given samples. They may be partitioned into N/n contiguous and non-overlapping
time windows, each with n samples. Operator Enc can be applied to each window,
entailing a number of operations O (n ·m). The total number of operations to pro-
cess the N samples is O (n ·m · N/n) = O(n · N/CR). However, CR is fixed to a
level guaranteeing the recovery of the original n-dimensional signal x from the m
measurement y with a quality deemed acceptable. Hence, at given CR and N, the
computational complexity linearly increases with n, i.e., the length of individual
time windows.

Another aspect that has to be considered is the signal reconstruction latency.
Even assuming Dec (y) as an instantaneous operation, the signal is recoverable only
when y is available, which means after n time steps. Of course, the lower n, the
lower latency.

Beyond these high-level reasons, short windows may also benefit the encoder’s
implementation at a physical level. In purely digital realizations [197, 24, 25], the
samples come from a conventional Analog-to-Digital converter, and the encoder
is implemented as a sequence of sums and subtractions depending on the entries
of A±. In this case, the computation time and the memory needed to store A re-
duces when n (and m) gets smaller. In mixed-mode realizations (i.e., in the design
of Analog-to-Information converter based on CS) [192, 52, 169, 75, 150], y = A±x is
computed component-wise as yj = ∑n−1

k=0 A±j,kxk, i.e., accumulating the signal sam-
ples in the analog domain. This operation implies an analog storage to hold the
intermediate sum value. However, independently of the actual implementation and
technology, the approach is doomed to suffer from leakage, and disturbance [150,
148]. These phenomena degrade the stored value over time, and their effectiveness
increases with the hold time and the number of sums. Hence, a lower n shortens the
acquisition time, reduces the number of operations to compute yj, and attenuates
the degradation before digital conversion.

Regrettably, gaining all the advantages connected with reducing n is not straight-
forward. Indeed, real-world signals are such that, when n shrinks, the ratio κ/n is
expected to increase. Since κ affects m, any reduction of n tends to impair the com-
pression ratio. As a remark, the trend with which κ/n increases when n decreases is
a feature of the class of signals considered.

To get a quantitative feeling of these trends, we show in Figure 5.1 the normal-
ized sparsity κ/n for different values of n observed in the classes of ECG and EEG
signals. Instances are obtained according to the synthetic generators described in
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FIGURE 5.1: The effect of reducing n on the normalized sparsity κ/n

in the two examples of a synthetic ECG and a synthetic EEG signal.

the Appendix. Moreover, for both classes of bio-signals, the considered sparsity ba-
sis S is a family of the orthogonal Wavelet functions [116]. In more detail, we select
the Symmlet-6 family as sparsity basis for ECG signals [150], while our choice for
the EEG case is the Daubechies-4 family [28].

The value of κ is a system parameter estimated at design time so that the rep-
resentations on the sparsity basis of most of the signal instances feature a number
of non-negligible elements not greater than κ. In Figure 5.1, κ is estimated as the
least number of entries in the sparse representation that includes 99.5% energy in
99% ECG instances, and 95% energy in 99% EEG instances3. The figure shows that
the smaller the n, the larger the (normalized) sparsity, and therefore the lower the
attainable CR that ensures a target reconstruction quality.

The above considerations reveal the presence of a multi-faceted trade-off linking
computational effort, implementation complexity, reconstruction quality, and com-
pression.

5.1.2 Decoder

To better formalize sparsity and its consequences, recall x = Sξ and that not more
than κ entries of ξ are non-null. The positions of the non-zero entries of ξ identify
the so-called support that we will represent by means of the binary vector s ∈ {0, 1}n

such that sj = 1 if ξ j 6= 0 and sj = 0 otherwise. Binary, n-dimensional vectors can
be used to index a generic n-dimensional vector v so that v|s is the subvector of v
collecting only the entries vj such that sj = 1. We will use binary n-dimensional
vectors also to index matrices M with n columns so that M|s is the submatrix of
M that contains only the columns whose index j is such that sj = 1. With this
notation, κ-sparsity is equivalent to say that two pieces of information efficiently

3For the class of EEG signals we refer to a synthetic signal that emulates event-related brain po-
tentials, where readings in each lead contain information on the external stimulus as well as a part on
other neurons activity. This latter justifies the assumption that 95% energy is enough to identify the
significant components of the signal.
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represent x, namely the n-dimensional binary vector s and the real vector ξ|s whose
dimensionality does not exceed κ.

Sparsity is fundamental in the decoding process going from y back to x. In fact,
since m < n, the mapping y = A±Sξ from ξ to y is non-injective. Hence, any given
measurement vector y corresponds to an infinite number of possible ξ. However, if
A is properly designed, only one of the counterimages of y is κ-sparse and can be
found by relatively simple algorithmic means.

Among the many methods proposed in the literature, the most classical approach
is BPDN, which recovers both pieces of information simultaneously by solving the
optimization problem

ξ̂ = arg min
ξ∈Rn
‖ξ‖1 s.t.

∥∥y− A±Sξ
∥∥

2 ≤ ε (5.1)

where x̂ = Sξ̂ is the reconstructed signal, and ε ≥ 0 accounts for the possible pres-
ence of disturbances in the computation of y by relaxing the constraint y = A±Sξ

that would hold in the noiseless case. The noiseless case can be tackled by setting
ε = 0, corresponding to the BP problem. Though implicitly performed, support
identification is an essential ingredient in BP and BPDN and is embedded in the 1-
norm used in the objective function. The use of the 1-norm minimization replaces the
minimization of the cardinality of the support of ξ that would yield a combinatorial
problem. Indeed, 1-norm minimization tends to select the ξ with the least number
of non-zero entries among all the possible ξ satisfying the constraint [61]. This prop-
erty is so critical that changing the 1-norm in the merit function would completely
spoil reconstruction, while changing the 2-norm in the constraint usually still gives
sensible results. Note that, despite its fundamental merit, the 1-norm minimization
is only a proxy of support identification, which works under suitable assumptions
that are not necessarily satisfied in practice, especially for large κ/n values [61].

Decoder with Support Oracle Since we enlarge the application of the CS frame-
work to the cases where κ/n is quite large, we here consider a different approach
in which support identification is performed by an oracle looking at the vector y
and divining s. Once s is known one may note that y = A±Sξ is a equivalent to
y = A±S|sξ|s to estimate ξ|s as shown in Figure 5.2.

Since the goal is to compute the non-null entries of ξ, if s is unknown, the sig-
nal recovery is performed by inverting a wide matrix (an ill-defined problem), thus
obtaining both null and non-null entries of ξ. Otherwise, assuming that an oracle
divining s exists, the recovery problem only focuses on the computation of the non-
null entries of ξ such that the recovery stage only performs the (pseudo-)inversion
of a tall matrix.

Let ŝ be the estimate of s divined by the support oracle, ξ|s may be estimated as

ξ̂|ŝ =
(

A±S|ŝ
)† y (5.2)
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FIGURE 5.2: The original underdetermined problem (a) turned into a
overdetermined problem (b) by exploiting the support vector s.

where ·† indicates Moore-Penrose pseudo-inversion that is needed since the number
of ones in ŝ is in the order of κ < m and the matrix A±S|ŝ is a tall matrix with more
rows than columns. The two estimations ŝ and ξ̂|ŝ define the recovered signal x̂.

5.1.3 Performance indexes

The encoder-decoder chain may simultaneously perform more than one useful op-
eration on the signal (see, e.g., [43, 44, 29, 201] for its use as an encryption stage) of
which compression is undoubtedly the most obvious as m < n. The compression
performance of the encoder-decoder chain is easily assessed by the compression ra-
tio n/m.

However, such compression is in general lossy, and some degradation appears
yielding x̂ 6= x. The closer x̂ to x, the better the encoder-decoder chain and this can
be assessed using the Reconstruction Signal-to-Noise Ratio (RSNR) defined as

RSNR = 20 log10

( ‖x‖2
‖x− x̂‖2

)
(5.3)

RSNR can be used to define two ensemble-level performance figures, computed
starting from a set x[t] (for t = 1, . . . , T) of signal instances recovered as x̂[t]. The
first is the Average RSNR (ARSNR)

ARSNR = E [RSNR] ≈ 1
T

T

∑
t=1

RSNR[t] (5.4)

while the second is the Probability of Correct Reconstruction (PCR) that, given a
RSNRmin value, is defined as

PCR = Pr {RSNR ≥ RSNRmin} ≈
1
T

# {t |RSNR[t] ≥ RSNRmin } (5.5)
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where # counts the number of elements in the set. The value of RSNRmin has to be
set accordingly to the minimum RSNR level that is considered sufficient for a correct
reconstruction.

5.2 Data sets

Due to the large number of signal instances needed, in general, to train a neural
network, both in the ECG and in the EEG cases, we used a MATLAB code to generate
synthetic instances of the two classes of signals.

As mentioned in Section 5.1.1, ECGs exhibit sparsity with respect to the orthonor-
mal set of vectors representing the Symmlet-6 wavelet family transformation. Here,
κ is set on 16 for n = 64 and 24 for n = 128. For the EEG signals the sparse vectors
ξ are with respect the basis representing the Daubechies-4 wavelet transformation
where k = {16, 26}matches n = {64, 128}.

ECG The synthetic generator4 of ECGs is thoroughly discussed in [131]. Signals
are generated as noiseless waveforms. The noisy cases are obtained by superim-
posing additive white Gaussian noise whose power is such that the intrinsic SNR
(ISNR) is 60 dB.

The setup is the same detailed in [118]. The heart-beat rate is randomly set us-
ing an uniform distribution between 60 beat/min and 100 beat/min. We generate
chunks of 2 s with a 256 sample/s sampling frequency, that are split into windows
of n subsequent samples. For both n = 64 and n = 128 cases we generate 8× 105

input vectors x such that the corresponding total number of signal chunks are 105

and 2× 105. These input vectors are randomly split between a training set and a test
set where the latter contains 20% of the total vectors x.

EEG The detailed description of the code to generate the synthetic EEG signal5 can
be found in [189]. The generator emulates event-related brain potentials, modelling
an evoked potential as the series of a positive and a negative peak occurring at a
fixed time relative to the event. The peaks are added to the uncorrelated background
noise, whose power is set to a level such that the resulting signal is very similar to
an EEG signal measured by a real scalp electrode. Though the software can generate
all channels in a multi-electrode EEG according to the standard 10-20 system, we
focus on the “Fz” electrode since it is in proximity (but not exactly on the top) of the
simulated source of the stimulus. The sampling rate is set to 1024 sample/s with a
stimulus frequency of 1 Hz.

4The MATLAB code is freely available for downloaded from the Physionet website at http://
physionet.org/content/ecgsyn/

5The MATLAB code is freely available for download from the Medical Research Council Brain Net-
work Dynamics Unit at the University of Oxford website at http://data.mrc.ox.ac.uk/data-set/
simulated-eeg-data-generator

http://physionet.org/content/ecgsyn/
http://physionet.org/content/ecgsyn/
http://data.mrc.ox.ac.uk/data-set/simulated-eeg-data-generator
http://data.mrc.ox.ac.uk/data-set/simulated-eeg-data-generator
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We generate tracks corresponding to 50 different patients by starting from the
parameters used in [189] and adding a random uniformly distributed offset to each
of them. The ranges of the offsets for the positive peaks are ±16 samples for the
position of the peak,±0.05 Hz for the peak frequency and±1 for the peak amplitude.
Ranges for the random offsets for negative peaks are ±26 samples for the position
of the peak, ±1 Hz for the peak frequency and ±4 for the peak amplitude.

The signal length for each patient is such that the total number of n-sample win-
dows is 8 × 105. After that, 20% of each patient’s signal instances are randomly
selected to contribute at the test set, while the remaining 80% is for the training
phase.

5.3 Support Oracle

The proposed oracle is based on a DNN trained on signals with the same statisti-
cal features as the one to be acquired. The DNN SO : Rm → [0, 1]n is defined by
the connection parameters, with m inputs that correspond to the m entries of the
measurement vector y and n outputs.

The neural network has three intermediate fully connected layers of cardinality
2n, 2n, and n, all with a Rectified Linear Unit (ReLU) activation function. The output
layer is also fully connected with n units and sigmoidal activation function that map
any scalar a into (1 + e−a)

−1. Training also adapts the matrix A so that encoder and
decoder are jointly optimized to improve support identification and thus to improve
reconstruction performance.

Both the parameters of the support oracle SO and the matrix A are initialized as
instances of independent zero-average unit-variance Gaussian random variable and
adjusted by training the compound system SO ◦ Enc : Rn → [0, 1]n. The training
set comprises a sequence of κ-sparse signals x = Sξ and the corresponding binary
vectors s. The true support of ξ encoded in s and the output o = SO(Enc(x)) of the
DNN are compared with a loss function, which is the binary cross-entropy between
s (which acts as a label) and o defined by

L (x, s) = − 1
n

n

∑
j=1

[
sj log

(
oj
)
+
(
1− sj

)
log
(
1− oj

)]
(5.6)

.
Though Enc(x) = A±x in the forward pass, to prevent the sign function from

interrupting error backpropagation, in the backward pass we assume ∇AEnc(x) =
∇A (Ax). With this, since A±j,k = sign(Aj,k) for every j and k, the training acts on the
continuous-valued parameters whose sign is used in feedforward computation.

Using the methods specified in Section 5.2, we generate a dataset composed of
8× 105 signal instances for both the ECG and the EEG case. Each dataset is split into
80% for training (training set) and 20% for performance assessment (validation set).
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All models proposed in this paper are implemented and trained using the Ten-
sorFlow framework [1] with the help of the high-level API provided by Keras [54].
Training is performed with stochastic gradient descent, where each gradient step is
computed with a mini-batch comprising 30 signal instances and an initial learning
rate value of 0.1.

With an eye on complexity, the network with n = 64 and m ranging in [16, 40]
contains from 32 128 to 36 736 parameters and in our examples is trained for 500
epochs6. With n = 128 and m ranging in [24, 64], the model counts from 124 672 to
140 032 parameters and in our examples is trained for 1 000 epochs. Even assuming
that each parameter is encoded in 4 B, the total memory footprint is limited below
150 KiB for n = 64 and below 550 KiB for n = 128. Such requirements may easily
fit within the memory budget of commercially available devices used for small scale
computation and gateway tasks.

5.4 Trained CS with Support Oracle

The trained oracle can be exploited in the definition of the decoder reported in Fig-
ure 5.3. We compute o = SO(y) and, given a certain threshold omin ∈ [0, 1], we
estimate s with the binary vector ŝ ∈ {0, 1}n such that ŝj = 1 if oj ≥ omin and ŝj = 0
otherwise. Starting from ŝ we finally estimate ξ̂|ŝ with (5.2).

Decoder operations depend on the value of omin that is set by a further training
phase in which each vector in the training set is encoded and decoded for differ-
ent values of omin. The omin yielding the highest ARSNR is selected. We name our
approach Trained CS with Support Oracle (TCSSO) to summarize its main features.

We compare the performance of TCSSO with that of some well-known methods.
Since TCSSO simultaneously adapts encoder and decoder, we pair some classical
signal recovery algorithms with an established technique for optimizing the matrix
A± that can cope with the antipodality constraint on the entries.

The sensing matrix design follows the rakeness-based CS framework [118, 120]
that we have verified to yield better results compared to the classical independent
assignment of ±1 to each of the entries of A±. Performance improvement comes
from adapting the statistics of the rows of the sensing matrix to the statistics of the
acquired class of signals. As decoders, we consider BP and BPDN as presented in
(5.1) along with Orthogonal Matching Pursuit (OMP) [181] and Generalized Ap-
proximate Message Passing (GAMP) [155]. OMP is a lightweight greedy approach
that iteratively estimates the signal support while GAMP is often better than BP and
BPDN as it exploits the Gaussian approximation of BP that usually holds for large
n values. When dealing with ECGs, we also test the performance of the Weighted
`1 minimization (WL1) [198] as a representative of decoders that exploit statistical
priors on the signal support. In all the tested cases, BP outperforms BPDN such that,
in the rest of the paper, we consider BP as a reference for standard CS decoder.

6In each epoch the training algorithm walks through the entire training set.



108 Chapter 5. Trained Support Oracle for Compressed Signals

ø

ø

ReLU

ReLU

ReLU

Sigmoid

é é Ë é é Ë

o
x

y

A
±

T
R

A
I
N

I
N

G

o
m
in

(
A
±
S
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ŷ

E
n
c

S
O

S
E
L
F
-A

S
S
E
S
S
M

E
N
T

F
IG

U
R

E
5.3:Block

diagram
for

the
Trained

C
S

w
ith

SupportO
racle

including
self-assessm

entcapability.



5.4. Trained CS with Support Oracle 109
1

2 2.5 3 3.5 4

20

30

40

50

60
TCSSO

CR

A
R
S
N
R

[d
B
]

RAK + WL1

RAK + BP

RAK + OMP

RAK + GAMP

(A) ECG signals

1

2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1
TCSSO

CR

P
C
R

RAK + WL1

RAK + BP

RAK + OMP

RAK + GAMP

(B) ECG signals
1

2 2.5 3 3.5 4

20

30

40

50

60
TCSSO

CR

A
R
S
N
R

[d
B
]

RAK + BP

RAK + OMP

RAK + GAMP

(C) EEG signals

1

2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1
TCSSO

CR

P
C
R

RAK + BP

RAK + OMP

RAK + GAMP

(D) EEG signals

FIGURE 5.4: TCSSO performance of TCSSO compared against OMP,
BP, GAMP, and WL1 (only for ECG) with rakeness adaptation (RAK)
of the sensing matrices in terms of ARSNR (a)-(c) and PCR with

RSNRmin = 55 dB (b)-(d).

We evaluate ARSNR and PCR by Montecarlo simulations using the samples of
the validation set for both ECG and EEG cases with a superimposed noise resulting
in an Intrinsic Signal-to-Noise Ratio (ISNR) equal to 60 dB. The achieved perfor-
mances are reported in Figure 5.4 for the n = 64 and κ = 16 case. In all plots,
the number of measurements sweeps from m = 40 down to m = 16 thus focusing
on compression ratios from CR = 1.6 up to CR = 4. TCSSO outperforms all other
techniques and allows us to work at compression ratios much larger than those com-
monly achievable while still requiring a limited computational effort since n = 64.
For example, to guarantee ARSNR = 50 dB, results in Figure 5.4(a),(c) show that
by using TCSSO one may get CR ≈ 3.5 for ECGs and ≈ 2.9 for EEGs. In the same
setting, RAK+WL1 is the best performing competitor for ECGs with CR ≈ 2.2 while
RAK+BP is considered a benchmark for the EEGs with CR ≈ 1.8.

Figure 5.5 shows how the situation changes when n increases from 64 to 128.
Performance is reported only in terms of ARSNR and for TCSSO along with its
best competitor. The increase of n positively impacts performances in general since
κ/n decreases. Nevertheless, TCSSO still outperforms the best of the traditional CS
frameworks. Considering ARSNR = 50 dB as the desired quality of service, TCSSO
works with CR ≈ 4.4 and CR ≈ 2.9 while the competitors give at most CR ≈ 2.7 and
CR ≈ 2.2 in the case of ECGs and EEGs, respectively.
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FIGURE 5.5: TCSSO performance for n = 64 and n = 128.

5.4.1 Preliminary evidence on real signals

The ideal path for applying our method in real-world cases is to collect enough ac-
quisitions to substantiate both a training and a validation set. The acquisitions we
have access to do not currently allow such a thorough assessment. However, some
evidence can be given using synthetic data for the learning phase and real-world
signals for a preliminary assessment. This approach is suboptimal since there is no
guaranteed coherence between the training set used for learning and the validation
set used for assessment. The results are still encouraging.

In particular, we may consider the waveforms contained in the MIT database
for testing compression of ECG signals [79, 138] (records 11950_03 and 12531_03 in
the MIT-BIH ECG compression test database) and the pool of acquisitions used in
[28] for EEG (recording from the “Fz” electrode). A sample comparison between
original and reconstructed waveforms for n = 64 and m = 32 (which is equal to
2κ) is reported in Figure 5.6. Despite the appearance of some artefacts introduced
by the decoder, the plots show that, even with the suboptimal setting, our method
can yield acceptable reconstructions with extremely small n and with m below the
classical threshold 2κ.

5.5 Decoder self-assessment

The TCSSO architecture described in the previous section can be extended by ex-
ploiting a property that stems from the fact that s is estimated separately from ξ|s.

In fact, assume that no noise is present and that the size and content of A± are
such that y = A±Sξ is satisfied by one and only one κ-sparse ξ, i.e., that recovery
of the true signal is theoretically possible. If the oracle is successful in divining the
support, then ŝ = s and y = A±S|sξ|s implies that y ∈ span

(
A±S|ŝ

)
. This has a

twofold consequence: i) (5.2) computes ξ̂|ŝ = ξ|s, ii) if ξ̂ is mapped back we have
A±Sξ̂ = y.
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However, if the oracle fails, then ŝ 6= s and since ξ is the unique κ-sparse solu-
tion of y = A±Sξ then y 6∈ span

(
A±S|ŝ

)
. This has a twofold consequence: i) (5.2)

computes ξ̂|ŝ 6= ξ|s, ii) if ξ̂ is mapped back we have A±Sξ̂ 6= y.
Clearly, the decoder cannot check the correctness of ξ̂ as the true ξ is unknown.

Nevertheless, it may map ξ̂ back to measurement obtaining ŷ = A±S|ŝ
(

A±S|ŝ
)† y =

A± x̂ that could be different from y. As a result, ‖y− ŷ‖2 is most naturally linked to
the decoder failure and grants a useful self-assessment capability. In particular, one
may monitor the quantity

RMNR =
‖y‖2
‖y− ŷ‖2

(5.7)

that is the Reconstruction Measurements-to-Noise Ratio, and declare that the oracle,
and thus the TCSSO decoder, has succeeded when RMNR ≥ RMNRmin for a certain
threshold.

This situation can be exemplified in the small-dimensional case n = 4, κ = 2 and
m = 3 with

A± =



+1 +1 +1 +1
+1 +1 −1 −1
+1 −1 +1 −1




Since κ = 2, the instances of the original signal ξ ∈ R4 may have at most two non-
null components and thus lay on the union of all the possible coordinate planes in
R4. We may indicate one of those planes as cj,k where j and k are the indexes of
the non-null coordinates of its points. The matrix A± maps each of those 6 coor-
dinate planes into a plane in R3 that can be distinguished from the others. This is
exemplified in Figure 5.7 on the left of which we draw the 6 planes ιj,k ⊂ R3 that
are the images through A±S of the coordinate planes cj,k ⊂ R4. Note that, due to
dimensionality reduction, images are not pairwise orthogonal. However, recovery
is theoretically possible as no two images ιj,k and ιj′,k′ are the same. Therefore a suf-
ficiently clever algorithm can establish the support by looking at the measurement
vector y.

Assume now that s = (1, 1, 0, 0), i.e., that the true signal ξ ∈ c0,1 is mapped
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by A±S into a measurement vector y ∈ ι0,1. Assume also that the oracle mistakes
the support and estimates ŝ = (0, 0, 1, 1), implying ξ̂ ∈ c2,3. By computing (5.2),
the vector y is mapped back to ξ̂ on that plane, which is therefore different from ξ.
Though only approximately, the same holds in the noisy case and explains why the
difference between y and ŷ assesses the correctness of the divined ŝ, i.e., the quality
of the reconstruction x̂.

As an example of the underlying mechanism, Figure 5.8 reports some Montecarlo
evidence on the relationship between RMNR and RSNR for the ECG signals and in
three different configurations. In Figure 5.8a no noise is present and m = 32 = 2κ;
in Figure 5.8b ISNR = 60 dB and m = 32 = 2κ, whereas in Figure 5.8c no noise is
present, but m = 24 < 2κ.

The two-dimensional plots show an estimation of the joint-probability, condi-
tioned to the positive events, i.e., the support has been correctly identified (ŝj ≥ sj for
all j = 1, . . . , n, orange points) or to the negative events, i.e., at least one entry in the
support is neglected (ŝj < sj for at least one j, blue points). Darker colours stand for
higher densities.

The one-dimensional plots at the bottom of the figure report the error probabili-
ties of a self-assessment procedure that calls for a positive event whenever RMNR ≥
RMNRmin and for a negative event otherwise. As the threshold RMNRmin increases,
the probability of a false positive decreases since only very high RMNR reconstruc-
tions are declared correct. On the contrary, the probability of a false negative in-
creases since for larger RMNRmin even good reconstructions can be declared incor-
rect.

The ideal conditions in Figure 5.8a result in perfect self-assessment capabilities.
When noise is added as in Figure 5.8b, positive and negative cases get mixed but
remain identifiable by looking at RMNR.

Though no noise is present in Figure 5.8c, the fact that m < 2κ makes the number
of measurements insufficient for signal reconstruction, as there is no guarantee that
only one κ-sparse signal ξ corresponds to the given y through A±S. Hence, more
than one support corresponding to the measurement exists. In these conditions, it
may happen that the oracle divines a support that includes the true one (more than
κ outputs of the network are larger than omin) as well as components of other pos-
sible supports. In this case, the oracle is not missing the support (orange point in
the lower-right cluster in the scatter plot of Figure 5.8c). However, pseudo-inversion
spreads the reconstruction over all the available components, thus failing to recon-
struct the signal. It may also happen that the oracle divines a support different from
the true one. In this case, the oracle is wrong (blue points in the lower-right cluster
in the scatter plot of Figure 5.8c), and pseudo inversion identifies a sparse signal that
is not the true one. Both cases give rise to points for which RMNR is very high, but
the RSNR is very low, and no matter how high the RMNRmin, the probability of a
false positive is not vanishing.

Luckily enough, the above cases are the ones breaking worst-case guarantees and
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happen quite rarely: in our 1.6× 105 validation set, for n = 32, κ = 16 and m = 24,
the oracle divines a support in excess of the true one only 109 times, and a support
different from the true one only six times. The statistics commonly used to assess
performance remain substantially unaltered by these failures that are undetectable
by looking at the RMNR.

In general, the value of RMNRmin can be decided once that omin is set, by a further
pass over the training set. This threshold allows us to estimate false positive and
false negative curves as in Figure 5.8, and use them as criteria. In the following,
we will set RMNRmin as the largest value for which false negative probability is
negligible. Whenever a failure is detected, the decoder may take different actions
whose effectiveness depends on the final applications.

The exploration of all the possibilities of the resulting two-level decoder is out of
the scope of this paper. However, it can be easily recognized that quite a few options
are available, such that:

i) raising a warning and mark the current window as potentially incorrect;

ii) feeding the warning back to the encoder and require further information to
correct the reconstruction (thus lowering the CR for this instance);

iii) triggering another decoder on the same measurement vector hoping that this
will improve reconstruction;

iv) any combination of the above.

We provide a partial and non-optimized example whose only aim is to show that
some information can still be extracted from the measurements when first-attempt
TCSSO decoder fails. In detail, we trigger GAMP7 as a second-wind decoder.

Figure 5.9 plots the probability that GAMP yields a RSNR larger than what is
given by TCSSO when applied to the instances that the latter marks as incorrectly
recovered as RMNR < RMNRmin, as a function of CR for the n = 64, κ = 16 case. A
second-wind decoding is functional when such a probability is larger than 50%, i.e.,
approximately for CR ≤ 2.

5.6 Computational requirements

As noted previously, CS-based compression methods result in a multi-faceted trade-
off between compression ratio, reconstruction quality, and computational complex-
ity. This section gives further detail on the last aspect, distinguishing what is re-
quired at the encoder (that we want to minimize) and at the decoder (that we want
to be not worse than the needs of classical recovery methods). In all cases, we re-
fer to the computational burden per processed sample, i.e., we divide the number of
operations by the number of samples n contained in the processed window.

7GAMP has achieved better results compared to the other classical reconstruction algorithms in this
setting, i.e., when the sensing matrix is not designed according to the rakeness-based CS.
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FIGURE 5.9: Probability for GAMP decoder to reconstruct ECG and
EEG signals with RSNR higher than TCSSO in case of TCSSO failure.

Encoder The complexity of the encoder is briefly introduced in Section 5.1.1 as
one of the leading design criteria. The number of signed accumulations (AC) is
nm = n2CR−1 thus yielding nCR−1 AC/sample. Further to time-complexity, the
memory footprint is dominated by the storage of the matrix A±, and requires a
number of entries equal to nm = n2CR−1. In principle, matrix entries are bits. How-
ever, microcontroller-based implementations may favour 1-byte-per-entry or even
4-bytes-per-entry solutions. In fact, in some architectures, the alignment of entries at
word boundaries ensures better performance both in terms of speed and energy (see,
e.g., [126]), this is why we express the memory footprint as the number of entries in
A±.

From the blue curves in Figure 5.5, one gets that a higher n results in better re-
construction performance for the same CR, and thus there is a trade-off between
encoder complexity and window length.

Table 5.1 reports the comparison between the increase of reconstruction quality,
complexity, and memory footprint for ECG signals when n goes from 64 to 128, with
CR ranging from 2 to 4. At high CR levels, an increase in terms of ARSNR (e.g.,
with CR = 4, +18.0 dB for ECG and +11.5 dB for EEG) may be worth the ×2 in
terms of computational effort and the ×4 in terms of memory footprint. However,
for lower compression ratios, the increase in resource needs is not justified by the
limited increase in performance: for CR = 2, memory footprint and complexity
increase as before, but one only gains +1.7 dB in the ECG case and +0.1 dB in the
EEG case.

Decoder In CS-based schemes, decoding is computationally more intensive than
encoding. We may evaluate the complexity of the TCSSO decoder by counting the
number of Multiply-and-Accumulate (MAC) operations needed to compute x̂, disre-
garding the training phase, starting from the fact that the number of MAC operations
required in a fully connected layer with n nodes, each with i inputs, is ni.

Neglecting the input layer that has m nodes and that requires no operations, the
oracle SOC is composed by 3 fully connected hidden layers with 2n, 2n and n nodes,
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TABLE 5.1: Effect of the increas of n from 64 to 128 in term of AR-
SNR, computational overhead measured as AC/sample and memory

footprint (# entries of A±).

CR
ARSNR [dB]

AC/sample # A±j,kECG EEG

n 64 128 64 128 64 128 64 128

4.00 35.2 +18.0 12.0 +11.5 16 ×2 1.0 Ki ×4
3.20 52.4 +5.1 38.8 +6.7 20 ×2 1.3 Ki ×4
2.67 56.8 +2.2 55.3 +0.4 24 ×2 1.5 Ki ×4
2.29 58.0 +2.4 58.0 +0.2 28 ×2 1.8 Ki ×4
2.00 59.2 +1.7 59.7 +0.1 32 ×2 2.0 Ki ×4

and a final fully connected output layer with n nodes. Therefore, the number of
inputs of these layers is m, 2n, 2n and n, respectively. The layer-by-layer number of
MACs required for the forward pass is 2nm, 4n2, 2n2 and n2, giving rise to a total
of (2m + 7n)n = (2/CR + 7)n2 MACs for each window thus yielding (2/CR + 7)n
MAC/sample.

After support estimation, additional MACs are needed to compute x̂. In par-
ticular, we focus on the computational cost of ξ̂ = B†y, with B† the Moore-Penrose
pseudoinverse of B = A±S|ŝ, i.e., of a matrix with m rows and a number c of columns
κ ≤ c ≤ n, with c ' κ being the most frequent case. The computational complex-
ity of pseudo-inversion reflects its analytical formula such that ξ̂ = B>

(
BB>

)−1 y
must be computed. Since B is a m × c matrix, BB> requires m2c MACs, and the
inversion entails 2m3 MACs. Now, the right-multiplication

(
BB>

)−1 by y costs m2

MACs and the final left-multiplication results in mc MACs. Considering all contri-
butions, we arrive at estimating a total of m(2m2 + mκ + m + κ) for the typical c = κ

case. The complexity is then equal to (2nCR−2 + nκ/nCR−1 + κ/n + CR−1)nCR−1

MAC/sample.
We may compare the complexity of TCSSO decoding with that of OMP, which is

known to be one of the most light-weighted approaches. We consider the standard
implementation of OMP as described in [149]. A modified version (bWOMP) of this
algorithm has been proposed in [126] to exploit the same statistical prior described in
[198] and improve reconstruction performance with no significant increase of com-
putational complexity. The detailed description of OMP is out of the scope of this
paper, and we refer to [149] for details. Knowing that OMP is an iterative algo-
rithm that estimates the signal support in at least κ iteration, we limit ourselves to
provide the complexity in terms of the number of MAC for the j-th iteration that is
nm + 2m(j− 1) + 2m + 2jm. This yields a total of at least 2κm + 2κ2m + κnm MACs.
After that, OMP computes the pseudo-inverse of a matrix of the same size as the
B = A±S|ŝ in TCSSO. The total complexity of the iterative part is therefore given by
(2 + 2n κ/n + n)nκ/nCR−1 MAC/sample and must be compared with the computa-
tional effort required by the oracle that is (2/CR + 7)n MAC/sample.
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Though the contributions to the computational complexities computed above
have different asymptotic behaviours, their magnitude in the small-n cases can be
appreciated only by numerical evaluation. As an example, for n = 64, κ = 16 and
CR = 2 (one of our ECG cases) the first part of OMP entails some 784 MAC/sample,
the oracle in TCSSO requires some 512 MAC/sample, while the common pseudo-
inversion amounts to 1304 MAC/sample. As a further, somehow opposite, example,
for n = 128, κ = 26 and CR = 4 (one of our EEG cases) the first part of OMP en-
tails some 1183 MAC/sample, the oracle in TCSSO requires some 960 MAC/sample,
while the common pseudo-inversion amounts to 735 MAC/sample.

In both cases, the complexity of TCSSO and OMP are analogous, showing that,
though TCSSO allows implementing extremely lightweight encoders, the decoder
does not have to compensate by increasing its computational requirements com-
pared to conventional decoders. Consequently, since bWOMP has complexity simi-
lar to OMP, at least in the settings we analyzed, the complexity of TCCSO is compa-
rable to the one of decoders that use a statistical prior on the signal support.

Conclusion

Compressed Sensing is a compression scheme designed for devices with limited
computational resources. Similarly to PCA-based compression, the encoding stage
consists of a simple linear transformation. However, CS can guarantee perfect re-
construction in the noiseless case that satisfies the sparsity and incoherence assump-
tions. Perfect reconstruction and lightweight encoding come at the price of a com-
plex decoding procedure that traditionally is resolved with iterative algorithms.

This chapter described an alternative decoding procedure that outperforms the
state-of-the-art in the case of biosignals such as ECG and EEG and has very lim-
ited requirements on computational resources, even lower than properly designed
lightweight greedy algorithms such as OMP. The advantage is twofold: CS decoder
may be implemented on an edge device, and shorter signal windows may be con-
sidered.

The idea behind the proposed decoder resides in splitting CS reconstruction into
two stages. First is support divination that finds the positions of the non-null ele-
ments of the sparse representation of the input signal corresponding to the measure-
ment vector. Then, pseudo-inversion allows retrieving the amplitudes of the non-
null coefficients, which can be linearly transformed into the original signal. This
chapter shows that the support oracle can be implemented with a fully connected
DNN that can also be trained with the encoding matrix.

The resulting decoder largely outperforms classical approaches (even when the
latter are paired with one of the most effective adaptation policies for the encoding
matrix) and allows CS to be applied to signal windows containing a limited number
of samples. The adoption of short windows is highly beneficial in many directions;
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one of the most remarkable is the computational complexity of the encoder. Never-
theless, short windows are usually out of the reach of classical CS mechanisms as the
sparsity assumption on which they hinge tends to fail when the dimensionality of
the waveform to compress decreases. Hence, our proposal allows the implementa-
tion of extremely low complexity encoders that still feature remarkable compression
capabilities.

Furthermore, the separation between support guessing and magnitude calcula-
tion allows our decoder to detect cases in which the reconstruction may be affected
by significant errors, thus paving the way, for example, to additional processing that
further increases the reconstruction performance.
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Chapter 6

Trained Support Oracle for
Compressed signal

This chapter extends the work in Chapter 5 that describe a novel CS decoder based
on a DNN-based two-step reconstruction designed for biomedical signals such as
ECG and EEG. The extension aims at addressing some of the open problems left.

As a first aspect, the work in Chapter 5 refers to exactly sparse signals that cor-
respond to an unrealistic scenario. For this reason, here, the signal model is general-
ized to compressible signals, i.e., signals that are non-perfectly sparse in the sense that
only a few elements have a significant magnitude and the others are negligible but
have magnitude higher than zero. We address this generalization by introducing a
new definition of support that considers the non-perfect sparsity of the signal and
possible sources of noise.

The second aspect concerns the implementation. The two-stage decoder in Chap-
ter 5 has already a computational burden that is comparable to the most lightweight
methods present in the Literature, but here a further step is taken. Indeed, this chap-
ter focuses on limiting the performance degradation in the case of fixed-point arith-
metic and optimizing the memory footprint required by both DNN and pseudo-
inversion. We reach these goals by training the DNN-based support oracle with
quantization-aware techniques and replacing the Moore-Penrose pseudo-inversion
with a Least Mean Square (LMS) filter.

6.1 Compressed Sensing with Support Oracle

Similarly to Chapter 5 we consider an n-dimensional input signal x ∈ Rn, that when
expressed on a proper sparsity basis S, it can be represented as x = Sξ, where the
coefficient vector ξ ∈ Rn contains at most κ � n non-zero entries, i.e., x is κ-sparse.
Let us also consider the support s ∈ {0, 1}n of ξ such that sj = 1 if ξ j 6= 0 and sj = 0
otherwise.

In the case of sparse signals, each instance x depends only on a number of scalars
that is much smaller than n. This prior is used to define an encoder procedure that
compresses x by applying a linear operator Enc : Rn → Rm that is modelled with
a sensing matrix A ∈ Rm×n with m < n. The encoder output is a m-dimensional
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measurement vector y obtained by projecting x over the rows of A. Considering
non-idealities in the system implementation as term ν that is added to the signal
input encoding is modelled as

y = Enc(x + ν) = A(x + ν) (6.1)

The decoder aims at recovering the sparse representation of the input signal ξ,
or at least its best approximation ξ̂, by leveraging on the sparsity prior. The stan-
dard BPDN approach [46, 48] consists of finding the sparsest n-dimensional vector
ξ among the infinite solutions of the ill-defined system y = ASξ by considering the
optimization problem in (5.1). The estimate ξ̂ is then used to reconstruct the input
as x̂ = Sξ̂.

Reconstruction is possible when the number of measurements m is sufficient and,
intuitively, this number is related to the value of κ. CS theory identifies this relation-
ship as m = O (κ log (n/k)) [46], and in practical cases m is often chosen proportional
to κ. However, such worst-case theoretical guarantees fail for m < 2κ since, when
this happens, two κ-sparse signals with non-overlapping supports can be potentially
mapped in the same measurement vector.

In a CS framework, requirements are not limited to a minimum number of mea-
surements but also include the proper design of the rows of A. Most notably, if the
elements of a generic sensing matrix row a are drawn as instances of independent
and identical distributed (i.i.d.) random variables with zero-mean and unit-variance
Gaussian distribution, then ξ can be recovered from y [61, 45, 122] with very high
probability. Reconstruction reaches the same level of quality even if the elements of
a are instances of i.i.d. antipodal (i.e.+1 or −1) random variables [85, 122]. As in
Chapter 5, due to the obvious great implementation advantages of the latter choice,
we focus on this class of sensing sequences.

This agnostic and general approach can then be specialized to a suitable class
of signals in many ways by adopting an adapted CS approach [121]. Among the
several approaches that, thanks to adaptation, guarantee better performance with
respect to agnostic CS, state of the art for the design of antipodal sensing matrices is
the rakeness-based CS (Rak-CS) [118, 120, 121].

The Rak-CS approach models the sensing sequences not as instances of i.i.d. vari-
ables but as a stochastic process whose correlation matrix A = E[aa>] is obtained
as:

A =
1
2

nX
tr(X )

+
1
2

In (6.2)

where X = E[xx>] is the correlation matrix of the stochastic process generating
input instances. Roughly speaking, the statistical adaptation of the sensing matrix
proposed by Rak-CS is a middle ground between standard CS theory (that suggests
i.i.d. based sensing, and for which it is A = In) and an over-adapted setting where
A = X . Such an approach has been proved to guarantee good performance also in
case of uncommon instances [150].
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Let us now consider the operator ·|s that, when applied to a n-dimensional vector,
selects only the elements corresponding to non-null entries of s, while, when applied
to n-column matrices, returns the submatrix composed of the columns whose index
corresponds to sj = 1. Then, any κ-sparse signal x can be represented by the n-
dimensional binary vector s and by ξ|s, a non-sparse vector that contains no more
then κ real values. As deeply discussed in Chapter 5 and firstly proposed in [119],
this notation paves the way to a completely different decoder approach, composed
of two consecutive blocks. The first one, described in 5.3 as support oracle (SO), is
devoted to identifying the support and is capable of divining s by looking at the
vector y. Then, assuming s is known, by defining B = AS, we can observe that

y = A(Sξ + ν) = Bξ + Aν = B|sξ|s + Aν. (6.3)

The fact that κ < m makes B|s a tall matrix (the number of rows exceeds the number
of columns) such that each measurement vector y, ignoring the noise ν, possesses a
unique counterimage given by ξ|s = B†

|sy.
In other words, given (6.3), to recover the input signal, it is enough a second

stage computing
ξ̂|s = B†

|s(y− Aν) = B†
|sy− B†

|s Aν (6.4)

that is a much simpler operation with respect to any CS recovery algorithm. The
term B†

|s Aν defines the signal recovery error in the sparse representation.

6.2 Support Oracle for Compressed Signals

As a further critical remark, one can note that almost all classes of real signals are
only approximately sparse since the vector ξ = S>x is composed of a few entries with
magnitude significantly greater than zero while the remaining entries are close to
zero. In these cases, signals are not sparse but compressible.

As a result, it is impossible to define a support for x by looking at the vector ξ

since any possible definition would cause rejection of a part of the signal information
content. Let us therefore indicate with z a n-size binary vector such that x = S|zξ|z +

xd, where xd contains signal details of minor interest. With this notation, (6.4) can be
reformulated as

ξ̂|z = B†
|z[y− A(xd + ν)] = B†

|zy− B†
|z A(xd + ν) (6.5)

where the reconstructed signal is now x̂ = S|z ξ̂|z and the reconstruction error in the
sparse representation is B†

|z A(xd + ν).
The choice of the support z is fundamental in limiting the error since, along with

A and ν, it defines the maximum achievable performance in terms of RSNR. Increas-
ing the number of ones in z reduces the error contribution due to xd. On the other
hand, reducing the number of ones in z reduces the reconstruction error due to ν.
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The optimal support z∗ that balances this trade-off can be obtained, in principle, by
computing the RSNR for all possible z. Unfortunately, finding z∗ implies the solu-
tion of a combinatorial optimization problem (6.6) that requires an exhaustive search
over all possible 2n binary z vectors.

z∗ = arg max
z∈{0,1}n

‖x‖2∥∥x− S|z ξ̂|z
∥∥

2

(6.6)

We overcome this impasse by proposing a greedy approach providing a good ap-
proximation of z∗ with complexity as low as n steps. First, the entries of ξ are sorted
in decreasing order according to their magnitude. Following this order, the z vector,
initialized with all zeros, is built iteratively by adding, step by step, a new non-zero
element. At each step, the RSNR is computed, and the support z is identified as
the vector that achieves the highest RSNR value. Note that the support z that we
estimate is the support extension applied to a compressible signal once compressed
by the CS encoder and depends on the sensing matrix A and the noise ν. We refer
to z as the Support of Compressed signal, and we name the CS decoder based on the
pre-computation of z as Support Oracle for Compressed signals (SOC).

To validate this approach, a dataset of synthetic ECGs generated according to
[131] as described in Section 5.2 and in [119, 124] has been considered. However,
we here consider the generated ECG as a compressible signal, i.e., we do not impose
xd to be null. Synthetic ECG instances are generated with sample rate 256 sample/s
and time windows composed of n = 128 successive samples. The signal is then cor-
rupted by additive Gaussian noise so that the intrinsic signal-to-noise ratio (ISNR)
is set to 34 dB [205].

Figure 6.1 plots the RSNR as a function of the number of ones in z for an instance
of x and ν. The figure shows how both the maximum RSNR and the corresponding
z cardinality depend on the number m of rows of A. The figure also highlights the
already observed trade-off. When the cardinality of z is low, each new element in-
serted in the support is associated with a signal component with a large magnitude.
This insertion increases the RSNR because the projection of x along the correspond-
ing column of S certainly exceeds in magnitude the projection of ν. Conversely,
when the cardinality of z is high, the additional signal information content brought
by the new column of S may be smaller than the corresponding noise contribution.
Moreover, the RSNR values depend on the adopted sensing matrix since the higher
the compression ratio, the more complex the reconstruction.

For each profile in Figure 6.1, the highlighted point represents the number of
ones in z that maximizes the RSNR. Hence, according to the definition of z and the
greedy method we propose, this point corresponds to the support z for a specific
compressible signal instance x, a noise vector ν, and a sensing matrix A.
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FIGURE 6.1: RSNR against the number of ones in z for different sens-
ing matrices with ISNR = 34 dB.

6.2.1 Trained Support Oracle for Compressed Signals

A support oracle decoder for compressed signals assumes that retrieving the signal
support z from observing the measurements vector y is possible. In Chapter 5 and
[119], it was shown that it is possible to retrieve the support s of a sparse signal by
mean of a Deep Neural Network (DNN) that solves a multi-class classification task
in which each one of the n output elements oj corresponds to the probability for sj

to be 1. Taking inspiration from it, we propose a DNN that deals with compressible
signals to divine z.

The structure of the network is reported in Figure 6.2, where it is shown that the
m-dimensional input layer receives the measurement vector. Then, there are three
fully connected hidden layers with 2n, 2n and n neurons, respectively and Rectified
Linear Unit (ReLU) as activation functions. Finally, a fully connected output layer
with n neurons and sigmoid activation functions produces a vector o with entries in
[0, 1]. The final estimated support ẑ is obtained by applying a threshold θ ∈ [0, 1] to
o such that ẑj = 1 if oj ≥ θ, and ẑj = 0 otherwise. The CS decoder that adopts this
DNN to divine z is named Trained Support Oracle for Compressed signal (TSOC).

Compared to the DNN discussed Chapter 5, the matrix A characterizing the en-
coder stage is not trained with the support oracle since the labels used during the
training, i.e., the supports z, also depend on the sensing matrix. In light of that,
the training exploits measurement vectors y computed with a fixed sensing matrix
A, which is still an antipodal matrix generated according to the Rak-CS approach
for the considered class of signals. Note that A plays the role of a set of hyper-
parameters that therefore cannot be trained with the parameters characterizing the
neural network. In addition, A influences the network architecture since a differ-
ent number of rows m of the sensing matrix corresponds to a different number of
neurons in the input layer.

The DNN parameters set W (including weights and biases for each layer) are
trained with a dataset of 2× 106 signal instances x split in 95% for the actual training
and 5% as a test set for performance assessment. For each different matrix A, DNN
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FIGURE 6.2: Structure of the DNN implementing the support oracle.

input-output pairs (y, z) are obtained from both vectors x and randomly drawn
noise contributions ν such that y = A(x + ν). For each value of m, we generate 100
different random candidates A according to the Rak-CS framework. Rak-CS (6.2) re-
quires the signal correlation matrix X which is estimated from 5000 signal instances
generated especially for this purpose. Among these candidates A, the matrix chosen
for the encoder stage of the TSOC is the one obtaining the best ARSNR over 1000
signal reconstructions when a BPDN decoder is used1.

Since m corresponds to the number of rows in A and the number of neurons in
the input layer, the parameters characterizing the first hidden layer are 2nm weights
and 2n biases. For the case n = 128, Table 6.1 reports the total number of parameters
for the adopted DNN settings where m ranges from 16 to 48.

Each of the proposed models is implemented in the TensorFlow framework [1],
and the loss function is minimized using stochastic gradient descent with a batch
size of 50 instances over 500 epochs and an initial learning rate value equal to 0.1.
Considering a generic example comprising a pair (y, z), the loss function is the bi-
nary cross-entropy between z and the output of the DNN o

L (y, z) = − 1
n

n

∑
j=1

[
zj log

(
oj
)
+
(
1− zj

)
log
(
1− oj

)]
(6.7)

Finally, 5000 new instances are used to tune the threshold θ applied to the DNN
output o. The resulting values of θ in all the considered settings are close to the
middle-range value 0.5, i.e., values in o vectors concentrate close to the two bound-
ary values, zero and one.

1The Spectral Projected Gradient for L1 minimization (SPGL1) toolbox [26] is employed to imple-
ment BPDN.
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6.2.2 Experimental results for ECGs

To assess the performance of the neural network architecture, we consider different
CS settings, each of which considers a matrix A with a different value for m that
ranges from m = 16 (CR = 4) to m = 48 (CR = 2.7). Therefore, for each setting, we
train a different set of parameters. As anticipated in the previous section, the task of
the DNN is equivalent to a multi-label classification [158] that considers each label
as an independent binary classification problem. More precisely, for each input y,
the DNN produces n outputs that are independently either positive or negative. If
the j-th output is positive ẑj = 1, otherwise ẑj = 0.

To assess the capability of correctly estimating z, metrics related to the difference
between z and ẑ need to be adopted. Let us first introduce the metrics for a single
binary classification problem and then generalize for the case of n binary classifica-
tions performed by the DNN.

If both entries zj and ẑj are equal to 1, we mark this classification as a single
true positive, while zj = ẑj = 0 is a single true negative. In case of single miss-
classifications we have either a single false positive (ẑj = 1 and zj = 0) or a single
false negative (ẑj = 0 and zj = 1).Finally, 5000 new instances are used to tune the
threshold θ applied to the DNN output o. The resulting values of θ in all the consid-
ered settings are close to the middle-range value 0.5, i.e., values in o vectors concen-
trate close to the two boundary values, zero and one. Hence, the performance of a
prediction can be expressed in terms of the following quantities:

• Positive (P) and Negative (N):

P =
n

∑
j=1

ẑj, N =
n

∑
j=1

(1− ẑj) = n− P (6.8)

• True Positive (TP) and True Negative (TN)

TP =
n

∑
j=1

zj ẑj, TN =
n

∑
j=1

(1− zj)(1− ẑj) (6.9)

• TP Rate (TPR), TN Rate (TNR) and Accuracy (ACC)

TPR =
TP
P

, TNR =
TN
N

, ACC =
1
n
(TP + TN) (6.10)

A summary of the average values for P, TP, TPR, TNR and ACC over the whole test
set can be found in Table 6.1 to show the ability of the network to correctly detects
the ones in z.

The results in Table 6.1 show that the number of ones in ẑ increases with m,
confirming the behaviours of a single instance reported in Figure 6.1. The difference
between P and TP, i.e., the number of ones wrongly estimated, is roughly constant
and less than 2. Consequently, the TPR tends to increase with m while the TNR
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TABLE 6.1: Number of parameters of TSOC for different values of m
and its performance in terms of P, TP, TPR, TNR and ACC estimated

as the mean over the data set.

m # param P TP TPR TNR ACC

16 119 552 14.4 12.5 0.885 0.997 0.983
20 120 576 17.1 15.4 0.908 0.996 0.983
24 121 600 20.3 18.6 0.926 0.994 0.982
28 122 624 23.2 21.6 0.933 0.992 0.981
32 123 648 25.3 24.0 0.949 0.990 0.981
36 124 672 27.0 25.4 0.945 0.989 0.979
40 125 696 28.5 26.9 0.947 0.988 0.978
44 126 720 29.6 28.0 0.951 0.985 0.976
48 127 744 30.3 28.5 0.945 0.985 0.974
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FIGURE 6.3: ARSNR against CR for TOSC along with the ideal or-
acle (SOC) compared with the standard decoder (BPDN). The en-
coder stage follows Rak-CS and the standard CS encoder coupled

with BPDN is provided as a reference.

slightly decreases. Since in general ẑ contains more zeros than ones, the accuracy is
dominated by TN so it slightly decreases with m, starting from 0.983 for m = 16 to
0.974 for m = 48.

Accuracy values very close to one ensure a high overlap between z and ẑ. Nev-
ertheless, even when z = ẑ, the decoder still commits an error in the reconstruction
as modelled in (6.5). Thus, the overall performance of TSOC must be evaluated in
terms of either ARSNR or RSNR distribution.

Figure 6.3 compares the performance in terms of the achieved ARSNR of the pro-
posed TSOC approach with that of SOC (ideal oracle) and BPDN (SPGL1 decoder).
All these approaches share the same tuned Rak-CS antipodal sensing matrices A.
Further comparison shows BPDN approach coupled with matrices A following the
standard CS theory (Std) where -1 and +1 occur with the same probability. Rak +
TSOC outperforms Rak + BPDN with a gap of at least 5 dB, while the loss with re-
spect to the ideal oracle (Rak + SOC) never exceeds 2.5 dB. Std + BPDN performance
is not even comparable with the ones of the other frameworks.



6.3. Quantization-aware Decoder Architecture 129

0 10 20 30 40

0

0.1

RSNR

de
ns

ity

Rak + SOC
Rak + TSOC
Rak + BPDN
Std + BPDN

1

FIGURE 6.4: Probability density functions of RSNR values with CR=
4 (m = 32) for the considered system configurations.

To provide a further comparison between these approaches, Figure 6.4 shows the
RSNR distributions in case of CR = 4 (m = 32). The proposed TSOC, along with the
ideal SOC, shows an RSNR variance that does not increase compared to the already
presented Std + BPDN and Rak + BPDB.

6.3 Quantization-aware Decoder Architecture

This section investigates the implementation of the TSOC-based system in the pres-
ence of possible hardware limitations, e.g., a limited precision arithmetic unit. The
block scheme of the overall system is depicted in Figure 6.5, in which the bits of each
digital signal is highlighted. The decoder is composed of two main blocks: i) the
support oracle divining z, ii) the reconstructor that uses the oracle output to recover
the original waveform.

The representation of each system quantity with a finite number of bits addresses
a trade-off between computational burden/memory footprint and reconstruction
performance. A preliminary investigation on this direction is reported in [154] where
authors study the performance loss due to the parameter post-quantization with the
two-stage decoder proposed in [119]. They first design the two blocks composing
the decoder with full precision, and then simply quantize the entries of both B and
S and the DNN parameters.

Here, different strategies are considered to limit the performance loss by includ-
ing quantization-aware techniques and a different approach in the pseudoinverse
operation and the quantization of the measurement vector y.

The first issue we address is the quantization of the input of the decoder y. y is
assumed to be quantized by a mid-tread uniform quantizer, with 2by levels. Quan-
tization may come either from quantizing a measurement vector computed by an
analog CS encoder block or the digital processing of a digital input signal x. In this
setting, we need to remember that if n is large enough, each yi, i = 1, . . . , m can
be considered as a zero-mean Gaussian distributed random variable, and setting a
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|ẑ

y
=
B
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conversion range that includes all possible values is not possible, or simply not con-
venient [123, 150].

Being ∆ the quantization step, σ2
y the variance of the distribution of each value

in y, and γ a positive coefficient, we set 2by ∆ = 2γσy, so that each entry of y is
represented with by bits and ranges from ymin = −2by−1∆ = −γσy to ymax = (2by−1−
1)∆ ≈ γσy. After quantization, each element of y can be considered a fixed point
number belonging to the set Ωy = {−1,−1 + ∆y, . . . , 1− ∆y}, with ∆y = ∆/(2γσ2

y ).
The quantized values of y feed both the support oracle and the reconstructor.

Each of the two structures internally uses parameters that can be quantized to reduce
the complexity and memory footprint.

6.3.1 Support oracle quantization

As a first modification to reduce the computational complexity of our DNN struc-
ture, we replace the sigmoid function in the output layer with a linear function. Since
the sigmoid is monotone and the output is thresholded, it is sufficient to adapt the
threshold value θ.

Then, the oracle parameters are quantized to minimize the memory footprint and
reduce the resources needed for the support divination. All parameters are encoded
with bw bits and constrained to be in the discrete set Ωw = {−1,−1+∆w, . . . 1−∆w},
where ∆w is the quantization step chosen be compliant with the adopted fixed-point
representation.

Moreover, in the hidden layers, all the neurons outputs (activations) are repre-
sented with only the by most significant bits such that their representation is coherent
with the one of the DNN input. As a result, since both activations and parameters
are represented in fixed-point, integer arithmetic is sufficient to produce the oracle
output. The inputs are multiplied by the weights in each neuron and then summed.
Therefore, the number of bits required by the arithmetic unit is by + bw + log2(nL + 1)
where nL is the number of neuron inputs that in our case never exceeds 2n.

Regarding the parameters quantization, a possible choice is reported in [154]
where quantization is applied at the end of the training. However, it is possible to
adopt strategies during the training that help to reduce the performance loss due to
quantization. Here, we investigate some approaches that we group by task:

• limiting the parameters in the set Ωw to avoid clipping in quantization;

• limiting the activations in the set Ωy to avoid overflow during inference;

• updating parameters with approaches that accounts for the effect of the quan-
tization (quantization-aware training).

Limiting the parameters range We force the parameters to assume values in the set
Ωw with the combination of two methods: “bathtub” regularization and parameter
“recycling”.
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The “bathtub” regularization consists of a regularization term that is added to the
cost function (6.7) and penalizes the parameters that are outside the desired range.
We can define the “bathtub” regularization function with its derivative:

∂Rbathtub(wl,i)

∂wl,i
=





−1 for wl,i < −1

0 for − 1 ≤ wl,i ≤ 1− ∆w

1 for wl,i > 1− ∆w

(6.11)

where wl,i is the i-th parameter in the l-th DNN layer. This regularization term affects
the cost gradient used to update the parameters in the back-propagation algorithm,
and its effect consists of pushing the parameter’s value inside the desired set.

The parameter “recycling” is still applied in training but only at the beginning of
each epoch. The parameters with values outside the desired set are replaced with a
new value randomly chosen in Ωw with uniform probability.

Bounding activations Since input and activations are in fixed-point representa-
tion, we want to force each neuron to produce an output that assumes values in the
set Ωy. For this reason, we replace the ReLU with the Saturated ReLU (SReLU) as
the activation function in all hidden layers. Given the weighted sum of the neuron
inputs v, SReLU is defined as follows:

SReLU(v) =





0 for v < 0

v for 0 ≤ v < 1

1 for v ≥ 1

(6.12)

Quantization-aware training Among the many solutions proposed in the litera-
ture, we investigate two techniques, namely fake-quantization [152] and cosine reg-
ularization [172]. Fake-quantization [152] suggests training the network with full
precision parameters and adopting quantized values only during the feed-forward
phase. This procedure has the effect of emulating the loss of precision due to quanti-
zation. Cosine regularization [172] is a further regularization term Rcosine(W) added
to (6.7) and defined as follows:

Rcosine(W) = − 1
2bw

`

∑
l=1

Nl

∑
i=1

cos(2bw w′l,iπ) (6.13)

where ` is the number of layers composing the DNN, Nl is the number of param-
eter in the l-th layer, and ŵl,i is wl,i constrained to the set Ωw. Consequently, the
parameters are pushed near the 2bw values allowed by the quantizer and, therefore,
the quantization error is reduced. A visual representation of the combination of the
cosine and bathtub regularization is shown in Figure 6.6.
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FIGURE 6.6: Combination of the bathtub and cosine regularization

terms.

6.3.2 LMS-based reconstruction

The final stage retrieves the vector ξ|ẑ by solving the equation y = B|ẑξ|ẑ. Note that
this is a resource-hungry operation and numerically critical as it requires a matrix in-
version and several square roots operations. As a consequence, devices embedding
a floating-point unit are preferred.

The first step adopted to reduce the reconstruction complexity is quantizing ma-
trices S and B with bS and bB bits. As a result, the memory footprint required for
storing them is significantly reduced.

Moreover, since pseudo-inversion fundamentally solves a Least Mean Squares
(LMS) problem, it is possible to compute ξ|ẑ as the coefficients of a 1-st order LMS
filter [184], [89, Chapter 6]. In detail, the rows of B|ẑ act as input vectors, y as the de-
sired response, and the elements of ξ̂|ẑ as the coefficients of the LMS filter to estimate.
Then, the t-th step of the LMS algorithm can be summarize as

ŷ(t) = B|ẑ ξ̂
(t−1)
|ẑ (6.14)

e(t) = y− ŷ(t) (6.15)

ξ̂
(t)
|ẑ = ξ̂

(t−1)
|ẑ + η(e(t))>B|ẑ (6.16)

where the initial value ξ̂
(0)
|ẑ is a null vector, ŷ(t) is the filter output and e(t) is the

estimation error at step t, and η � 1 is the learning rate. The update step is repeated
for q times before assuming convergence is reached.

Since LMS filter employs only additions and multiplications, fixed-point arith-
metic is may be adopted for a more efficient implementation.

6.3.3 Architecture design and results

In this section, we first tune the hyper-parameters characterizing the decoder, and
then the performance is assessed with a comparison with the state-of-the-art CS
framework and including standard CS as a reference.

Tuning of the hyper-parameters Table 6.2 summarizes the hyper-parameters that
need to be tuned for implementation of the decoder. We focus on the case CR =
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TABLE 6.2: Hyper-parameters for the low-resources TSOC imple-
mentation

Decoder input

by Number of bits used to represent measurements y
γσy Half range of measurements y

Oracle

bw Number of bits used to represent DNN weights
λ Strength of cosine regularization

Reconstructor

bS Number of bits used to store matrices S
bB Number of bits used to store matrices B = AS
q Iterations of the LMS filter
η LMS filter learning rate

4 and split the tuning into two phases: determining the parameter of the LMS-
based reconstructor considering an ideal support oracle, then choosing the hyper-
parameters of the DNN that implements the support oracle.

For the LMS setting, we first perform a series of tests with 5000 signal instances,
imposing ẑ = z, i.e., replacing the DNN with the ideal oracle. For γ, bB and η, it is
possible to find a values that maximize the ARSNR that are γ = 4, bB = 9, η = 2−6.
Conversely, q, bS and by exhibit profiles that saturate so we select the lowest values
below which the performance starts to degrade significantly. We select Figure 6.7
show their trends and the chosen values that are q = 512, bS = 10 and by = 10.

Once the LMS-based reconstructor is set, the hyper-parameters of the DNN im-
plementing the support oracle are tuned. The tuning considers λ and bw and is per-
formed on a validation set. Even considering different values for λ, the performance
is almost constant when bw is equal or greater than 4, and it significantly degrades
only for bw lower than 4. For this reason, we set bw = 4, and for that value, the
optimal λ results to be 10−8.

Note that, considering bw = 4 the DNN can be stored in 495 kbit, while 37 kbit
are dedicated for B (bB = 9 bit and 4096 entries), and 164 kbit for S (bS = 10 bit and
16 384 entries). The overall memory footprint of the decoder is therefore 695 kbit, to
which we must add 4 kbit needed for the 32× 128 antipodal sensing matrix A in the
encoder.

Performance assessment We finally test the whole quantized architecture, with
quantized y, W, B and S, along with either the pseudo-inversion on a floating-point
unit (FPU) or the LMS filter approach with fixed-point arithmetic. The test set counts
9× 104 ECG windows with the same setup described in Section 6.2. The distribu-
tion of the RSNR can be found in Figure 6.8, along with the results presented in
Section 6.2 for the TSOC case (no quantization). The main three cases to consider are
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FIGURE 6.7: Performance of the decoder with ideal support oracle for

different values of the hyper-parameters q, bS and by.
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FIGURE 6.8: Probability density functions of RSNR values with CR =
4 (m = 32) for the floating-point TSOC and the quantized TSOC (qT-
SOC) with either the pseudo-inversion (PINV) or the LMS filter as

well as the case of post-quantization (post-qTSOC).

therefore the ideal (i.e. high-precision) TSOC with pseudo-inversion on FPU (PINV)
and the two “constrained” cases in which TSOC is quantized (qTSOC) with either
PINV or the LMS filter.

As one can observe in Figure 6.8, the quantization of the support oracle (qT-
SOC+PINV) reduces the ARSNR from 28.2 dB to 26.6 dB, and the adoption of the
LMS filter for the reconstruction (qTSOC+LMS) further decreases ARSNR to 25.9 dB.
The variances of the three distributions do not change significantly. As a result, the
fully fixed-point implementation suffers from a loss in performance quantifiable in
2.3 dB. As an additional reference, Figure 6.8 reports the distribution of ARSNR in
case of post-quantization (post-qTSOC), i.e., the case in which the DNN parameters
are trained with no dedicated techniques. Here, ARSNR drops to 17.7 dB.

Finally, Figure 6.9 shows some examples of reconstruction of ECG windows with
qTSOC+LMS compared to the original instances.

Conclusion

This chapter extends the work reported in Chapter 5 that introduced a two-stage
decoder for sparse biomedical signals. The extension generalizes the signal model
from perfectly sparse to compressible and targets an actual edge device deployment.

In detail, we define a support for the compressible signal that affects the func-
tionalities of the support oracle. Since with this new definition, support of a signal
depends not only on the signal itself but also on the encoding matrix, the DNN
representing the oracle’s core must be trained separately from the sensing matrix,
allowing the adoption of independent strategies for sensing matrix adaptation, such
as the state-of-the-art Rakeness approach. The resulting two-stage decoder TSOC
is assessed on the task of reconstruction of synthetic ECG signals confirming the
preliminary results shown in Chapter 5 that depicted the two-stage decoder outper-
forming other state-of-the-art approaches.

We have also investigated the implementation of TSOC on real hardware. For
this reason, we focus on fixed-point arithmetic that requires the quantization of the
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FIGURE 6.9: Examples of windows of ECG signals reconstructed em-
ploying qTSOC+LMS with CR = 4 (m = 32) compared with the orig-

inals.

quantities involved. Thanks to quantization-aware techniques, the DNN parame-
ters can be quantized down to 4 bit with just a slight decrease of the performances.
Moreover, approximating pseudo-inversion with an iterative LMS filter numerical
stability and robustness to numerical error is also achieved with fixed-point arith-
metic.

Nevertheless, the adoption of a DNN in a CS decoder introduces two possible
limitations with respect to traditional approaches: i) the need for a sufficiently large
data set for the neural network training; ii) the need for an entire training in case of
a change in the sensing matrix.
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Appendix A

Proof of Properties

A.1 Proof of Property 1.1

Proof. The encoder is tuned to the normal behaviour which consider a memory-less
source, i.e., each generated vector is independent from the previous ones. For this
reason, time indications is dropped so that one may focus on a vector xok with inde-
pendent components xok

j ∼ N
(

0, λok
j

)
for j = 1, . . . , n.

Given a value of the parameter θ, the encoder transforms each component xok
j

into x̂ok
j separately [104], such that:

x̂ok
j =





0 if λok
j ≤ θ

xok
j + ∆j if λok

j > θ
(A.1)

where, to achieve the Shannon lower bound, ∆j must be an instance of a Gaussian
random variable independent of x̂ok

j . As a consequence, the three quantities x̂ok
j , xok

j

and ∆j must be jointly Gaussian such that
(

x̂ok
j , xok, ∆j

)>
∼ N

(
0, Σx̂ok

j ,xok
j ,∆j

)
with

Σx̂ok
j ,xok

j ,∆j
=




λok
j − θ λok

j − θ 0

λok
j − θ λok

j −θ

0 −θ θ


 (A.2)

Since the covariance between x̂ok
j and xok

j is represented by the non-diagonal
elements λok

j − θ, which are positive, this explain that x̂ok
j encodes xok

j in the sense
that are positively correlated with a level that depends on the distortion.

Generalizing the Gaussian with null variance with a Dirac’s delta, one may write
that x̂ok

j ∼ N
(

0, max{0, λok
j − θ}

)
and, by joining the pdf of each component into a

vecotr pdf, one may obtain the pdf of the optimally distorted signal as follows

x̂ok ∼ N
(

0, ΣokSθ

)
(A.3)

which corresponds to (1.16).
Then, to compute the optimal distortion f x̂|x may be obtained by considering the

joint distribution of the j-th components xok
j and x̂ok

j that consists in
(

x̂ok
j , xok

j

)>
∼
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N
(

0, Σx̂ok
j ,xok

j

)
, where Σx̂ok

j ,xok
j

is the upper-left 2× 2 submatrix of Σx̂ok
j ,xok

j ,∆j
in (A.2).

Assuming θ < λok
j , the f x̂|x limited to the j-th component is the pdf of x̂ok

j given xok
j ,

i.e.,

f ok
x̂j|xj

(α, β) =
f ok
x̂j,xj

(α, β)

f ok
xj
(β)

=

N
([

α

β

]
; 0, Σx̂ok

j ,xok
j

)

N
(

β; 0, λok
j

)

=
1√

2π θ
λok

j
(λok

j − θ)
exp


−1

2

[
λok

j α−
(

λok
j − θ

)
β
]2

λok
j θ(λok

j − θ)




=
1√

2πλok
j τj(1− τj)

exp

(
−1

2

[
α− (1− τj)β

]2

λok
j τj(1− τj)

)

(A.4)

where τj = min{1, θ/λok
j }which ranges from 0 (when no distortion occurs, i.e., θ = 0)

to 1 (when the j-th component is completely distorted, i.e., θ ≥ λok
j ). Note that, if

τj → 1, (A.4) degenerates into the Dirac’s delta δ(α), while when τj approaches to 0,
f ok
x̂j|xj

tends to δ(α− β).

Considering the matrices Tθ = diag (τ0, . . . , τn−1) = min{In, θ(Σok)−1} and Rθ =

(In − Tθ)Tθ , we can collect the component pdfs into a vector pdf to get:

f x̂|x(α, β) = N
(

α; βSθ , ΣokRθ

)
(A.5)

which corresponds to (1.15).

A.2 Proof of Property 1.2

Proof. The pdf of x̂ko distorted by means of f x̂|x can be computed as

f ko
x̂ (α) =

∫

Rn
f ko
x̂,x(α, β)dβ =

∫

Rn
f x̂|x(α, β) f ko

x (β)dβ (A.6)

Let us assume first the low-distortion condition θ < λok
n and then generalize for

the case where θ ≥ λok
n .
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Low-distortion condition implies Tθ = θ(Σok)−1 and one may write

f ko
x̂ (α) =

∫

Rn
N
(

α; Sθ β, ΣokRθ

)
N
(

β; 0, Σko
)

dβ

= N
(

α; 0, ΣokRθ

)

×
∫

Rn
exp

(
−1

2

[
β>Sθ(Σ

okRθ)
−1Sθ β− 2α>(ΣokRθ)

−1Sθ β
])

×N
(

β; 0, Σko
)

dβ

= N
(

α; 0, ΣokRθ

) 1√
(2π)n |Σko|

∫

Rn
exp

(
−1

2

(
β>Vβ− 2v>β

))
dβ

︸ ︷︷ ︸
g(α)

(A.7)

where

V = Sθ(Σ
okRθ)

−1Sθ + (Σko)−1 = (θ In)
−1 − (Σok)−1 + (Σko)−1 (A.8)

v = (ΣokRθ)
−1Sθα = α/θ (A.9)

Since V is obtained as sum and product of real and symmetric matrices, it is real
and symmetric and it can be decomposed as V = QDQ> with D diagonal and Q
orthonormal. Then, setting β′ = D1/2Q>β so that β = QD−1/2β′ and dβ = dβ′/

√
|V|

one can write

g(α) =
1√
|V|

∫

Rn
e−

1
2

(
β′>β′−2v>QD−1/2β′

)
dβ′

=
1√
|V|

∫

Rn
e
− 1

2

(∥∥∥β′−D−1/2Q>v
∥∥∥

2
−v>V−1v

)

dβ′

=

√
(2π)n

|V| e
1
2 v>V−1v

(A.10)

Putting this back into f ok
x̂ we get

f ko
x̂ (α) = N

(
α; 0, VΣkoΣokRθ

)
(A.11)

Considering the definition of V one may expand the covariance matrix into

VΣkoΣokRθ =
[
(θ In)

−1 − (Σok)−1 + (Σko)−1
]

ΣkoΣokθ(Σok)−1Sθ

=
[
Σko − θ(Σok)−1Σko + θ In

]
Sθ

=
[

In − θ(Σok)−1
]

ΣkoSθ + θSθ

= SθΣkoSθ + θSθ

(A.12)
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which corresponds to the covariance in the statement of the Property.
To address the case in which θ ≥ λok

n , one may notice that the lowest and right-
most element of Sθ tend to 0 as θ → (λok

n )−. As a result, the whole covariance
tends to have zeros in its last row and column. Since we can generalize a 0 variance
Gaussian as a Dirac’s delta, the expression (A.12) also holds for this case. More-
over, iterating this consideration for θ → (λok

j )− with j = n− 1, n− 2, . . . , 1 one can
conclude that (A.12) holds for any value of θ.

A.3 Proof of Property 1.3

Proof. Let x′ and x′′ be two n-dimensional Gaussian random vectors characterized
by the pdfs fx′(α) = N (α; 0, Σ′) and fx′′(α) = N (α; 0, Σ′′) then

L(x′; x′′) = −
∫

Rn
fx′(α) log2 [ fx′′(α)]dα

= −
∫

Rn
N
(
α; 0, Σ′

)
log2

[
N
(
α; 0, Σ′′

)]
dα

=
1
2

log2

[
(2π)n ∣∣Σ′′

∣∣]
∫

Rn
N
(
α; 0, Σ′

)
dα

+
1

2 log 2

∫

Rn
α>(Σ′′)−1α N

(
α; 0, Σ′

)
dα

=
1
2

log2

[
(2π)n ∣∣Σ′′

∣∣]+ 1
2 log 2

tr
[
(Σ′′)−1Σ′

]

(A.13)

where the last summand has been computed as the expectation of a quadratic form
in a Gaussian multivariate for which Corollary 3.2b.1 in [130, chapter 3] gives a for-
mula.

A.4 Proof of Property 1.4

Proof. To prove Property 1.4, one may first prove that ζ̄ is continuous in its domain
and then prove that its sign is opposite at the boundaries.

One may write (1.27) as ζ̄ = Z(θ)/2 log 2 with Z(θ) = ∑kθ
j=1 αj(θ) and

αj(θ) = 1− 1
λok

j

(
1− θ

λok
j

)
− θ

λok
j

(A.14)

With no loss of generality, one can set λok
n+1 = 0, assume λok

1 > λok
2 > · · · >

λok
n > λok

n+1 = 0, and define Θj =]λok
j+1, λok

j [ for j = 1, . . . , n so that if θ ∈ Θj then
kθ = j.

ζ̄ is continuous in θ if it is continuous if Z(θ) is continuous in θ. It is continuous
in each interval Θj as αj(θ) is continuous. It is also continuous in the boundaries of
each Θj since
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lim
θ→λok

j
−

Z = lim
θ→λok

j
−

j

∑
l=1

αl(θ) = lim
θ→λok

j
−

αj(θ) +
j−1

∑
l=1

αl(θ)

= lim
θ→λok

̄
+

̄−1

∑
j=1

αj(θ) = lim
θ→λok

̄
+

Z

(A.15)

where it was exploited the fact that α ̄(λok
̄ ) = 0 and that the αj(θ) are continuous

and thus their left and right limits coincide.
Let us first consider the value of ζ̄ at the left-hand boundary (θ = 0) that is when

no distortion is imposed by the encoder. In this case, kθ = n, αj(0) = (1− 1/λok
j ) and

one can write

Z =
n

∑
j=1

(
1− 1

λok
j

)
= n−

n

∑
j=1

1
λok

j
≤ n− n = 0 (A.16)

where the inequality follows from the fact that ∑n
j=1

1/λok
j ≥ n when ∑n

j=1 λok
j = n,

which is an assumption in the signal model.
On the right-hand boundary of the domain of ζ̄ (θ = λok

1 ), that is when distortion
is maximum, Z = α1(λ

ok
1 ) = 0 and in turn ζ̄ = 0. Since this gives no information

about the sign, one may observe the partial derivative of Z with respect to θ as θ

approches λok
1 .

∂

∂θ
Z =

kθ

∑
j=1

(
1

λok
j
− 1

)
1

λok
j

(A.17)

Note that, for any θ ≥ λok
` with ` = arg maxk{λok

k ≥ 1}, ∂
∂θ Z < 0. This implies

that Z, i.e., ζ̄, is monotonically decreasing as θ approches λok
1 where it vanishes.

Therefore, in the right-most part of the domain Z must be positive.
Since Z < 0 at θ = 0 and Z > 0 for θ ∈]λok

` , λok
1 [, Z must pass through 0 at least

once in the interval θ ∈]0, λok
` [.

A.5 Proof of Property 1.5

Proof. We will use the following Lemma whose proof is reported in Appendix A.6.

Lemma A.1. If λko ∼ U (Sn), then for any integrable function f : R → R and any
j = 1, . . . , n

E
[

f (λko
j )
]
=

n− 1
nn−1

∫ n

0
f (ξ)(n− ξ)n−2dξ (A.18)

From [95] we know that if Q is uniformly distributed in On (i.e., if it is distributed
according to the Haar measure on the orthogonal group) then, for any sequence of
integers Mn < n increasing with n but such that Mn = o

(
n

log n

)
, the entries of the

first Mn columns of Q converge in probability to independent random variables such
that
√

nQj,k ∼ N (0, 1) for j = 1, . . . , n, k = 1, . . . , Mn.
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Such a property can be extended to any subset of Mn columns. In fact, given any
subset of mn columns of Q, there is a permutation matrix P such that QP has such
columns as the first ones.

Yet, since P ∈ On and Q is distributed according to the Haar measure in that
group, also QP is distributed according to that measure and the entries in those
columns tend to independent Gaussians.

Divide now n by Mn as in n = Nn Mn + mn, where Nn is the quotient and 0 ≤
mn < Mn is the remainder. We can look at Q as the concatenation of Nn matrices
Qi, for i = 1, . . . , Nn, each n × Mn, and of a last matrix QNn that is n × mn. From
Mn = o

(
n

log n

)
we have Nn = O (log n) but we can choose Mn such that Nn = o(nα)

for any α > 0.
If we set Qko = Q then, Σko = QkoΛkoQko> can be written componentwise

Σok
j,k =

n

∑
l=1

Qko
j,l λko

l Qko
k,l =

Nn

∑
i=1

iMn

∑
l=1+(i−1)Mn

1
n

νj,lλ
ko
l νk,l

︸ ︷︷ ︸
Wi

+
n

∑
l=1+n−mn

1
n

νj,lλ
ko
l νk,l

︸ ︷︷ ︸
WNn

(A.19)

where i = 1, . . . , Nn scans the first submatrices Qi, the last summand accounts for the
remainder matrix QNn , and, thanks to the above considerations, νj,l ∼ νk,l ∼ N (0, 1)
for all j, k, l.

We now have to address that case j 6= k and the case j = k separately.

Asymptotics of Σko
j,k for j 6= k

Let us now consider W1 as the representative of all other Wi for i = 1, . . . , Nn, written
as W1 = ∑Mn

l=1 Xn,l with Xn,l =
1
n νj,lλ

ok
l νk,l . All the normal random variables involved

in such a sum are asymptotically independent but this is not true for the λok
l since

the eigenvalues are constrained to sum to n.
Therefore, W1 is a triangular array of row-dependent random variables whose

asymptotic behaviour can be analyzed by means of [143, Theorem 2.1] that is essen-
tially a Lindeberg-Feller Central Limit Theorem with the row-wise independence
relaxed to asymptotic row-wise incorrelation. To analyze the asymptotics of W1 we
note that

E[Xn,l ] = E[λko
l ]E[νj,l ]E[νk,l ] = 0 (A.20)

Note also that, though not independent, the covariance and the correlation be-
tween Xn,l′ and Xn,l′′ is

E [Xn,l′Xn,l′′ ] =
1
n2 E

[
λko

l′ λko
l′′

]
E
[
νj,l′νj,l′′

]
E [νk,l′νk,l′′ ]

=





0 if l′ 6= l′′

1
n2 E[(λko

l )2] if l′ = l′′ = l

(A.21)
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With this we also know that

σ2
W1

= E
[
W2

i
]
=

Mn

∑
l′=1

Mn

∑
l′′=1

E[Xn,l′Xn,l′′ ] =
Mn

∑
l=1

E[X2
n,l ] =

1
n2

Mn

∑
l=1

E[(λko
l )2] (A.22)

To compute the last expectation we may resort to Lemma A.1 that gives

E[(λko
l )2] =

n− 1
nn−1

∫ n

0
p2(n− p)n−2dp =

2n
n + 1

(A.23)

Hence we have σ2
W1

= 2Mn
n(n+1) → 0 for n→ ∞.

This helps satisfying the Lindeberg condition since, if for a given ε > 0 we indi-
cate with E

[
X2

n,l

∣∣
|Xn,l |≥ε

]
the expectation of X2

n,l restricted to its values that are not
less than ε in modulus, then

n

∑
l=1

E
[

X2
n,l
∣∣
|Xn,l |≥ε

]
≤

n

∑
l=1

E
[
X2

n,l
]
= σ2

W1
=

2Mn

n(n + 1)
(A.24)

that vanishes asymptotically.
Finally, let LMn , RMn ⊂ {1, . . . , Mn} be two index subsets such that LMn ∩ RMn =

∅. If gLMn
is any function of the random variables Xn,l with l ∈ LMn and hRMn

=

∏l∈Rn
Xn,l , the covariance between gLMn

and hRMn
is

E
[
gLMn

hRMn

]
= E

[
gLm ∏

l∈Rn

1
n

λko
l νj,lνk,l

]

= E

[
gLm ∏

l∈Rn

λko
l

]
∏

l∈Rn

1
n

E
[
νj,l
]

E [νk,l ] = 0

(A.25)

that is enough to satisfy the assumptions in equation (2.3) and in equation (2.4) of
[143, Theorem 2.1]. From that Theorem, we finally now that W1 ∼ N

(
0, 2Mn

n(n+1)

)

when n → ∞. Clearly, the same happens to any Wi for i = 1, . . . , Nn, while WNn ∼
N
(

0, 2mn
n(n+1)

)
.

Let us now consider

Pr
{∣∣∣Σko

j,k

∣∣∣ ≤ ε
}
= Pr

{∣∣∣∣∣
Nn

∑
i=1

Wi + WNn

∣∣∣∣∣ ≤ ε

}

≥ Pr

{
Nn

∑
i=1
|Wi|+ |WNn | ≤ ε

}

≥ Pr
{

max {|W1| , . . . , |WNn |} ≤
ε

Nn

}

= 1− Pr
{

max {|W1| , . . . , |WNn |} >
ε

Nn

}

(A.26)
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Yet

Pr
{

max {|W1| , . . . , |WNn |} >
ε

Nn

}
= Pr

{
|W1| >

ε

Nn
∨ . . . ∨ |WNn | >

ε

Nn

}

≤ Nn Pr
{
|W1| >

ε

Nn

}

(A.27)

so that
Pr
{∣∣∣Σko

j,k

∣∣∣ ≤ ε
}
≥ 1− Nn Pr

{
|W1| >

ε

Nn

}
(A.28)

From this and from the asymptotic normality of W1 we may say

Pr
{∣∣∣Σko

j,k

∣∣∣ ≤ ε
}
≥ 1− Nn

2
erfc


 ε

2
√

N2
n Mn

n(n+1)


 (A.29)

in which the probability tends to 1 for n → ∞, and Mn = o
(

n
log n

)
chosen to have

Nn = o
(
n1/2
)
.

Asymptotics of Σko
j,k for j = k

In this case, exploiting the fact that ∑n
j=1 λko

j = n, we may write

Σok
j,j = 1 +

Nn

∑
i=1

iMn

∑
l=1+(i−1)Mn

1
n

(
ν2

j,l − 1
)

λko
l

︸ ︷︷ ︸
Wi

+
n

∑
l=1+n−mn

1
n

(
ν2

j,l − 1
)

λko
l

︸ ︷︷ ︸
WNn

(A.30)

in which the summands Wi are a triangular arrays of elements with features similar
to the previous ones.

In fact, we may focus on W1 = ∑Mn
l=1 Xn,l with Xn,l =

1
n λko

l

(
ν2

j,l − 1
)

and note that
E[Xn,l ] = 0 and

E [Xn,l′Xn,l′′ ] =
1
n2 E

[
λko

l′ λko
l′′

]
E
[(

ν2
j,l′ − 1

) (
ν2

j,l′′ − 1
)]

=





0 if l′ 6= l′′

2
n2 E[(λko

l )2] if l′ = l′′ = l

(A.31)

where we have exploited the fact that E[(ν2
j,l − 1)2] = E[ν4

j,l ]− 2E[ν2
j,l ] + 1 = 2. With

this, σ2
W1

= 4Mn
n(n+1) → 0 for n→ ∞.

As before, this makes the Lindeberg condition automatically satisfied and is also
enough to satisfy the covariance constraints in equations (2.3) and (2.4) of [143, The-
orem 2.1] from which we get that W1 ∼ N

(
0, 4Mn

n(n+1)

)
for n → ∞. An analogous

path leads to the asymptotic behaviour WNn ∼ N
(

0, 4mn
n(n+1)

)
.
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The same inequalities as before lead to

Pr
{∣∣∣Σko

j,j − 1
∣∣∣ ≤ ε

}
≥ 1− Nn

2
erfc


 ε

4
√

N2
n Mn

n(n+1)


 (A.32)

in which the probability tends to 1 for n → ∞, and Mn = o
(

n
log n

)
chosen to have

Nn = o
(
n1/2
)
.

From (A.29) and (A.32) we finally get that Qko tends to In in probability as n →
∞.

A.6 Proof of Lemma A.1

Proof. For any function f : R 7→ R we have

I [ f (ξ)] =
∫

Sn
f (ξ1)dξ1 . . . dξn

=
∫ n

0
f (ξ1)

∫ n−ξ1

0

∫ n−ξ1−ξ2

0
· · ·

∫ n−ξ1−ξ2−···−ξn−2

0
dξ1 . . . dξn−1

=
∫ n

0
f (ξ1)

(n− ξ1)
n−2

(n− 2)!
dξ1

(A.33)

Since λko is uniformly distributed over Sn the probability density is the constant
1/I [1] = n−(n−1)(n− 1)! and the expectation of f is

E[ f (λok
j )] =

(n− 1)!
nn−1 I [ f (ξ)]

=
(n− 1)!

nn−1

∫ n

0
f (ξ)

(n− ξ)n−2

(n− 2)!
dξ

=
n− 1
nn−1

∫ n

0
f (ξ)(n− ξ)n−2dξ

(A.34)

A.7 Proof of Property 2.1

Proof. From (2.7), and independently of the Gaussian assumption, one immediately
gets the well-known average energy µEU = ∑k

l=1 λjl .
As far as the second-order statistics are concerned, note that

E2
U =

[(
U>x

)>
U>x

]2

= x>UU>xx>UU>x = tr
(

UU>xx>UU>xx>
)

(A.35)

that, brought down to sums over indexed quantities, gives



148 Appendix A. Proof of Properties

Ex
[
E2

U
]
= Ex

[
∑

a,b,c,d,e, f
Ua,bUc,bxcxdUd,eU f ,ex f xa

]

= ∑
a,b,c,d,e, f

Ua,bUc,bUd,eU f ,eEx
[
xcxdx f xa

] (A.36)

where a sum in a set of indices shortens a sequence of sum each summing over a
different index going from 1 to n.

Since x is Gaussian and zero-mean Ex
[
xcxdx f xa

]
= Σc,dΣ f ,a + Σc, f Σd,a + Σc,aΣd, f .

Hence,

Ex
[
E2

U
]
= ∑

a,b,c,d,e, f
Ua,bUc,bΣc,dUd,eU f ,eΣ f ,a+

+ ∑
a,b,c,d,e, f

Ua,bUc,bΣc, f U f ,eUd,eΣd,a+

+ ∑
a,b,c

Ua,bUc,bΣc,a ∑
d,e, f

U f ,eUd,eΣd, f

(A.37)

where factors and sums have been rearranged and distributed to reconstruct high-
level matrix and vector operations. By recognizing such operations we have

Ex
[
E2

U
]
= 2tr

(
UU>ΣUU>Σ

)
+ tr

(
UU>Σ

)
tr
(

UU>Σ
)

= 2tr
(

U>ΣUU>ΣU
)
+ tr2

(
U>ΣU

)

= 2
k

∑
l=1

λ2
jl +

(
k

∑
l=1

λjl

)2
(A.38)

where we have exploited the fact that since U has eigenvectors of Σ as columns,
U>ΣU = diag

(
λj1 , λj2 , . . . , λjk

)
.

Finally,

σ2
EU

= Ex

[
(EU − µEU )

2
]
= Ex

[
E2

U
]
− µ2

EU
= 2

k

∑
l=1

λ2
jl (A.39)
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