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ABSTRACT

In this thesis we present a detailed analysis of the statistical properties of the type
IIB flux landscape of string theory. We focus primarily on models constructed via
the Large Volume Scenario (LVS) and KKLT and study the distribution of various
phenomenologically relevant quantities. First, we compare our considerations with
previous results and point out the importance of Kähler moduli stabilisation, which
has been neglected in this context so far. We perform different moduli stabilisation
procedures and compare the resulting distributions. To this end, we derive the
expressions for the gravitino mass, various quantities related to axion physics and
other phenomenologically interesting quantities in terms of the fundamental flux
dependent quantities gs, W0 and n, the parameter which specifies the nature of
the non-perturbative effects. Exploiting our knowledge of the distribution of these
fundamental parameters, we can derive a distribution for all the quantities we
are interested in. For models that are stabilised via LVS we find a logarithmic
distribution, whereas for KKLT and perturbatively stabilised models we find a power-
law distribution. We continue by investigating the statistical significance of a newly
found class of KKLT vacua and present a search algorithm for such constructions.
We conclude by presenting an application of our findings. Given the mild preference
for higher scale supersymmetry breaking, we present a model of the early universe,
which allows for additional periods of early matter domination and ultimately leads
to rather sharp predictions for the dark matter mass in this model. We find the dark
matter mass to be in the very heavy range mχ ∼ 1010 − 1011 GeV.
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What is the universe made of? Despite the briefity and simplicity of this question,
the answer is still as elusive as it was hundreds of years ago. Interestingly, today’s
most modern and sophisticated attempts to an answer, are not much different from
the very first attempts. In essence the idea is: It is made of small things. The ancient
greeks incorporated this concept in their explanation of reality, most famously in
Plato’s atomism. According to this idea, the world is build out of four geometri-
cal solids, which represent the elements fire (tetrahedron), air (octahedron), water
(icosahedron) and earth (cube). All these geometrical structures can be decomposed
in terms of triangles, which allow for the notion of transforming elements into each
other.
Surprisingly, the key ingredients for a succesfull description of our world are already
present in this simple picture. The first concept is based on the following heuristic
argument. If we divide a piece of matter in two parts and keep dividing the remaining
parts, logic dictates that we must reach an end eventually. Hence, all matter is made
of fundamental building blocks. They are the smallest entities in our universe and
have no further substructure. The second idea is that these entities are mathematical
in their nature. In Plato’s picture they are represented as geometrical objects. In the
modern viewpoint, as we will see later, the fundamental building blocks are described
by irreducible representations of the Poincaré group. It is interesting to note that
the realization of the deep connection between mathematics and the physical world
dates back as early as roughly 400 BC.
The modern form of Plato’s atomism is called Standard Model of Particle Physics
(SM) and will be described in detail in the next section. The successes of the SM are
numerous and at this point we want to highlight only one example: the prediction of
the anomalous magnetic moment.
The ’classical’ prediction for the magnetic moment can be computed with the Dirac
equation and is given by g = 2. This result, however, differs from the observed value
for instance for the electron by a small fraction of a percent [5]. The anomalous
part is due to quantum mechanical corrections and can be computed within the
framework of quantum electrodynamics (QED). By evaluating not only the tree level
Feynman diagrams but also higher order loop contributions, it is possible to compute
the expected value of the anomalous magnetic moment. The QED prediction agrees
with the experimentally meassured value to more than 10 significant digits [5, 6],
making it the most accurate theory of all time.

What is the origin of the universe? An equally challenging question that remains
difficult to answer. However, the most notable progress in this domain was made
in the last century. The development of Einstein’s General Relativity enabled us to
describe the evolution of the universe in astonishing detail. The discovery of the
expansion of our universe lead to the best answer we have so far: It all started with
a big bang.
The now so called Standard Model of Cosmology, which will be explored in detail in
the next section, describes the universe with incredible precision. The detection of
gravitational waves by LIGO and Virgo [7] and the creation of the very first image of
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a black hole by the Event Horizon collaboration [8] are only the most recent successes
of the model.

Given the great achievments of the Standard Models one could think that there is
nothing left to do and we have unveiled the underlying laws of nature. However,
despite the success, there are still many open questions. The most prominent and
urgent problems are the following:

� Hierarchy problem
Generally speaking a hierarchy problem occurs when the effective value of a
physical parameter differs drastically from its fundamental value. The two
values are connected via renormalization, which essentially is a way to quantify
the quantum corrections that modify the fundamental value. For most quanti-
ties the values of the effective and fundamental parameters are very close. For
some quantites, however, they differ drastically which is an indication for a very
delicate and precise cancelation between the higher order loop contributions.
This precise cancelation seems very unnatural and demands an explenation.
In the context of the SM the problem manifests itself in the question why the
Higgs mass is not closer to the Planck scale. Given that the Higgs is a scalar
particle, it is sensitive to ultraviolett physics, hence one would expect its mass
to be at a much higher scale.

� Number of families
As we will see later in more detail, the SM incorporates 3 families of elementary
particles. However, this number is put in by hand and not derived.

� Neutrino mass
According to the SM neutrinos are massless particles. However, the observation
of neutrino oscillation by the Super-Kamiokande observatory [9], which was
awarded with the Nobel prize in 2015, implies massive neutrinos.

� Cosmological constant problem
In 1917, Einstein introduced the cosmological constant term to his field equa-
tions in order to allow for an eternally static universe. This term was set such
that it would balance out the gravitational dynamics of the universe. However,
the observation of the expansion of our universe by Edwin Hubble led to the
realization that universe is not static.
In 1998, it was realized that the universe is expanding in an accelerated fashion
[10, 11] implying a positive cosmological constant. The most intuitive physical
explanation for the cosmological constant is the vacuum energy that can be
computed via quantum field theory (QFT). According to QFT, the vacuum is
filled with quantum fields that represent the particle content of the SM. Despite
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being in their ground state, the fields fluctuate around this minimum result-
ing in a non-zero vacuum energy. Theoretical computations of this quantity
result in a value that differs from the observed value by 120 orders of magnitude.

� Dark matter and dark energy
According observations, only roughly 5% of the energy content of our universe
is due to baryonic matter. The rest is attributed to dark energy (70%) and
dark matter (25%). The nature of DE and DM is still a mystery.

� Matter-Antimatter asymmetry
The matter-antimatter asymmetry is the observed imbalance of baryonic matter
and anti-baryonic matter. In principle, the big bang should have produced an
equal amount of matter and antimatter. The asymmetry between these two
forms of matter is not explained by the SM.

� Quantum Gravity
Perhaps the biggest challenge in theoretical physics is to formulate a quantum
theory of gravity. Standard Einstein gravity is non-renormalizable due to
its dimensionfull coupling G, which is Newton’s constant. A perturbative
expansion in G would require an infinite amount of counter terms, making the
theory loose its predictive power. Hence, GR is not suited to be quantized in
the standard QFT approach and new paradigm is needed.

In this work we will address some of these problems within the framework of string
theory (ST), which is the most promising candidate for a unified languange of gravity
and quantum mechanics.
In the introduction part, we start with a summary of the standard model of particle
physics and the standard model of cosmology. Then, we introduce some basic
concepts of string theory that are necessary in order to understand the main part of
this work.
In the second part, we present a detailed study of the statistical properties of the
solution space of string theory called the landscape. We finish by introducing an
alternative model for the early universe, which is motivated by our findings and
recent experimental observations.
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Chapter 1

Standard Model

In this chapter we give a brief introduction to the standard models of particle physics
and cosmology. Here, we follow primarily [12, 13, 14, 15, 16] and refer to these
references for more information on the presented subjects.

1.1 Particle Physics

Arguebly the most important concept in modern physics is the notion of symmetries.
A symmetry is present when physical obersvations and their underlying laws are
invariant with respect to the transformation associated with that symmetry. A simple
example is Galilean invariance, which states that the laws of motion are invariant
under rotations and translations.
A closely related idea is the concept of a conservation law. It is intuitively clear that
if we perform a transformation and the physicial system does not change, that there
must be some sort of preservation of information. This intuition manifests itself in
the famous Noether theorem, which states that for every continous symmetry of the
action there exists an associated conservation law. For instance, time translation
invariance is associated with conservation of energy and spatial translation invariance
is connected to conservation of momentum. The same principle is at the heart of
our concept of an elementary particle. We define an elementary particle to be an
entity which does not change some properties with respect to a particular symmetry.
The underlying fundamental symmetry group is called the Poincare group and the
properties that define an irreducible representation of that group are mass and spin.
The fermionic part of the SM, which can be defined in this way, is summarized in
the Table 1.1
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Generation Lepton Quark

1st
electron
e-neutrino

up
down

2nd
muon

µ-neutrino
charm
strange

3rd
tau

τ -neutrino
top

bottom

Table 1.1: Quarks and leptons of the standard model.

We know two different types of fermions, leptons and quarks. Both types exist
in different variations called generations or families. The masses of the particles in
Table 1.1 increase with the generation number.
The next important ingredient is the notion of interactions. Just like the particles
themself, the interactions between them are defined in terms symmetries. The
symmetry group that is used to build the SM is

SU(3)C × SU(2)L × U(1)Y . (1.1)

The first part of (1.1) describes quantum chromodynamics (QCD), whereas the second
and third part describe the electroweak force. The labels C,L and Y stand for color,
left-handed and hypercharge respectively. Each particle in the SM spectrum has a
particular transformation property with respect to the symmetry group. Denoting
quarks and leptons of different generations as Qi and Li we can summarize the
transformation properties as follows

Qi ≡
(
uLi
dLi

)
∼ (3, 2,

1

6
), Li ≡

(
eLi
νLi

)
∼ (1, 2,−1

2
) (1.2)

Ui ≡ uRi ∼ (3̄, 1,
2

3
) (1.3)

Di ≡ dRi ∼ (3̄, 1,−1

3
) (1.4)

Ei ≡ eRi ∼ (1, 1,−1). (1.5)

The first number describes the transformation with respect to SU(3)C , the second
with respect to SU(2)L and the third number is the U(1)Y charge. For instance, this
implies that quarks transform as triplets under SU(3), whereas leptons transform as
singlets.
Note, we introduced the additional labels Li and Ri, which stand for left-handed and
right-handed and i ∈ {1, 2, 3} stands for the 3 generations. Parity conservation was
long believed to be conserved, but was shown in 1957 [17] to be violated by the weak
force. This observation has far reaching consequenses, namely that there is a natural
distinction between left and right, i.e. a mirror image of our world is physically
different from the original world. In the SM this result is encoded in the following way.
The SU(2)L part of the gauge group distinguishes left- and right-handed particles.
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Left-handed particles transform as doublets, whereas right-handed versions of these
particles transform as singlets. One important observation, is that there are no
right-handed neutrinos in the SM rendering the left-handed versions massless.
In addition to the fermionic particle content the SM also hosts a scalar particle called
the Higgs boson

H ≡
(
φ+

φ0

)
∼ (1, 2,

1

2
). (1.6)

The Higgs is responsible for the spontaneous symmetry breaking

SU(2)L × U(1)Y → U(1)em (1.7)

via the Higgs mechanism, which generates mass terms for the SM particles1.
However, in order for the full SM gauge group to be a consistent local symmetry, we
need to introduce gauge bosons. The gauge bosons of the srong interactions are the
gluons and will be denoted as GA

µ with A ∈ {1, ..., 8}, the SU(2) gauge bosons are
written as W I

µ with I ∈ {1, 2, 3} and the U(1)Y gauge field is given by Bµ.
The full SM lagrangian is given by

LSM = LF + LG + LY + Lφ. (1.8)

The first term encodes the fermionic content of the SM and is given by

LF = iΨ̄γµDµΨ, (1.9)

here the γµ are the usual Dirac gamma matrices and we denote all the fermions
collectively as

Ψ = (Qi, Ui, Di, Li, Ei), (1.10)

and Ψ̄ is the usual Dirac conjugate. The covariant derivative contains also the
bosonic fields in order to ensure gauge invariance

Dµ = ∂µ − igsGA
µλ

A − ig
2
W I
µτ

I − ig′BµYW . (1.11)

The SU(3)C , SU(2)L and U(1)Y coupling constants are given by gs, g and g′. In the
second term, the λA are the Gell-Mann matrices, the generators of the color group.
In the third term, the τ I are the Pauli matrices, the generators of SU(2). In the last
term, YW is the weak hypercharge.
The second term in (1.8) describes the kinetic part of the gauge fields and is given by

LG = −1

4
GA
µνG

µνA − 1

4
W I
µνW

µνI − 1

4
BµνB

µν , (1.12)

1Neutrinos are an exception in this process.
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where the field strengths are defined as

GA
µν = ∂µG

A
ν − ∂νGA

µ + gsfABCG
B
µG

C
ν (1.13)

W I
µν = ∂µW

I
ν − ∂νW I

µ + gfIJKW
J
µW

K
ν (1.14)

Bµν = ∂µBν − ∂νBµ. (1.15)

Note the additional terms proportional to fABC and fIJK . These are the structure
constants of SU(3)C and SU(2)L, which parametrize their non-abelian property.
The third term in (1.8) represents the Yukawa interactions, which parametrize the
interaction of the fermions with the Higgs and is responsible for the fermion mass
generation

LY = huijQ̄iUjH̃ + hdijQ̄iDjH + heijL̄iEjH + h.c. (1.16)

with H̃ = iσ2H∗ and the Yukawa couplings huij, h
d
ij, h

e
ij. The last part of the SM

lagrangian represents the scalar content

LS = (DµH)†DµH − V (H), (1.17)

with the famous Higgs potential

V (H) = µ2H†H + λ
(
H†H

)2
. (1.18)

As mentioned before, this part of the lagrangian is responsible for the mass generations
of the SM particles and the spontaneous breaking of the electroweak theory. In
order to realize a scenario, which allows for spontaneous symmetry breaking of the
electroweak part, we need to set µ2 < 0 in (1.18). For this potential, the vacuum

ist not located at H =

(
0
0

)
. Instead, we have an infinite amount of vacua oriented

around the origin. We can chose the so-called unitary gauge and set the vacuum to

H = H0 =
1√
2

(
0

v + h

)
. (1.19)

Where h is the fluctuation around the minimum and represents the physical Higgs
boson. Combining this Higgs vacuum doublet with the scalar part of the Lagrangian
(1.17) and the covariant derivative (1.11), we can work out the expressions and
masses for the physical gauge fields W+, W−, Z and γ and their interaction with
the Higgs. It is straightforward to see that the charged and massive gauge fields W+

and W− are a linear combination of W 1 and W 2

W± =
1√
2

(W 1 ∓W 2). (1.20)

The massless photon γ and the massive Z boson are a combination of W 3 and Bµ

Aµ =
1√

g2 + g′2
(g′W3 + gBµ) (1.21)

Zµ =
1√

g2 + g′2
(gW3 − g′Bµ) . (1.22)

15



Writing down the kinetic part of (1.17) explicitely, one can see that the photon Aµ is
indeed massless due to the lack of a term proportional to ∼ A2. The masses for the
other gauge bosons turn out to be

mW− = mW+ =
1

2
vg (1.23)

mZ =
1

2
v
√
g2 + g′2. (1.24)

Note, the couplings are free parameters, hence the SM does not predict the masses of
the gauge bosons. The measured values are around mW = 80.4 GeV and mZ = 91.2
GeV. The Higgs mass can be read of to be

mh =
√

2λv2. (1.25)

In 2012, the LHC collaboration announced the discovery of the Higgs boson and
presented the measured mass mh = 125 GeV [18].
Regarding the fermions, it is easy to see that terms like

−mΨ̄Ψ = −m
(
Ψ̄LΨR + Ψ̄RΨL

)
(1.26)

break gauge invariance since left-handed fermions are a doublet under the SU(2)×
U(1) group, while right-handed fermions form a singlet. Hence, we cannot insert
fermion mass terms explicitly in the lagrangian. In order to make the mass term
invariant we need to add the compelx Higgs doublet

∝ Ψ̄LHΨR. (1.27)

This is exactly the type of terms we find in the Yukawa part of the lagrangian (1.16).
As in the case with the gauge bosons, setting the Higgs vacuum to (1.19) results in
fermionic mass terms and fermion-higgs interactions. Note, the Yukawa couplings
are free parameters aswell. Hence, the SM does not give a sharp prediction for the
fermion masses.
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1.2 Cosmology

One of the most astonishing facts about our universe is also the most apparent one.
If we look at the night sky, what we see is mostly black and empty. There are only
a few stars that we can observe with the naked eye. If we think about it carefully,
this observation is indeed strange. When we stand in a forest and the forest is large
enough, no matter where we look, our sight will always be blocked by trees. Hence,
if the universe is infinite, static and eternal, then the sky should be covered in stars.
Therefore, the darkness of the sky is a first hint for the dynamical nature of our
universe. This is the famous Olbers’ paradox.
Modern cosmology begins with the observation of the expansion of our universe in
1929 by Edwin Hubble. The spectra of galaxies were found to be red-shifted and this
red-shift seemed to increase with the galaxies distance. Hubble established a linear
relation between the distance of a galaxy and its velocity, which today is known as
Hubble’s law [19].
The fundamental theory of cosmology is Einstein’s theory of General Relativity
formulated in 1915. Alexander Friedmann and George Lemâıtre derived independently
a solution for Einstein’s field equations which describes an expanding universe with a
flat, positively or negatively curved spatial geometry. Later, Howard Robertson and
Arthur Walker showed that the spatial geometry, which was assumed by Friedman
and Lemâıtre are the only homogeneous and isotropic geometries possible, and
thereby showing that the Friedmann-Lemâıtre equations give a complete description
of the dynamics of our universe.
If our universe is expanding it is logical to assume2 that at some finite time in the
past all matter was concentrated in one small portion of space. The idea that our
universe originated from one single point is called the Big Bang. It turns out that we
can still observe evidence of this event. It is called the cosmic microwave background
(CMB) and is the relic of the Big Bang. Eventually, when the universe expanded and
consequently cooled down, it reached a temperature when electrons could recombine
with the H and He atoms and the unvierse became transparent. The CMB that we
observe today is the red-shifted radiation from this event.
Detailed observations of the CMB revealed tiny fluctuations in the spectrum. These
fluctuations are believed to be the seeds for the cosmological structure formation.
Shortly after the Big Bang, a period of rapid spatial expansion called Inflation
imprinted tiny quantum fluctuations of the matter fields in the matter density
distribution. These fluctuations grew over time via gravitational contraction and
gave rise to the rich structures that we observe today.
Let us start by briefly introducing some basic concepts, which will be important later
on. If we meassure the spectrum of a distant object such as a galaxy, we find that
the observed spectral lines are shifted with respect to the expected spectrum. We
define the redshift of a galaxy as

z =
λ0 − λ1

λ1

. (1.28)

2However, this conclusion is not imperative.
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The intuitive way of understanding the redshift is to think of the expansion of the
universe as an expansion of space itself. During the time the emitted photon travels
from the galaxy to our telescope, the space in between expands and changes the
wavelegth of the photon.
If we want to examine the universe at different times, it is convenient to introduce
the so called scale factor a(t). The scale factor parametrizes the spatial expansion
and is defined such that a(t) ∈ [0, 1]. At Big Bang, the scale factor is a(0) = 0 and if
t0 represents the present then a(t0) = 1. The scale factor is related to the redshift by

1 + z =
a(t0)

a(t1)
. (1.29)

For nearby sources we can perform a Taylor expansion and factor out the scale factor
at present time

a(t1) = a(t0) + (t1 − t0)
da(t)

dt

∣∣∣∣
t=t0

+ ... (1.30)

≈ a(t0) (1 + (t1 − t0)H0) . (1.31)

Here, we defined the Hubble constant

H0 ≡
ȧ(t0)

a(t0)
. (1.32)

Using the relation between the redshift and the scale factor we get z = H0(t1−t0)+ ....
For small distances and in units where c = 1 we have that (t1 − t0) = d is just the
physical distance. Hence, we obtain

z ' H0d, (1.33)

which is the famous Hubbel’s law.
Next, we will introduce some important concepts from GR and derive the Friedmann-
Lemâıtre equations. We will use these equation in order to analyze the evolution of
the universe by identifying different periods in time that were dominated by different
energy sources. In the main part of this work we will present a string theory inspired
model that will modify this standard picture and suggest an alternative scenario for
the evolution of the universe.
In special and general relativity we treat space and time on equal footing. Hence,
we denote a spacetime point xµ as a 4-vector. The first entry x0 = ct is the time
component and xi with i ∈ [1, 2, 3] are the spatial components. In flat space the
metric is called Minkowski metric and is given by

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.34)
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We will also adapt the standard convention where we use greek indices for the
full 4-vector and latin indices for the spatial part. In addition, we use Einstein’s
summation convention, i.e. we perform a summation over indices that appear twice
in an expression. We can define the so-called world line of an observer as the spatial
location as a function of time xi(t). Taking the derivative of this expression with
respect to time, we can obtain the 3-velocity

vi(t) =
dxi(t)

dt
. (1.35)

In order to define the 4-velocity we need to introduce the proper time τ , which is the
time that an observer would meassure on his/her watch. We can define the 4-velocity
as

uµ =
dxµ(t)

dτ
. (1.36)

The energy-momentum 4-vector follows from the 4-velocity as

pµ = muµ, (1.37)

where m is the mass. If we have a collection of particles that are moving in space,
we can regard this colletion as a gas and define the so-called energy-stress tensor
T µν , which is the Noether current associated with spacetime translations. The
conventional way to classify matter in this context is, whether it is relativistic or not.
Non-relativistic (cold), pressureless matter ist called dust. The energy-momentum
tensor for dust is

T µν = ρuµuν , (1.38)

where ρ is the particle density. If we choose our coordinate system such that the gas
is not moving then the tensor can be written as

T µν =


ρc2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (1.39)

If the gas does have pressure, then the energy-momentum tensor is modified and is
given by

T µν = ρuµuν + p

(
gµν +

1

c2
uµuν

)
, (1.40)

where p is the pressure. Again, choosing a coordinate system where the gas is in rest
the energy-momentum tensor becomes

T µν =


ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.41)
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As mentioned before, the energy-momentum tensor is the Noether current associated
with spacetime translations. Hence, we can formulate a continuity equation of the
form

∂νT
µν = 0. (1.42)

General Relativity is primarily a theory that explains and quantifies the curvature
of spacetime. The first ingredient in order to be able to write down Einstein’s field
equations are the so-called Christoffel symbols.

Γαβγ =
1

2
gαµ

(
∂gµγ
∂xβ

+
∂gµβ
∂xγ

− ∂gβγ
∂xµ

)
. (1.43)

The Christoffel symbols are the affine connection on our manifold and are used
to define concepts like parallel transport, geodesics or covariant derivatives. Most
importantly, we can use (1.43) in order to define curvature of our space. We cannot
use the Christoffel symbols on their own, since they don’t measure only the curvature
of spacetime but also the curvature of the coordinate system. That means, that also in
a flat space we can have non-zero Christoffel symbols, if we chose a curved coordinate
system. However, physics should not depend on the choice of the coordinate system.
The object that measures the curvature of space is the so-called Riemann-Christoffel
curvature tensor

Rα
σβρ ≡ ∂βΓαρσ − ∂ρΓαβσ + ΓαβγΓ

γ
ρσ − ΓαργΓ

γ
βσ. (1.44)

It can be derived by parallel transporting a vector along a closed path. Equation
(1.44) contains all the information about the curvature of spacetime. A space is flat if
Rα
σβρ = 0 everywhere. Using the Riemann tensor we can define the famous Einstein

equations. To this end we contract two indices of the Riemann tensor to obtain the
Ricci tensor

Rαβ ≡ Rγ
αγβ. (1.45)

Contracting the remaining two indices we obtain the scalar curvature

R ≡ gαβRαβ. (1.46)

This is the last ingredient that we need to be able to write down the famous Einstein
field equations

Rαβ − 1

2
gαβR =

8πG

c2
T µν . (1.47)

Here, G is Newton’s constant and c is the speed of light. We can also modify (1.47)
by adding a term that accounts for the expansion of space, the cosmological constant
Λ

Rαβ − 1

2
gαβR =

8πG

c2
Tαβ − Λgαβ. (1.48)
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The Einstein equations formulate the connection between energy and the curvature
of space. The presence of energy distorts space and solving the equations we can
understand how particles are affected by gravity.
Next, we will derive a solution for (1.48). Given that our unvierse seems to be
homogeneous and isotropic, we will use a very particular ansatz for the metric, the
FLRW metric

ds2 = dr2 + fK(r)2
(
dθ2 + sin(θ)2dφ2

)
. (1.49)

The function fK(r) encodes the curvature in the metric and is given by

fK(r) =


K−1/2 sin(K1/2r), K > 0

r, K = 0

K−1/2 sinh(K1/2r), K < 0

. (1.50)

Here, we can see that the value of the curvature constant K determines the exact
form of the metric and hence the geometry of space. Finally, we can introduce the
time dependent scale factor and rewrite the radial coordinate as r = a(t)x. Adding
also the time component results in

ds2 = −dt2 + a(t)2
[
dx2 + fK(x)2x2dω2

]
(1.51)

where we defined dω ≡ dθ2 + sin(θ)2dφ2. We can plug (1.51) in (1.48) and after some
steps of algebra we arrive at the Friedmann equations(

ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λ

3
(1.52)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λ

3
(1.53)

One can combine the two Friedmann equations to obtain the adiabatic equation

d

dt
(ρa3c2) + p

d

dt
a3 = 0 (1.54)

and investigate it for two different limit cases.

� cold matter
For the limiting case of cold matter we have

p� ρc2. (1.55)

Hence, eq. (1.54) simplifies to

ρ ∝ 1

a3
. (1.56)
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� relativistic matter
For the second case that we study we have the maximum possible relativistic
isotropic preassure

p =
ρc2

3
. (1.57)

Using this expression in (1.54) we derive

ρ ∝ 1

a4
. (1.58)

In the following we will make the assumption that the universe consists only of these
two limiting cases.
Using the first Friedmann equation, we can define the so-called critical density, which
specifies the energy density for which the universe would be flat. The first Friedmann
equation can be written as

H2 =
8πG

3
(ρm + ρr + ρΛ)− Kc2

a2
. (1.59)

Here, we divided the energy density in different contributions. The energy density due
to matter is described by ρm and we rewrote the cosmological constant as ρΛ = Λ

8πG
.

Defining the critical density as

ρcrit =
3H2

8πG
, (1.60)

we see that if the total energy density is equal to (1.60) then K = 0, implying that
the universe is indeed flat. Since the critical density depends on H, it has different
values at different times. Denoting the present Hubble constant as H0 we can write
down the present critical density as

ρcrit,0 =
3H2

0

8πG
. (1.61)

Using these values we can rewrite the Friedmann equation as

H2 = H2
0

(
ρm
ρcrit,0

+
ρr

ρcrit,0
+

ρΛ

ρcrit,0

)
− Kc2

a2
. (1.62)

At this point it is convenient to introduce the dimensionless densities

Ωm(a) =
ρm(a)

ρcrit(a)
(1.63)

Ωr(a) =
ρr(a)

ρcrit(a)
(1.64)

ΩΛ(a) =
ρΛ(a)

ρcrit(a)
(1.65)

ΩK(a) =
ρK(a)

ρcrit(a)
. (1.66)
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In the last expression we also defined the curvature density. Combining the equations
of state (1.56) and (1.58) with ΩK,0 = −Kc2

H2
0

we can bring the Friedman equation to

its final form

H2 = H2
0

(
Ωr,0

a4
+

Ωm,0

a3
+

ΩK,0

a2
+ ΩΛ,0

)
. (1.67)

One can solve (1.67) numerically or analytically for limiting cases where one energy
form dominates. We can distinguish 3 cases: matter domination, radiation domination
and Λ-domination.

� matter domination
If we set Ωm,0 = 1 and Ωi,0 = 0 for i 6= m then we can simplify (1.67) to arrive
at

ȧ

a
= H0

1

a3/2
. (1.68)

If we set a = 0 at the time of Big Bang (t = 0), we can solve this equation and
obtain

a(t) =

(
3

2
H0t

)2/3

. (1.69)

This solution describes an expanding universe with an expansion rate that is
inverse proportional to time. Therefore, the universe is decellerating.

� radiation domination
Similarly, we can set Ωr,0 = 1 and Ωi,0 = 0 for i 6= r and reduce the Friedmann
equation to

ȧ

a
= H0

1

a2
. (1.70)

The solution is then given by

a(t) = (2H0t)
1/2 . (1.71)

Again, as in the matter-dominated period, the universe decellerates, since the
expansion rate is inversely proportional to time.

� Λ-domination
We repeat the exercise and set ΩΛ,0 = 1 and Ωi,0 = 0 for i 6= Λ. This time we
can simplify the Friedmann equation to

ȧ

a
= H0. (1.72)

Interestingly, in this case we do not have a solution for a = 0. Instead, we find
an exponentially expanding universe

a(t) = eH0t. (1.73)
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The current picture of our universe is such that space is flat, i.e. ΩK,0 ' 0 [20]. But
the universe contains matter, radiation and it is expanding, so it has a non-zero
cosmological constant. Our current understanding is such that shortly after the Big
Bang the universe underwent a period of rapid expansion called Inflation. After
Inflation the universe kept expanding and gradualy cooled down. When Inflation
ended, the universe was dominated by radiation, afterwhich a period of matter
domination followed. Then the universe entered a phase of Λ-domination. In the
main part of this work we will present an alternative scenario for the history of our
universe. This model will be motived by generic solutions of type IIB string theory.

24



Chapter 2

Beyond the Standard Model

In the following we will give a brief introduction to string theory and general concepts
that are beyond the standard models. We follow primarily [21, 22, 23, 24, 25, 26]
and refer to these references for more information on the presented subjects.

2.1 Supersymmetry

In the following we give a brief introduction to supersymmetry. As already mentioned
before, the most important concept in modern physics is the notion of a symmetry.
The basic spacetime symmetry group of nature is the so-called Poincaré group

xµ → x′µ = Λµ
νx

ν + aµ. (2.1)

Here the matrix Λ represents Lorentz transformations, which leave the metric
invariant

ΛTηΛ = η. (2.2)

Constant translations are parametrized by aµ. The generators of the Poincaré group
define the algebra

[P µ, P ν ] = 0 (2.3)

[Mµν , P σ] = i (P µηνσ − P νηµσ) (2.4)

[Mµν ,Mρσ] = i (Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ) . (2.5)

According to the famous No-Go theorem of Coleman and Mandula [27], the most
general symmetry group of the S-matrix is a direct product of the Poincaré group and
some internal symmetry group (such as the SM group). However, Haag, Lopuszanski
and Sohnius [28] pointed out that one can generalize the No-Go theorem by including
spinor generators QA

α with α = 1, 2 and A = 1, ...,N in addition to P µ and Mµν .
Here, A denotes the number of susy generators. Due to the fermionic nature of the
new generators we generalize the concept of commutators to graded algebras. Let Oa

be operators of a Lie algebra, then

OaOb − (−1)ηaηbObOa = iCc
abOc, (2.6)
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where the gradings ηa are given by

ηa =

{
0 : Oa bosonic generator

1 : Oa fermionic generator
. (2.7)

Following from this definition we can derive the additional relations

[Qα,M
µν ] = (σµν)βαQβ (2.8)

[Qα, P
µ] = 0 (2.9)

{Qα, Qβ} = 0 (2.10){
Qα, Q̄β

}
= 2 (σµ)αβ̇ Pµ. (2.11)

Here, the matrices σµν are generators of SL(2,C).
Using the commutation relations we can derive ladder operators for the so-called
supermultiplets, which are defined in terms of the generators. Supermultiplets are
irreducible representations of the supersymmetry algebra and can be split up into
sub-states with varying spins via the ladder operators. For instance, in the case of
simple N = 1 susy we have the following massless supermultiplets

λ = 0 (scalar) λ = 1/2 (fermion)

squark quark
slepton lepton
Higgs Higgsino

Table 2.1: Chiral multiplet

λ = 1/2 (fermion) λ = 1 (boson)

photino photon
gluino gluon

Wino, Zino W,Z

Table 2.2: Vector multiplet

λ = 3/2 (fermion) λ = 3 (boson)

gravitino graviton

Table 2.3: Gravity multiplet

The least invasive supersymmetric extension of the SM is called Minimal Supersym-
metric Standard Model (MSSM). Interestingly, if R-parity is conserved the lightest
supersymmetric particle (LSP) is stable. Usually the LSP is neutral (neutralino,
higgsino, photino) and is a good dark matter candidate.
In order to write down a Lagrangian that is invariant under supersymmetry tranforma-
tions we need to specify two functions, the Kähler potential K and the Superpotential
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W with

L = K(Φ,Φ†)
∣∣
D

+ (W (Φ)|F + h.c.) . (2.12)

Here K and W are functions of the superfield Φ and the subscripts D,F denote that
we select only particular terms of these expressions. The simplest chiral superfield Φ
can be written as

Φ(xµ, θα, θ̄ᾱ) = φ(x) +
√

2θψ(x) + θθF (x) + iθσµθ̄∂µφ(x) (2.13)

− i√
2

(θθ) ∂µψ(x)σµθ̄ − 1

4
(θθ)

(
θ̄θ̄
)
∂µ∂

µφ(x). (2.14)

Here, the θ’s are fermionic coordinates. In addition, one also introduces a so-called
gauge kinetic function f(Φ) which is the prefactor of the term in the Lagrangian that
describes the kinetic terms of the gauge fields. It is important to note that the Kähler
potential is a real function whereas the superpotential is holomorphic. A crucial obser-
vation is that the Kählerpotential gets corrected by perturbative and non-perturbative
corrections. However, the superpotential enjoys only non-perturbative corrections
and the gauge kinetic function feels only first order perturbative corrections and
non-perturbative corrections

K =
∞∑
n=0

K(n) +K(np), (2.15)

W = W (0) +W (np), (2.16)

f = f (0) + f (1) + f (np). (2.17)

In the main part of this work we will give particular definition of these function
appropriate for type IIB models and our particular brane setup.
Since we do not observe supersymmetry it must be a broken symmetry. Note, that
string theory does not predict a sharp energy scale at which we can expect to find
supersymmetry breaking. However, in Sec. 3 we will see that the landscape shows a
logarithmic preference for higher scale susy breaking1.
A supersymmetric theory transforms bosonic (B) degrees of freedom into fermionic
(F) ones and vice versa

δB ∼ F, δF ∼ B. (2.18)

A reasonable assumption is that the vacuum should preserves the Lorentz symmetry,
i.e. 〈F 〉vac = 0 while scalars can have a non-trivial background value 〈Bscl〉vac 6= 0.
Hence, in order to preserve the Lorentz symmetry we need 〈δB〉 = 0 while 〈δF 〉|scl
can be non-zero. In this case the transformation signals spontaneous supersymmetry
breaking, i.e. 〈δF 〉|scl is the order parameter of supersymmetry breaking. These

1At least for models that are stabilised via LVS. For KKLT models the preference might be
power-law.
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conditions can be translated into a condition on the supergravity scalar potential

VF = exp

(
K

M2
pl

)(
(K−1)ij̄DiWDj̄W

∗ − 3
|W |2

M2
pl

)
. (2.19)

Unbroken supersymmetry corresponds to 〈VF 〉 ≤ 0. Note, that a dS-background is
incompatible with unbroken supersymmetry. One possibility to break supersymmetry
is e.g. 〈F 〉 6= 0 in (2.14).
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2.2 Inflation

In this section we briefly introduce the concept of Inflation. Despite the success of
the standard cosmological picture, it has one major problem. It does not explain
why the universe is homogeneous and isotropic on large scales as we observe it today.
In fact, standard cosmology predicts the opposite. The universe should consist of
large causally disconnected patches of space. Hence, each patch should experience a
different time evolution.
The theory of Inflation suggests that an early period of accelerated expansion drived
the early universe towards a homogeneous and isotropic state. To understand this
idea better we need to clarify the concept of a horizon. A horizon limits distances
at which we can interact with future or past events. Hence, we distinguish between
the particle horizon, which determines the patch of space that we can observe in the
past and the event horizon, which defines the patch that we can causally interact
with in the future. The greatest comoving distance from which an observer at time t
will be able to receive signals travelling with c = 1 is given by

∆x(τ) = τ − τi (2.20)

=

∫ t

ti

dt

a(t)
(2.21)

=

∫ a

ai

da

aȧ
(2.22)

=

∫ ln a

ln ai

(aH)−1d ln a, (2.23)

here the Big Bang corresponds to ti or ai. We observe that the causal structure of
the particle horizon can be connected to the evolution of the comoving Hubble radius
(aH)−1. When the universe is dominated by a fluid with the equation of state w = P

ρ

we can write the the comoving Hubble radius as

(aH)−1 = H−1
0 a

1
2

(1+3w). (2.24)

We can solve the horizon problem by assuming a phase of the universe during which
the Hubble radius decreased

d

dt
(aH)−1 < 0. (2.25)

This condition can be formulated as a requirement on the fluid that dominates the
energy density during this period. Its equation of state parameter has to obey

1 + 3w < 0. (2.26)

The condition of a shrinking Hubble radius can be reformulated or related to other
conditions for inflation. For instance, it implies an accelerated expansion ä > 0 via

d

dt
(aH)−1 =

d

dt
(ȧ)−1 = − ä

(ȧ)2
. (2.27)
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Equivalently, we can write

d

dt
(aH)−1 = − ȧH + aḢ

(aH)2
= −1

a
(1− ε), (2.28)

with the slow-roll parameter ε ≡ − Ḣ
H2 . The shrinking Hubble radius then corresponds

to

ε < 1. (2.29)

In order to solve the horizon problem, we want Inflation to last for a long enough
period of time. This is achieved by keeping ε small for a sufficiently large number of
Hubble times. We can quantify this requirement with the parameter

η ≡ ε̇

Hε
. (2.30)

For |η| < 1 the change in ε is small and Inflation continues.
Concrete physical models for Inflation can be derived by writing down the parameters
ε and η in terms of the model defining quantities (e.g. the potential).
Let us give a simple example here and briefly discuss single field inflation. We assume
the existence of a single scalar field φ called the inflaton. The action that dictates
the dynamics of the inflaton coupled to gravity is given by

S =

∫
d4x
√
−g
(

1

2
R +

1

2
gµν∂µφ∂νφ− V (φ)

)
. (2.31)

Setting the metric gµν to the FRW metric and assuming a homogeneous distribution
of the inflaton, i.e. φ(t, x) ≡ φ(t) the stress-energy tensor takes the form of a perfect
fluid (1.41) with the density and pressure

ρ =
1

2
φ̇2 + V (φ) (2.32)

p =
1

2
φ̇2 − V (φ). (2.33)

Therefore, the resulting equation of state is

wφ =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (2.34)

From (2.34) we can see that the inflaton can drive an accelerated expansion (wφ <
−1/3) when the potential energy V (φ) dominates over the kinetic energy. The
inflation conditions ε, |η| < 1 can be related to the inflaton potential by

εV (φ) ≡
M2

pl

2

(
V,φ
V

)2

(2.35)

ηV (φ) ≡M2
pl

V,φφ
V

. (2.36)
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The parameters εV and ηV are called potential slow-roll parameters and inflation
ends when

εV (φend) ≈ 1. (2.37)

The number of e-folds during inflation is given by

N(φ) = ln
aend
a
. (2.38)

In order to solve the horizon and flatness problem the total number of e-folds has to
exceed about Ntot > 60.
One of the tasks of string phenomenology is to provide a UV embedding of these
ideas and give a derivation and physical explanation of the inflaton.
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2.3 String Theory

One of the main motivations for string theory is to find a theory of Quantum Gravity.
Although, Einstein’s General Relativity is in excellent agreement with experiment, it
fails on small scales. When we try to quantize the metric field we observe infinities.
Hence, we say that General Relativity is non-renormalizable. But even if it would
be renormalizable, like the QFT’s we use in the SM, it would be only an effective
theory which is valid up to the cut-off scale. From this point of view, even the very
successfull QFT’s like QED, are not very satisfactory. The fact that we observe
ultra-violet loop divergencies, implies that there must be a more fundamental theory
at higher energy scales.
One candidate for such a UV complete theory is String Theory (ST). The basic
assumption of ST is simple: The fundamental objects in nature are not pointlike
but 1-dimensional. Starting with this idea and following the standard procedures
of quantization and general coordinate invariance we arrive at a theory that unifies
General Relativity and Yang-Mills theories.
The starting point is the famous Nambu-Goto-action. It describes the dynamics
of a two dimensional object Σ, called the worldsheet. It is the stringy equivalent
of a worldline produced by a 0-dimensional particle. We use two different sets
of coordinates in this context. The worldsheet Σ is embedded in a spacetime
of not specified dimension d. The coordinates that encode the embedding are
Xµ(τ, σ) ∈ R(1,d−1). The second set of coordinates are ξa = (τ, σ) with a = 0, 1,
which are the temporal and spatial coordinates on the worldsheet. Note, Σ can have
two different topologies due to two different possible topologies of a string. The
string can either be open, which corresponds to a worldsheet that resembles an actual
sheet and the string can be closed, which leads to a cylinder-like worldsheet. The
string action is given by

SNG = −T
∫

Σ

dA, (2.39)

where dA is the area element of Σ

dA =

√
− det

(
∂Xµ

∂ξa
∂Xν

∂ξb
ηµν

)
d2ξ, (2.40)

and T is the string tension and ηµν is the d-dimensional spacetime metric. The string
tension is related to the so-called Regge slope α′ by T = 1

2πα′
, which is related to

the string length ls = 2π
√
α′. Due to the appearance of the square root in (2.39)

quantization is rather difficult. Therefore, it is standard procedure to introduce an
auxiliary field hab(ξ

a), which can be seen as the metric on the worldsheet. Using
this new field one can define the Polyakov action, which is equivalent to the Nambu-
Goto-action

SP = −T
2

∫
Σ

d2ξ
√
− dethhab(ξ)∂aX

µ(ξ)∂bX
ν(ξ)ηµν . (2.41)
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The conceptual understanding of string theory at this point is the following. The
spacetime coordinates Xµ(ξ) are promoted to dynamical fields on the 2-dimensional
worldsheet. Hence, we study d 2-dimensional scalar fields Xµ(ξ) coupled to the
dynamical worldsheet metric hab(ξ). Therefore, bosonic string theory is equivalent
to 2-dimensional gravity coupled to scalar fields.
It is important to note that the Polyakov action enjoys various symmetries. Given
the two different interpretations of Xµ, one has to distinguish between spacetime
symmetries and symmetries defined on the worldsheet.

� Spacetime symmetries
The Polyakov action enjoys a d-dimensional Poincare-invariance

Xµ(ξ)→ Λµ
νX

ν(ξ) + V µ, Λ ∈ SO(1, d− 1). (2.42)

Interestingly, from the viewpoint of the 2-dimensional field theory on the
worldsheet the Poincare symmetry can be interpreted as a global internal
symmetry.

� Worldsheet symmetries

– Local diffeomorphism invariance
The worldsheet coordinates enjoy a reparametrization invariance of the
form

ξa → ξ̃a(ξ) = ξa − εa(ξ). (2.43)

– Weyl invariance
The worldsheet is invariant under conformal transformations

hab → e2Λ(ξ)hab = hab + δhab +O(Λ2). (2.44)

The presence of this symmetry is crucial for the success of string theory
and is due to the 2-dimensional nature of the worldsheet.

In order to solve the dynamics described by (2.41), we need to specify the appropriate
boundary conditions. We assume that the variation of the fields vanish at the temporal
boundary, i.e. δX|inf

τ=−inf = 0. For the closed string the spatial boundaries are trivial
due to its periodic nature

Xµ(τ, σ = 0) = Xµ(τ, σ = ls). (2.45)

Hence, the boundary terms cancel each other out. In the case of open strings,
however, we need to specify appropriate boundary conditions, s.t. the variation
vanishes. We can chose between

� Neumann boundary conditions:

∂σX
µ|σ=0 and/or σ=ls

= 0, (2.46)
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� Dirichlet boundary conditions:

δXµ|σ=0 and/or σ=ls
= 0. (2.47)

Note, the Dirichlet condition corresponds to a situation where the string end
points are fixed in the µ-directions.

After choosing appropriate coordinates we can solve the equations of motion derived
from (2.41). For the closed string we obtain a sum of left- and right-moving waves
along the string

Xµ = Xµ
L +Xµ

R, (2.48)

with

Xµ
R(τ − σ) =

1

2
(xµ + cµ) +

1

2

2πα′

ls
pµ(τ − σ) + i

√
α′

2

∑
n∈Z,n6=0

1

n
αµne

− 2π
ls
in(τ−σ), (2.49)

Xµ
R(τ + σ) =

1

2
(xµ − cµ) +

1

2

2πα′

ls
pµ(τ + σ) + i

√
α′

2

∑
n∈Z,n6=0

1

n
α̃µne

− 2π
ls
in(τ+σ). (2.50)

Here, αµn, α̃
µ
n, are independent right-/left-moving Fourier modes and xµ is the center-

of-mass position at τ = 0.
For the open string we can perform the same computation. However, in this case we
can impose different boundary conditions for both string end points: (NN), (DD)
and (DN)/(ND). In the case of (NN) boundary conditions we obtain

Xµ(τ, σ) = xµ +
2πα′

ls
pµτ + i

√
2α′

∑
n∈Z,n6=0

1

n
αµne

−i π
ls
nτ cos

(
nπσ

ls

)
, (2.51)

for the (DD) case we find

Xµ(τ, σ) = xµ0 +
1

ls
(xµ1 − x

µ
0)σ +

√
2α′

∑
n∈Z,n 6=0

1

n
αµne

−i π
ls
nτ sin

(
nπσ

ls

)
, (2.52)

and for the mixed case (ND) we obtain

Xµ(τ, σ) = xµ + i
√

2α′
∑

n∈Z+ 1
2

1

n
αµne

−i pi
ls
nτ cos

(
nπσ

ls

)
. (2.53)

The fact that the Dirichlet boundary condition fix the string end points introduces the
concept of a Dp-brane. Dp-branes are dynamical (p+1)-dimensional hypersurfaces
of spacetime on which open strings can end. Their excitations are related to the
attached open strings. In 10 dimensions the massless open string excitations are
N = 12 vector multiplets in the adjoint of SO(32). On a Dp-brane one has a U(1)

2See Sec. 2.1 for more information on supersymmetry.
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vector multiplet while on a stack of N branes one has a vector multiplet in the
adjoint of U(N). Note, that the gauge theory is localized on the brane.
It turns out that D-branes carry RR-charge

Qe =

∫
∗Fp+2, (2.54)

Qm =

∫
Fp+2, (2.55)

which satisfy the Dirac quantization condition

QeQm = 2πn, n ∈ Z. (2.56)

This can lead to problems on a compact manifold. However, it is possible to avoid
these problems via orientifolds. It turns out that it is possible to mod out the string
background by an isometry ΩG, which includes worldsheet parity Ω that acts as
Ω : σ → l−σ. If we include a space-time isometry G, which includes an involution σ∗,
we can project within the same theory. In a moment we will see that one can define
5 different 10 dimensional manifestations of string theory. One of those theories is
called type IIB. In this case we have

σ∗(Ω3) = ±Ω3, σ∗(J) = J. (2.57)

These transformation can be used to fix coordinates and define orientifold planes.
For instance, the plus sign in (2.57) fixes no or two coordinates, which corresponds to
O9 and O5 orientifold planes, whereas the minus sign fixes one or three coordinates,
which corresponds to O7 and O3 orientifold planes.
So far, we discussed only the bosonic string. However, it turns out that in order
to obtain a sensible theory (e.g. no tachyons in the spectrum) we also need to add
fermionic degrees of freedom. This is achieved by adding a fermionic part to the
bosonic string action. Using the worldsheet symmetries in order to pick a particular
form of the worldsheet metric (i.e. flat gauge), we can write down the action as

S = − 1

8π

∫
d2ξ

2

α′
∂aX

µ∂aXµ + 2iψ̄µAγ
a
AB∂aψµB. (2.58)

The second term describes the dynamics of two dimensional worldsheet spinors ψµA.
It turns out that the fields Xµ and ψµA enjoy a so-called supersymmetry which was
discussed in Sec. 2.1 in more detail. Solving the dynamics of (2.58) and performing
a careful quantization procedure, we obtain a crucial consistency condition. De-
pending on what kind of quantization procedure we choose (canonical, light-cone,
path-integral...) the consistency condition manifests itself in a different way, but the
physical implication stays the same. A consistent formulation of superstring theory
requires d=10 spacetime dimensions.
Analyzing the mode expansions of the bosonic and fermionic solutions we can derive
the spectrum of the theory. In two spacetime dimensions the superalgebra splits into
what is called (p, q)−superpsymmetry where p denotes the left-moving supercharges

35



and q the right-moving supercharges. In 10 dimensions and for (1, 1)−supersymmetry
the worldsheet hosts two inequivalent theories called type IIA and type IIB. Both
theories are N = 2 supersymmetric but type IIA is non-chiral whereas type IIB is
chiral. If we change the supersymmetry to (0, 1) on Σ, then we find three inequivalent
theories, type I, heterotic SO(32) and heterotic E8 × E8. Type I theories include
closed and open strings and all three are N = 1 supersymmetric. The spectrum of
type IIA and type IIB theories in 10 dimonesions is summarized in Table 2.4.

Type IIA Type IIB

NS-NS G(M,N), B[M,N ], φ G(M,N), B[M,N ], φ
R-R C1, C3 l, C2, C

∗
4

NS-R ΨM+,ΨM−, λ+, λ− Ψ1,2
M+, λ

1,2
−

Table 2.4: Spectrum of type IIA/IIB theories.

Here, Cp are antisymmetric tensors in p indices. The fields G(M,N) and B[M,N ] are the
Graviton and the so-called Kalb-Ramond field. The field φ is the dilaton, which is
related to the string coupling via gs ∼ e〈φ〉. The gravitino is denoted by ΨM±, where
± indicates the 10d chirality and λ is the dilatino. The labels NS (Neveu-Schwarz)
and R (Ramond) denote different ways of expanding the fermionic fields.
In this work we are primarily interested in type IIB string theory, due to its better
moduli stabilization properties. However, it turns out that all 5 theories are related
via so-called dualities. Dualities can be view as transformations that relate weakly
and strongly coupled systems, in the sense that they transform the couplings like
g → 1/g. Since all 5 manifestations of string theory are related by various dualities,
they are all connected via a more fundamental underlying theory called M-theory.
The deep structure of M-theory is not fully understood.
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2.4 Compactification

Let us now come back to the observation that consistency of the quantization
procedure requires the existence of 10 spacetime dimensions. Since we observe only
4-dimensional spacetime, with 1 temporal and 3 spatial dimensions, we need to find a
way to explain the remaining 6 dimensions. The idea is, that these extra dimensions
are compactified on an internal manifold. The intuition behind this statement is the
following: the extra dimensions are too small to be observed. We clarify this concept
with the example of Kaluza-Klein compactification [29].
We consider a field theory in D = d+ 1 spacetime dimensions. We choose the d’th
dimension to be ’rolled up on a circle’, i.e. for the coordinate xd we have the following
periodic relation

xd = xd + 2πR, (2.59)

where R is the radius of the circle. The circle S1, on which xd now ’lives’, is called
the internal space. This scenario typically has 3 consequences:

� The spectrum hosts a so-called Kaluza-Klein tower of massive states in (D− 1)
dimensions. To see this, let us introduce two sets of labels. Let M,N =
0, 1, ..., D − 1, D and µν = 0, 1, ..., D − 1. Now, let us consider a free massless
scalar in D dimensions

∂M∂
MΦ(xM) = 0. (2.60)

In order to respect the periodicity of the d’th dimension, Φ must also be
periodic in xd. The most general ansatz is

Φ(xM) =
∞∑

n=−∞

φn(xµ)ei
n
R
xd . (2.61)

Plugging the ansatz into (2.60) yields

∂µ∂
µφn(xµ) =

n2

R2
φn(xµ) ∀n. (2.62)

We observe that the n’th Fourier mode φn(xµ) appears as a scalar field of mass
m2
n = n2

R2 . The set of all these massive scalars is called the Kaluza-Klein tower
of states. Note, the zero-mode φ0 is massless and independend of xd.
In order to obtain a low-energy effective field theory from the full dimensional
theory we take the limit R→ 0. In this case the mass of the lowest-lying state
m2

1 →∞ and the KK tower disappears from the low-energy spectrum. Hence,
at energies E � 1

R
the theory looks (D − 1)-dimensional.

� We find an extra U(1) symmetry in (D − 1) dimensions.
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� We find massless scalar fields called moduli fields in (D− 1) dimensions. These
fields typically parametrize the geometric properties of the internal manifold.
One crucial observation is that moduli fields are not constrained by a potential.
Hence, they are massless scalars and would correspond to unobserved fifth
forces. In order to make contact with our 4-dimensional world it is crucial to
generate a potential for these fields and make them massive.

Following the same logic we can apply compactification in string theory. Here, the
compactification ansatz is of the form

M1,9 =M1,3 ×M6, (2.63)

with M1,3 being a maximally symmetric 4-dimensional space, i.e. deSitter or Anti-
deSitter, whileM6 is the 6-dimensional internal manifold. For this case we can write
the free Klein-Gordon equation as

(�1,3 + ∆6)φ(x, y) = 0. (2.64)

Here, x ∈ M1,3 and y ∈ M6. The two differential operators act on the respective
variables. We can expand φ(x, y) in terms of the eigenfunctions of the wave-operator
∆6

φ =
∑
n

φ(n)(x)θ(n)(y). (2.65)

Combining (2.64) and (2.65) we obtain(
�1,3 +m2(n)

)
φ(n)(x) = 0, (2.66)

where m2(n) are the eigenvalues of θ(n)(y). The scale of m is related to the so-called
Kaluza-Klein scale

m ∼ 1

lKK
, V6 ∼ l6KK , (2.67)

where V6 is the volume of the internal manifold. It is important to note, that although
the 10-dimensional theory is unique (up to dualities), its 4-dimensional manifestation
is not. Every 4-dimensional effective theory obtained from the full 10-dimensional
theory by compactification corresponds to a choice of vacuum, i.e. to a dynamical
solution of the 10-dimenional theory. The set of 4-dimensional solutions of string
theory is called the landscape of string vacua. Part of the string spectrum are gauge
potentials Cp−1 with a field strength Fp = dCp−1. It turns out that the field strength
can have non-trivial background values called background fluxes. Different ways of
realizing the fluxes enlarges the number of consistent vacua tremendously and is the
origin for the landscape of string vacua.
It can be shown that for a consistent compactification procedure the internal manifold
needs to be a Calabi-Yau 3-fold. Let us briefly discuss the main properties of such
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an object. Almost complext manifolds of even dimension d = 2n are those that are
equipped with a real map I from the tangent space to itself

I2 = −1. (2.68)

The map I is called almost complex structure, as having n (+i) and n (−i) eigenvalues,
allows the definition of holomorphic and anti-holomorphic vectors. As an example,
let us consider d = 2

I =

(
0 1
−1 0

)
. (2.69)

The eigenvectors are then given by

∂

∂z
≡ ∂

∂x1
+ i

∂

∂x2
,

∂

∂z̄
≡ ∂

∂x1
− i ∂

∂x2
. (2.70)

Given an almost complex structure for the tangent space, one can define the projectors

P± =
1

2
(1∓ iI) , (2.71)

which projects onto the holomorphic and anti-holomorphic bundles. An almost
complex structure is called a complex structure if a holomorphic one-form dz can be
integrated globally.
A manifold is symplectic if there is a globally defined and non-vanishing two-form J
such that

dJ = 0. (2.72)

This defines a symplectic product

〈v, w〉J ≡ J(v, w) = vmJmnw
n. (2.73)

Similarly to complex coordinates zi for complex manifolds, in symplectic manifolds
one can define Darboux coordinates (xi, yi) such that

J =
n∑
i=1

dxi ∧ dyi. (2.74)

Kähler manifolds are complex and symplectic manifolds for which the complex and
symplectic structures are compatible. This means that J is (1, 1) in terms of I, i.e.

J = Jijdz
i ∧ dz̄ j̄. (2.75)

The complex structure I and the symplectic two-form J together define the metric g
via

gmn = JmpI
p
n. (2.76)

This metric can be derived from a real scalar function K, the Kähler potential

Jij̄ = igij = i∂i∂̄j̄K. (2.77)

The deformations of the Calabi-Yau metric, which do not destroy the Calabi-Yau
conditions correspond to moduli scalars in the low energy effective action.
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� δgij̄
These are deformations of the Kähler form and can be written as

δgij̄ = ita(x)ωaij̄, a = 1, ..., h(1,1), (2.78)

where ωa are harmonic (1, 1)-forms on Y , which form a basis of H(1,1)(Y ). The
scalar fields ta are called Kähler moduli. The geometric interpretation of these
moduli is that they control the size of 2-cycles of Y .

� δij
These deformations of the complex structure are parametrized by complex
moduli za, which are in one-to-one correspondence with harmonic (1, 2)-forms
via

δgij =
i

||Ω||2
z̄a(x)χ̄aīij̄Ω

īj̄
j , a = 1, ..., h(1,2), (2.79)

here, Ω is the holomorphic (3, 0)-form and χ̄a denotes a basis of H(1,2).

In order to understand the last property of a Calabi-Yau we need to introduce
the notion of cohomology classes.
Closed p-forms Ap are p-forms such that dAp = 0, where d is the exterior derivative.
Let us call Cp(M) the space of all closed p-forms. Exact p-forms Bp are such that
Bp = dCp−1 for some globally defined (p− 1)-form. Let us call Zp(M) the space of
all exact forms. Then, the p-th de Rham cohomology Hp is defined by

Hp(M) =
Cp(M)

Zp(M)
. (2.80)

The elements of Hp are equivalence classes of closed forms and are called cohomology
classes. The dimension of Hp are called the Betti numbers bp

dimHp(M) = bp. (2.81)

The Betti numbers are so-called topological invariants since they are independent of
the metric that we define on the manifold. On a complex manifold one can define
cohomology classes for (p, q)-forms. Furthermore, one can define another cohomology
called the Dolbeault cohomology, which is analogous to the de Rham cohomology but
with the exterior derivative d replaced by the holomorphic derivative ∂. On Kähler
manifolds both cohomologies coincide

Hp,q
d = Hp,q

∂ = Hp,q

∂̄
. (2.82)

The dimensions of these cohomology classes are denoted by the Hodge numbers hp,q.
An important cohomology class is the one that hosts the Ricci two-form

R ≡ RmnpqJ
pqdxm ∧ dxn. (2.83)
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This is a closed form on a Kähler manifold and therefore defines a cohomology class,
the first Chern class

c1 =
1

2π
[R] . (2.84)

Finally, Calabi-Yau manifolds are Kähler manifolds on which the first Chern class is
c1 = 0. An important proterty of Calabi-Yau manifolds is that the only non-trivial
Hodge numbers are h1,1 and h1,2. A representative of this cohomology class is the
holomorphic 3-form Ω

Ω =
1

6
Ωijkdz

i ∧ dzj ∧ djk. (2.85)

Equivalently to the complex structure I, this form tells us what the complex coordi-
nates are.
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2.5 Flux compactification

As already mentioned, part of the origin for the landscape of string theory is the
possibility to turn on background fluxes. Hence, the concept of flux compactification
is a crucial ingredient in a realistic string theory model. Type IIB compactification
on a Calabi-Yau threefold Y with non-trivial NSNS and RR 3-form field strength
backgrounds H3 and F3 have been extensively studied [30, 31]. It was shown that
the fluxes must obey a certain consistency condition, the Bianchi identities

dF3 = 0, dH3 = 0, (2.86)

and they should be quantized in the sense

1

(2π)2α′

∫
Σ

F3 ∈ Z,
1

(2π)2α′

∫
Σ

H3 ∈ Z, (2.87)

for any 3-cycle Σ. An important observation is that, in order to avoid no-go theorems
about the existence of configurations of fluxes satisfying the equations of motion, it
is necessary to include orientifold 3-planes in the compactification. Hence, we will
consider type IIB orientifolds with these objects. The most straightforward way to
understand the need for orientifold planes is to investigate the type IIB supergravity
Chern-Simons coupling ∫

M4×Y
H3 ∧ F3 ∧ C4, (2.88)

where C4 is the IIB self-dual 4-form gauge potential. This coupling implies that upon
compactification the flux background contributes with a positive coefficient Nflux

to a tadpole for C4. In addition, fluxes contribute positively to the energy of the
configuration, due to the 2-form kinetic terms. The only way to cancel these tadpoles
is to introduce objects with negative RR C4-charge and negative tension, to cancel the
RR tadpole and also to compensate the vacuum energy of the configuration. Having
O3-planes in the configuration, it is natural to consider the possibility of adding NQ3

D3-branes as well. Hence, the RR tadpole cancellation constraint becomes

NQ3 +Nflux +QO3 = 0. (2.89)

One can normalize the charge such that a D3-brane in covering space has charge +1.
With this convention a O3-plane has charge −1/2 an we obtain

Nflux =
1

(4π2α′)2

∫
Y

H3 ∧ F3 =
1

(4π2α′)2

i

2Im(S)

∫
Y

G3 ∧ Ḡ3 (2.90)

where

G3 = F3 + iSH3. (2.91)
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Finally, in order to satisfy the equations of motion, the flux combination G3 must
be imaginary self-dual with respect to the Hodge operation defined in terms of the
Calabi-Yau metric on Y

∗G3 = iG3. (2.92)

This can be seen as the minimization of the scalar potential following from the flux
induced superpotential

W ∼
∫
Y

G3 ∧ Ω. (2.93)

These conditions guarantee the existence of a consistent supergravity solution for
the different relevant fields in the configuration, metric and 4-form. Note, eq (2.92)
should not be seen as an additional contraint on the fluxes. Rather, for a set of
fluxes in a fixed topological sector, eq. (2.92) is a condition on the scalar moduli
which determine the internal metric. The scalar potential is minimized at points in
moduli space when (2.92) is satisfied, while fluxes induce a positive scalar potential at
other points. Hence, introduction of fluxes leads to a natural mechanism to stabilise
moduli.
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2.6 Large Volume Scenario

One of the bigget challenges in string theory is to provide a consistent and reliable
mechanism for moduli stabilisation. Given the fact that these fields are massless,
they would introduce unobsorved fifth-forces in the low-energy theory. In order to
overcome this problem one has to find a mechanism that generates a potential and
therefore a mass term for these fields.
One possible approach to this issue is the so-called Large Volume Scenario (LVS)
[32]. The distinguished feature of this stabilisation mechanism is that one combines
non-perturbative effects [33] with perturbative corrections such as α′-corrections.
The combination of both effects leads to a geometrical scenario where the internal
manifold is exponentially large. If one also considers string loop corrections [34] the
set of possible Calabi-Yau manifolds gets extended by manifolds that have a fibred
structure.
In this work we will be interested in type IIB Calabi-Yau orientifold compactifications
with background fluxes, which preserve N = 1 supersymmetry in 4D. As usual in
a supersymmetric theory, the resulting effective low-energy theory is characterised
by a Kähler potential K, a superpotential W and a gauge kinetic function f . The
scalar potential of the theory takes the standard supergravity form [35]

V = eK/M
2
p

(
Kij̄DiWDj̄W̄ − 3

|W |2

M2
p

)
, (2.94)

here the index i runs over the axio-dilaton S = e−φ + iC0, h(1,1) Kähler moduli and
h(2,1) complex structure moduli. Where we denote the Kähler moduli as T and the
complex structure as U . Without any corrections, the tree-level Kähler potential is
given by

Ktree

M2
p

= − ln(S + S̄)− ln(V)− ln

(
−i
∫
Y

Ω ∧ Ω̄

)
. (2.95)

Here V is the Calabi-Yau volume in Einstein frame (in units of the string length
ls = 2π

√
α′), the holomorphic (3, 0)-form of the Calabi-Yau is denoted as Ω. The

volume is related to the Kählerform via

V =
1

6

∫
Y

J ∧ J ∧ J =
1

6
kijkt

itjtk, (2.96)

where the numbers kijk are related to the triple intersection numbers of the Calabi-
Yau and the ti are the 2-cycle volumes. We can relate the 2-cycle volumes with the
volume of the Poincaré dual 4-cycles via

τi =
∂V
∂ti

=
1

2

∫
Y

Di ∧ J ∧ J =
1

2
kijkt

jtk. (2.97)

The scalar part of the chiral superfield that defines the effective 4D action is Ti =
τi + ibi, where the axions bi are components of the RR 4-form C4 along the 4-cycle
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Poincaré dual to Di.
As we have seen in the previous section, when we turn on background fluxes G3 =
F3 + iSH3, we generate an effective superpotential of the form

Wtree ∼
∫
Y

G3 ∧ Ω. (2.98)

This procedure stabilises the axio-dilaton S and the U -moduli. However, without
considering any higher order corrections, the Kähler moduli remain massless since
Wtree does not depend on Ti.
In order to generate mass terms for the Kähler moduli we need to consider corrections.
Let us start by discussing non-perturbative corrections to the superpotential W . As
we have seen in Sec. 2.1 the non-renormalisation theorem forbids the superpotential
to be corrected perturbatively. Typically non-perturbative corrections to W are
due to Euclidean D3 brane instatons wrapping 4-cycles (ED3) or due to gaugino
condensation in the supersymmetric gauge theories located on D7 branes which wrap
internal 4-cycles. We can describe both effects with a superpotential of the form

W =
M3

p√
4π

(
W0 +

∑
i

Aie
−aiTi

)
. (2.99)

Here, Ai corresponds to threshold effects and can depend on the U moduli and the
D3 position moduli but not on Ti. The parameter ai specifies the nature of the
non-perturbative effect. For ED3 branes we have ai = 2π and ai = 2π/N for gaugino
condensation in an SU(N) gauge theory. Plugging (2.99) in (2.94) we can determine
the correction to the scalar potential due to non-perturbative effects

δV |(np) = eK0Kjī
0

(
ajAjaiĀie

ajTj+aiT̄i −
(
ajAje

−ajTjW̄∂īK0 + aiĀie
−aiT̄iW∂jK0

))
.

(2.100)

Here, we have defined K0 = −2 lnV .
Let us now discuss the perturbative effects. The Kähler potential gets corrected at
each order in the α′ expansion. The leading order α′ corrections modifies the Kähler
potential such that we obtain

K

M2
p

= −2 ln

(
V +

ξ

2g
3/2
s

)
' −2 lnV − ξ

g
3/2
s V

, (2.101)

where the factor ξ is given by ξ = − χζ(3)
2(2π)3

. Here χ is the Calabi-Yau Euler number

and the Riemann zeta function is ζ(3) ' 1.2. Again, combining the corrected Kähler
potential with the supergravity scalar potential we obtain the correction to the scalar
potential due to α′ corrections

δV |α′ = 3eK0 ξ̂

(
ξ̂2 + 7ξ̂V + V2

)
(
V − ξ̂

)(
2V + ξ̂

)2W
2
0 '

3ξW 2
0

4g
3/2
s V3

, (2.102)
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here we defined ξ̂ ≡ ξ/g
3/2
s . In order for the perturbative expansion to be valid we

need V � ξ̂ � 1.
The next source of corrections that modify the Kähler potential are string loop
corrections. Their form was conjectured to be [36]

δK|gs ∼
h(1,1)∑
i=1

gsCKKi (U, Ū)(ailt
l)

V
+
∑
i

CWi (U, Ū)

(ailtl)V
. (2.103)

The first term originates from the exchange of closed strings, which carry Kaluza-
Klein momentum, between D7- and D3-branes. It is valid for vanishing open string
scalars and is based on the assumption that all h(1,1) 4-cycles of the Calabi-Yau
are wrapped by D7-branes. The second term in (2.103) is due to the exchange of
winding strings between intersecting stacks of D7-branes. The functions CKK

i (U, Ū)
and CW

i (U, Ū) are unknown. But since these functions do not depend on the
Kähler moduli we can regard them as O(1) constants since the complex structure
moduli are already stabilised by the background fluxes. It was shown in [37] that
for an arbitrary Calabi-Yau background the leading contribution of (2.103) to the
scalar potential vanishes, making the loop corrections sub-leading with respect to α′

corrections. Again, combining the corrected Kähler potential with the expression for
the supergravity scalar potential we obtain the correction of the scalar potential due
to loop corrections

δV |gs =
((
gsCKKi

)2
aikaijK

0
kj̄ − 2δKW

(gs)

)W 2
0

V∈
. (2.104)

Combining the tree-level expression and the various corrections we can write down
the scalar potential

V = Vtree + δV |(np) + δV |α′ + δV |gs (2.105)

=
gse

KcsM4
p

8πV2

[
Kjī

0 ajAjaiĀi e
−(ajTj+aiT̄i) + 4W0

∑
i

aiAiτi cos(aibi)e
−aiτi (2.106)

+

[
3ξ

g
3/2
s

+
∑
i

(
g2
s(CKKi )2

(
1

2

t2i
V
− Aii

)
− 8

CWi
(ailtl)

)]
W 2
o

4V

]
. (2.107)

Here, we have defined Aij ≡ kijkt
k.
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Chapter 3

SUPERSYMMETRY
STATISTICS

For several decades, the idea of supersymmetry has been one of the central ideas in
both phenomenological and formal aspects of high energy physics. From the point
of view of phenomenology, it furnishes an elegant solution to the gauge hierarchy
problem and provides natural dark matter candidates. Furthermore, the theory is
supported by several sets of data via radiative corrections: gauge coupling unification,
the value of the top mass, and the value of the Higgs mass which falls within the
window allowed by the Minimal Supersymmetric Standard Model (MSSM). For
a detailed discussion of the recent status of supersymmetric phenomenology, see
[38] and references therein. From a more formal point of view, supersymmetry
plays a key rôle in making string theory a consistent theory of quantum gravity.
(Approximately) supersymmetric string compactifications are typically stable, as
supersymmetry protects solutions from various instabilities. Supersymmetric partners
of the Standard Model (SM) are being actively searched for at the LHC, with null
results thus far. Given this, the time is ripe to rethink the following question: At
what scale should we expect to find supersymmetry?

It is important to understand if string theory can provide guidance in this regard.
The literature on supersymmetry breaking and its mediation in string theory is
vast, much of it focused on constructions of specific supersymmetry breaking and
MSSM-like sectors (see [39, 40, 41, 42, 43] for a review of these and other aspects of
string phenomenology). A complementary line of inquiry, starting with the seminal
work [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55], has been to frame the question in
terms of statistical distributions in the landscape of flux vacua [56]. As described
in [47], this program relies on several features of flux compactifications: they are
the most well-understood string compactifications with moduli stabilisation and
broken supersymmetry and thus provide a fertile arena where quantitative answers
may be extracted; there are many vacua that at least roughly match the SM; the
number of vacua is so large that statistical solutions make sense; and no single
vacuum is favoured by the theory. These studies found a preference for high scale
supersymmetry due to a uniform distribution of the supersymmetry breaking scale
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[47, 50, 51]. This result has been obtained by taking the distribution of the relevant
F-terms to be as given by the dilaton and complex structure F-terms, while the
Kähler moduli F-terms have been neglected since these fields are stabilised only
beyond tree-level.

In this section we revisit the statistical distribution of the supersymmetry breaking
scale in the type IIB flux landscape, paying particular attention to the stabilisation
of the Kähler moduli. The motivation for our work comes from the fact that the
dilaton and complex structure F-terms, if non-zero, typically give rise to a runaway
for the Kähler moduli, unless they are tuned to be small as in a recent dS uplifting
proposal [57]. This implies that stable vacua where moduli stabilisation is under
control require the dilaton and complex structure F-terms to be suppressed with
respect to the F-terms of the Kähler moduli. It is therefore the distribution of the
F-terms of the Kähler moduli which determines the statistics of the supersymmetry
breaking scale in the landscape.

More precisely, in type IIB flux compactifications the complex structure moduli
and the dilaton are fixed supersymmetrically at semi-classical level by 3-form fluxes
[30]. As we pointed out above, this supersymmetric stabilisation ensures the absence
of instabilities along the Kähler moduli directions which are flat at tree-level due to
the well-known ‘no-scale’ property of the low-energy effective action [58, 59, 60, 61].
At this level of approximation, the cosmological constant vanishes and supersymmetry
is broken due to non-zero F-terms of the Kähler moduli. However, due to the no-scale
structure, the scale of the gravitino mass is unfixed and the soft terms might be zero
(as in models where the SM is realised via D3-branes [62, 63, 64, 65]). The inclusion
of no-scale breaking effects, which can come from either perturbative contributions
to the Kähler potential or non-perturbative corrections to the superpotential, is
therefore crucial to stabilise the Kähler moduli, to fix the supersymmetry breaking
scale and to determine the soft terms. Kähler moduli stabilisation thus allows to
write the gravitino mass (and consequently the soft terms) in terms of microscopic
parameters like flux quanta or the number of D-branes. In turn, exploiting these
relations and the knowledge of the distribution of these underlying parameters, one
can deduce the distribution of the supersymmetry breaking scale in the landscape.

We will try to perform a systematic study of the interplay between Kähler moduli
stabilisation and the statistics of the supersymmetry breaking scale by considering
three general scenarios: (i) models with purely non-perturbative stabilisation like
in KKLT vacua [33]; (ii) models where the Kähler moduli are frozen by balancing
perturbative against non-perturbative effects as in the Large Volume Scenario (LVS)
[32]; and (iii) models with purely perturbative stabilisation [66]. We primarily
study the distributions focusing on vacua with zero cosmological constant, and do
not explore the joint distribution of the cosmological and supersymmetry breaking
scale in detail (although in the case of LVS we argue that the distribution of the
supersymmetry breaking scale should remain the same for a wide range of values of
the cosmological constant, see below).

Interestingly, we find that KKLT and perturbatively stabilised vacua behave
similarly since in both cases the gravitino mass is governed by flux-dependent
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parameters (as the vacuum expectation value of the tree-level superpotential in KKLT
models) which are uniformly distributed. Hence the statistics of supersymmetry
breaking obeys a power-law behaviour implying that in these cases high scale
supersymmetry is preferred, unless tempered by anthropics [67]. Notice that these
results match those derived in [47] since in these cases the F-terms of the Kähler
moduli, similarly to the dilaton and complex structure F-terms, turn out to be
uniformly distributed.

The situation in LVS models is instead different. In fact, we find that in this case
the distribution of the supersymmetry breaking scale is exponentially sensitive to the
distribution of the string coupling. Due to the exponential behaviour and the fact
that the string coupling is uniformly distributed as a flux-dependent variable, the
distribution of the soft terms turns out to be only logarithmic. This dependence gives
rise to a large number of vacua with low-energy supersymmetry and reproduces in
detail previous expectations following an intuition based on dynamical supersymmetry
breaking [68, 69, 70, 71] (although a significant difference is that [68, 69] found a
logarithmic distribution even in the case of KKLT, which we do not find).1

LVS models are particularly interesting also because they provide examples
where a crucial assumption formulated in [47] can be explicitly shown to hold. This
is the assumption that the distribution of the supersymmetry breaking scale is
decoupled from the one of the cosmological constant. This was justified in [47] by
relying on the possible existence of several hidden sector models which contribute
to the vacuum energy but not to supersymmetry breaking. In LVS models the
depth of the non-supersymmetric AdS vacuum scales as VLV S ∼ −m3

3/2Mp, where
m3/2 is the gravitino mass and Mp the Planck scale. Hence any hidden sector
responsible for achieving a nearly Minkowski vacuum contributes to the scalar
potential with an F-term that scales as Fhid ∼ m

3/2
3/2M

1/2
p . In turn, in a typical gravity

mediation scenario, the contribution to the soft terms from this hidden sector would be
suppressed with respect to the gravitino mass since Msoft ∼ Fhid/Mp ∼ εm3/2 � m3/2

with ε =
√
m3/2/Mp � 1.2 Note that this implies that the distribution of the

supersymmetry breaking scale is the same for all vacua with cosmological constant
in the range ±VLV S.

We have therefore shown that, while two alternative statistics of the super-
symmetry breaking scale have been advanced before in the literature (power-law
distributions by assuming democratic distributions of complex structure F-terms
and logarithmic distributions by appealing to dynamical supersymmetry breaking),
the different behaviours are neatly categorized by different stabilisation mechanisms.
In order to determine if the distribution of the supersymmetry breaking scale is
power-law or logarithmic, one should therefore determine the relative preponderance
of LVS and KKLT vacua in the type IIB landscape. Given that LVS models do not
rely on any tuning of the tree-level superpotential, one would naively expect them to

1We refer to [72, 73] for other early studies in this general direction.
2An exception to this argument could however come from models where the SM is built via

D3-branes at singularities which are sequestered from the sources of supersymmetry breaking in
the bulk [63, 65].
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arise much more frequently, so favouring a logarithmic distribution of the soft terms.
However, a full understanding of this question requires detailed (numerical) studies
of the distributions of flux vacua which is well beyond the scope of the present work.
For estimates of the number of vacua as a function of the flux superpotential and
the string coupling see [74, 75, 76, 77, 78].

We finally point out that the ultimate goal of this line of research is to identify
the mass scale of the supersymmetric particles preferred by the string landscape
in order to find some guidance for low-energy searches of superpartners. In order
to achieve this task, one has not just to understand the distribution of vacua, but
has to focus also on phenomenologically viable vacua. This means that one should
impose additional constraints coming for example from cosmology or from anthropic
arguments [67]. For example, in string compactifications both the moduli masses and
the soft terms turn out to be of order the gravitino mass. Hence the absence of any
cosmological moduli problem [79, 80, 81, 82], which requires moduli masses above
O(50) TeV, tends to push the soft terms considerably above the TeV-scale unless
the SM sector is sequestered from supersymmetry breaking (as in some D3-brane
models [63, 65].) We leave a detailed study of these additional phenomenological
and cosmological constraints for future work.

This chapter is organised as follows. In Sec. 3.1 we first review previous determi-
nations of the statistics of the supersymmetry breaking scale neglecting the Kähler
moduli. After explaining why this analysis is incomplete and a more accurate study
should take the Kähler moduli into account, we then provide an overview of the
three general classes of Kähler moduli stabilisation schemes mentioned above: KKLT
[33], LVS [32] and perturbative stabilisation [66]. In Sec. 3.2 we derive in detail the
distribution of the supersymmetry breaking scale for each of these three scenarios,
while in Sec. 3.3 we discuss the interplay between our results and previous findings
in the literature and the implications of our distributions for phenomenology. Our
conclusions are presented in Sec. 3.4. Finally App. A.1 presents a discussion of
the distribution of the string coupling while App. A.2 summarises the structure of
the soft terms in KKLT and LVS models with an MSSM-like sector on either D3 or
D7-branes.

3.1 The importance of the Kähler moduli for the

SUSY breaking statistics

The statistics of the supersymmetry breaking scale in the landscape has been investi-
gated mainly in the context of type IIB flux compactifications since this is one of
the best examples where moduli stabilisation can be achieved with control over the
effective field theory. However previous studies focused only on the contribution to
supersymmetry breaking from the axio-dilaton and the complex structure moduli,
ignoring the dynamics of the Kähler moduli [46, 47, 48, 49, 50, 51]. In what follows
we shall instead point out that the Kähler moduli play a crucial rôle in determining
the correct statistics of the supersymmetry breaking scale in the landscape.
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3.1.1 SUSY breaking statistics neglecting the Kähler mod-
uli

The starting point of our discussion is type IIB string theory compactified on a
Calabi-Yau X which, together with an appropriate orientifold involution, can lead
to an N = 1 supergravity effective action in 4D. One of the nicest features of these
compactifications is that one can turn on RR and NSNS 3-form fluxes F3 and H3

without destroying the underlying Calabi-Yau structure since the flux backreaction
just introduces warping [30]. Moreover, these background 3-form fluxes, which appear
in the combination G3 = F3− iSH3, can stabilise the axio-dilaton S and all complex
structure moduli Uα (with α = 1, ..., h1,2(X)) by generating the following tree-level
superpotential [83]:

Wtree =

∫
X

G3 ∧ Ω(U) , (3.1)

where Ω(Uα) is the holomorphic (3, 0)-form of the Calabi-Yau X that depends on
the U -moduli.

The tree-level Kähler potential which can be obtained from direct dimensional
reduction is instead [84]:

Ktree = −2 lnV − ln
(
S + S̄

)
− ln

(
−i

∫
X

Ω(U) ∧ Ω̄(Ū)

)
, (3.2)

where V is the dimensionless volume of the internal manifold expressed in units of
the string length `s = 2π

√
α′ = M−1

s . The Calabi-Yau volume V is also a function
of the real parts of the Kähler moduli Ti = τi + iθi (with i = 1, ..., h1,1(X)) where
the τi’s control the size of internal divisors while the θi’s are the axions obtained
from the dimensional reduction of the RR 4-form C4 over the same 4-cycles. For the
simplest cases with just a single Kähler modulus, V = τ 3/2.

The scalar potential is obtained by plugging the expressions (3.1) and (3.2)
in the general expression of the F-term scalar potential in supergravity (setting
Mp ≡ 1/

√
8π GN = 1 and neglecting possible contributions coming from D-terms):

VF = eK
(
Kij̄DiWDj̄W − 3|W |2

)
= Kij̄F

iF
j̄ − 3m2

3/2 , (3.3)

where:
F i = eK/2Kij̄Dj̄W and m3/2 = eK/2|W | . (3.4)

Given that the tree-level Kähler potential (3.2) factorises, the F-term scalar potential
(3.3) takes the form (denoting all complex structure and Kähler moduli collectively
as U and T respectively):

Vtree = |F S|2 + |FU |2 + |F T |2 − 3m2
3/2 . (3.5)

Ref. [47, 50, 51] considered situations where supersymmetry is spontaneously broken
at the minima of the scalar potential (3.5) and studied the distribution of the
supersymmetry breaking scale taking the distribution of the relevant F-terms to be
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that obtained from the analysis for the S and U -moduli. The Kähler moduli have
been instead neglected since these moduli are not stabilised by fluxes at tree-level,
and so the dynamics that fixes them beyond the tree-level approximation has been
assumed to give rise just to small corrections to the leading order picture.

Hence the distribution of supersymmetry breaking vacua has been claimed to be
given by [47]:

dN(F, Λ̂) =
∏

d2F S d2FU dΛ̂ ρ(F, Λ̂) , (3.6)

where Λ̂ is the depth of the supersymmetric AdS vacuum, Λ̂ = 3m2
3/2, and the

F-terms of the T -moduli have been ignored. Requiring in addition a vanishing
cosmological constant, one obtains:

dNΛ=0(F ) =
∏

d2F S d2FU dΛ̂ ρ(F, Λ̂) δ
(
|F S|2 + |FU |2 − Λ̂

)
. (3.7)

Ref. [47] makes two claims about the cosmological constant: the first claim is that
the distribution of values of the supersymmetric AdS vacuum Λ̂ = −Λ = eK |W |2
is determined by the distribution of the tree-level superpotential (3.1) which is
uniformly distributed as a complex variable near zero, and throughout its range is
more or less uniform. The second claim is instead that this distribution is relatively
uncorrelated with the supersymmetry breaking parameters if the hidden sector which
breaks supersymmetry is different from the one which is responsible to obtain a
nearly zero cosmological constant.

If one assumes a decoupling of the cosmological constant problem from the question
of supersymmetry breaking, then the density function ρ is in fact independent of Λ̂,
leading to:

dNΛ=0(F ) = d2F ρ(F ) , (3.8)

where we have collectively denoted all the F-terms of the axio-dilaton and the complex
structure moduli simply as F . Using the vanishing cosmological constant condition
|F |2 = 3m2

3/2 and the fact that d2F ' |F | d|F | ' m3/2 dm3/2, (3.8) reduces to:

dNΛ=0(m3/2) ' ρ(m3/2)m3/2 dm3/2 . (3.9)

Given that the gravitino mass is set by the F-terms of the axion-dilaton and the
complex structure moduli, and F S and FU in type IIB flux vacua turn out to be
uniformly distributed as complex variables, [47] considered ρ(m3/2) as independent
on m3/2. In order to keep this discussion more general in view of our results in the
case where the T -moduli are included, we consider instead:

ρ(m3/2) ∼ mβ
3/2 with β ≥ 0 , (3.10)

which implies:

dNΛ=0(m3/2) ' mβ+1
3/2 dm3/2 with β ≥ 0 , (3.11)

where β = 0 for the case where the dynamics of the Kähler moduli is neglected
[47, 50, 51]. Notice that the result with β = 0 would indicate a preference for high
scale supersymmetry.
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3.1.2 SUSY breaking statistics including the Kähler moduli

The importance of the Kähler moduli for the statistics of the supersymmetry breaking
scale in the landscape can be easily understood by noticing that the tree-level
superpotential (3.1) is independent on the T -moduli due to holomorphy combined
with the axionic shift symmetry. Hence the F-terms of the Kähler moduli become
F T = eK/2WKT T̄KT̄ and the scalar potential (3.5) can be rewritten as:

Vtree = |F S|2 + |FU |2 +m2
3/2

(
KT̄K

T̄ TKT − 3
)
. (3.12)

A generic property of type IIB vacua which holds for all Calabi-Yau manifolds is the
famous ‘no-scale’ relation KT̄K

T̄ TKT = 3 which has been recently shown to be a
low-energy consequence of the axionic shift symmetry combined with approximate
higher dimensional symmetries like scale invariance and supersymmetry [61]. This
no-scale property of type IIB vacua has important consequences which we now briefly
discuss:

� At tree-level the scalar potential (3.12) reduces to (where Kcs denotes the
Kähler potential for the U -moduli):

Vtree = |F S|2 + |FU |2 =
eKcs

V2
(
S + S̄

) [|DSW |2 + |DUW |2
]
. (3.13)

This result shows that any vacuum where either DSW 6= 0 or DUW 6= 0
is unstable since it gives rise to a run-away for the volume mode V at tree-
level. One could envisage a scenario where this run-away is counter-balanced by
quantum corrections but when the perturbative expansion is under control these
effects are expected to be subdominant by consistency. Hence a stable solution
requires F S = FU = 0.3 This implies that the statistic of the supersymmetry
breaking scale in the landscape should instead be driven by the F-terms of the
Kähler moduli.

� At tree-level, the gravitino mass is set by the F-terms of the T -moduli since
the no-scale relation implies |F T |2 = 3m2

3/2. This is contrast with the case
where the Kähler moduli are ignored and m3/2 is set by the F-terms of S
and U -moduli. Thus there is no reason to expect that coefficient β in the
distribution of the gravitino mass (3.10) should be zero. Moreover, the Kähler
moduli are still flat at tree-level, and so any scale of supersymmetry breaking is
equally valid. To set m3/2 and to understand its distribution one has therefore
to study which corrections to the tree-level action can stabilise the Kähler
moduli. We shall show that in a large number of flux vacua (all the LVS
examples) F T is not uniformly distributed, and so β 6= 0.

3See however [57] for dS uplifting models where FS and FU are tuned to very small values.
These cases are consistent with our claims since they feature FS ∼ FU � FT .
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� The gravitino mass does not necessarily fix the scale of the soft supersymmetry
breaking terms in the visible sector. In fact, in type IIB models an MSSM-
like visible sector can be located on either stacks of D7-branes with non-zero
gauge fluxes or on D3-branes at singularities. The tree-level Kähler potential
including D7 and D3 matter fields, respectively denoted as φ3 and φ7, is given
by (focusing for simplicity on the case with h1,1(X) = 1) [85]:

Ktree = −3 ln
(
T + T̄ − φ̄3φ3

)
− ln

(
S + S̄ − φ̄7φ7

)
' K0 + K̃3 φ̄3φ3 + K̃7 φ̄7φ7 ,

where K0 denotes the Kähler potential for T and S while K̃3 = 3
(
T + T̄

)−1

and K̃7 =
(
S + S̄

)−1
. On the other hand the visible sector gauge kinetic

functions for D7s and D3s at tree-level read:

f3 = S and f7 = T . (3.14)

Moreover the general expressions of the soft scalar and gaugino masses in
gravity mediation look like:

m2
0 = m2

3/2 − F
ī
F j∂ī∂j ln K̃ and M1/2 =

1

2 Re(f)
F i∂if . (3.15)

Using F S = 0 and F T = eK/2WKT T̄KT̄ , we then end up with:

D3 : m0 = M1/2 = 0

D7 : m0 = |M1/2| = m3/2 . (3.16)

Hence we can clearly see that the soft terms are set by the gravitino mass
only for D7s, while for D3s they are suppressed with respect to m3/2. We
conclude that the inclusion of perturbative and/or non-perturbative corrections
to the 4D effective action which break the no-scale structure is crucial for two
important tasks: (i) to stabilise the Kähler moduli, which in turn fixes the
leading order value of F T and m3/2; (ii) to generate a subleading shift to the
tree-level results for F S and F T which yield non-zero contributions to m0 and
M1/2 for visible sector models on D3-branes.

3.1.3 Overview of type IIB Kähler moduli stabilisation

After having motivated the importance of Kähler moduli stabilisation for understand-
ing the correct distribution of the supersymmetry breaking scale in the type IIB flux
landscape, we describe now the main features of three different classes of stabilisation
scenarios classified in terms of perturbative and non-perturbative corrections to the
4D low-energy action.

3.1.4 Purely non-perturbative stabilisation: KKLT

Let us start by reviewing the KKLT [33] stabilisation mechanism and identify the
relevant parameters. The starting point is to introduce 3-form fluxes which stabilise
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the axio-dilaton and all complex structure moduli at F S = FU = 0 [30]. The next
step is to allow for effects like gaugino condensation on D7 branes or Euclidean
D3 instantons, both wrapped on internal 4-cycles. Both of these effects lead to
non-perturbative corrections to the superpotential that stabilise the Kähler modulus
T = τ + iθ if the vacuum expectation value of Wtree is tuned to exponentially small
values. Thus in KKLT models the Kähler potential takes the tree-level expression
given in (3.2) while the superpotential is:

W = W0 + Ae−aT , (3.17)

where W0 is the vacuum expectation value of the tree-level superpotential (3.1).
Moreover a = 2π/n with n = 1 for stringy instantons while in the case of more
standard field theoretic non-perturbative effects on stacks of D7-branes n is related
to the number of D7-branes that, together with the orientifold involution, determines
the rank of the condensing gauge group (for example for gaugino condensation in a
pure SU(N) super Yang-Mills theory n = N). The scalar potential is obtained by
plugging the expressions (3.2) and (3.17) in the general expression of the F-term
supergravity scalar potential (3.3). After minimising with respect to the axion θ, one
arrives at (with s = Re(S)):

VKKLT =
2e−2aτa2A2

3sV2/3

(
1 +

3

aτ

)
− 2e−aτaAW0

sV4/3
, (3.18)

where V = τ 3/2 is the dimensionless CY volume in units of the string length
`s = 2π

√
α′ = M−1

s . Minimising this potential with respect to the volume we
get the relation:

ea〈τ〉 =
2Aa〈τ〉

3W0

(
1 +

3

2a〈τ〉

)
' 2Aa〈τ〉

3W0

⇔ 〈τ〉 ' 1

a
| lnW0| , (3.19)

where we took the limit a〈τ〉 � 1 where higher instantons corrections to (3.17)
can be safely ignored and we considered natural values of the prefactor A of the
non-perturbative contribution to W , i.e. A ∼ O(1). Notice that (3.19) leads to two
important observations:

1. A minimum at values of 〈τ〉 � 1, where stringy corrections to the effective
action can be neglected, can be obtained only if W0 is tuned to exponentially
small values. Notice that such a tuning guarantees also the consistency of
neglecting perturbative corrections to K (since they give rise to contribution
to V which are proportional to |W0|2).

2. This vacuum preserves supersymmetry since (3.19) implies F T = 0. Hence,
as can be seen from (3.3), the vacuum energy is negative with V = −3m2

3/2

where in this case m3/2 should just be intended as the parameter defined in
(3.4) without any reference to the gravitino mass.
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A Minkowski or slightly dS vacuum can be obtained by adding to the scalar potential
the positive definite contribution coming from D3-branes at the end of a warped
throat [33] (another interesting option relies on α′ corrections to K [86]). As shown
in [87], this requires the addition of a nilpotent superfield in the 4D effective field
theory description. The presence of this nilpotent superfield gives rise to a Minkowski
vacuum where the relation (3.19) gets modified to:

ea〈τ〉 =
2Aa〈τ〉

3W0

(
1 +

5

2a〈τ〉

)
. (3.20)

Interestingly, (3.19) and (3.20) agree at leading order, and so we can safely consider
〈τ〉 ' 1

a
| lnW0| also at the Minkowski minimum where supersymmetry is broken. In

this case the gravitino mass becomes (where the vacuum expectation value of s sets
the string coupling, i.e. s = g−1

s ):

m3/2 '
√
gs
8π

|W0|
〈V〉

' π g
1/2
s

n3/2

|W0|
| lnW0|3/2

. (3.21)

This equation shows clearly that, begin exponentially small, it is W0 that determines
the order of magnitude of m3/2. The soft terms in the KKLT scenario can be
generated via either gravity or anomaly mediation [87, 88] with the MSSM-like
visible sector located on either stacks of D7-branes with non-zero gauge fluxes or
on D3-branes at singularities. In both cases, the overall scale of the soft terms
Msoft is of order the gravitino mass up to a possible 1-loop factor whose presence is
model-dependent: Msoft ∼ m3/2.

3.1.5 Perturbative vs non-perturbative effects: LVS

The starting point of LVS models is the same as in KKLT constructions since at tree-
level the complex structure moduli and the dilaton are stabilised supersymmetrically
by non-zero 3-form fluxes at FU = 0 and F S = 0. At this semi-classical level of
approximation, the Kähler moduli are however flat directions due to the underlying
no-scale cancellation which is inherited from higher-dimensional rescaling symmetries
[61].

The simplest LVS model (see [34, 89, 90, 91] for more general constructions)

features 2 Kähler moduli and a CY volume of the form V = τ
3/2
b − τ 3/2

s where τb is a
‘big’ divisor controlling the overall volume while τs is a ‘small’ divisor supporting
non-perturbative effects, with τb � τs � 1 [32]. If the leading order α′ correction to
the effective action is included, the Kähler and superpotential of LVS models look
like:

K = −2 ln

(
V +

ξ

2

(
S + S̄

2

)3/2
)
− ln

(
S + S̄

)
− ln

(
−i
∫
X

Ω(U) ∧ Ω̄(Ū)

)
(3.22)

W = W0 + As e
−asTs , (3.23)
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with as = 2π/n as in the KKLT case and ξ ≡ −χ(X)ζ(3)
2(2π)3

where χ(X) is the CY Euler
number and ζ is the Riemann zeta function. Notice that As and ξ are both expected
to be O(1) parameters. After setting S and all the U -moduli at their flux-stabilised
values and fixing the axionic partner of τs at its minimum, the scalar potential (3.3)
takes the form:

VLV S =
4

3

a2
sA

2
s

√
τse
−2asτs

sV
− 2asAs|W0|τse−asτs

sV2
+

3
√
sξ|W0|2

8V3
. (3.24)

Minimising the potential we obtain the following conditions on the moduli (with
s = g−1

s ):

〈V〉 '
3
√
〈τs〉 |W0|
4asAs

eas〈τs〉 and 〈τs〉 '
1

gs

(
ξ

2

)2/3

. (3.25)

Let us again stress two important points which follow from (3.25):

1. In LVS models, it is the smallness of gs that guarantees that the effective field
theory is under control. In fact, if the string coupling is such that perturbation
theory does not break down, i.e. gs . 0.1, stringy corrections to the 4D action
can be safely ignored since both τb and τs are much larger than the string
scale. Hence these models can exist for natural values of the flux-generated
superpotential W0 with W0 ∼ O(1− 10).

2. The LVS vacuum is AdS with VLVS ∼ −m3
3/2 and non-supersymmetric with the

largest F-term given by F Tb ∼ τbm3/2. Hence the Goldstino is the fermionic
partner of Tb in the corresponding N = 1 chiral superfield. This is eaten up by
the gravitino which acquires a non-zero mass.

As in KKLT models, an additional positive definite contribution to the scalar
potential has to be added in order to obtain a Minkowski solution. Several ‘uplifting’
mechanisms have been proposed and the main ones involve anti-branes [33], T-branes
[92], hidden sector non-perturbative effects [93] or non-zero F-terms of the dilaton
and complex structure moduli [57]. The important observation here is that all these
mechanisms modify the relations in (3.25) only at subleading order. Hence we can
consider (3.25) a good analytic estimate also for the location of the Minkowski
minimum. Thus the gravitino mass becomes:

m3/2 '
√
gs
8π

|W0|
〈V〉

' c1
gs
n
e−

c2
gsn , (3.26)

where c1 and c2 are O(1) parameters given by:

c1 =

√
8πAs
3

(
2

ξ

)1/3

and c2 = 2π

(
ξ

2

)2/3

. (3.27)

Contrary to KKLT scenarios where the value of m3/2 was determined by W0, (3.26)
shows clearly that in LVS models the scale of the gravitino mass is set by the
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string coupling. Another difference between KKLT and LVS models, is that in LVS
constructions the contribution to the soft terms from anomaly mediation is always
loop-suppressed with respect to the contribution from gravity mediation (since similar
cancellations in both mediation mechanisms take place due to the underlying no-scale
property of these vacua). Moreover, in LVS models, the overall scale of the soft
terms depends crucially on the fact that the SM is realised on either D7 or D3-branes
[63, 65, 94, 95]:

D7 : Msoft ∼ m3/2 D3 : M1/2 ∼ m2
3/2 and m0 ∼ mp

3/2 , (3.28)

where p can be either p = 2 or p = 3/2 depending on the mechanism considered to
obtain a Minkowski vacuum [65].

3.1.6 Purely perturbative stabilisation: α′ vs gs effects

Let us now describe Kähler moduli stabilisation based just on perturbative corrections
to the effective action [66]. As shown in [94], when W0 takes natural O(1 − 10)
values and no blow-up modes like the ‘small’ modulus τs of LVS models are present,
non-perturbative effects are subdominant with respect to perturbative corrections in
either α′ or gs.

The main perturbative corrections to K which yield non-zero contributions to
the scalar potential are (for an more detailed discussion of these effects see [96, 61]):
O(α′3) corrections at tree-level in gs have been computed and open string 1-loop
effects at both O(α′2) and O(α′4) have also been computed. In the simplest case of
a single Kähler modulus, these corrections to K take the form [97, 98, 99, 36]:

Kg0sα
′3 = − ξ

g
3/2
s V

, Kg2sα
′2 = gs

b(U)

V2/3
, Kg2sα

′4 =
c(U)

V4/3
. (3.29)

The parameters b(U) and c(U) are in general unknown functions of the complex
structure moduli (and open string moduli as well) which have been computed
explicitly only for simple toroidal orientifolds like T6/(Z2 × Z2) [99]. They are
however expected to be O(1− 10) numbers in absence of fine tuning. Interestingly,
the O(g2

sα
′2) corrections to K proportional to b(U) experience an ‘extended no-scale’

cancellation [37], and so they contribute to the scalar potential only at O(g4
sα
′4).

Hence we can neglect them since for gs . 0.1 they are subleading with respect to
the correction to K proportional to c(U).

After minimising the scalar potential with respect to the axio-dilaton and the
complex structure moduli by solving DSW = DUW = 0, the potential for the Kähler
modulus is given by:

V = gs
|W0|2

V3

(
− 3|ξ|

8g
3/2
s

+
c(U)

V1/3

)
, (3.30)

where we have considered a negative value of the coefficient ξ in order to get a
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minimum.4 Minimising with respect to V we obtain a non-supersymmetric (since
F T 6= 0) AdS vacuum at:

〈V〉 ' 26 g9/2
s

(
c

|ξ|

)3

. (3.31)

Let us make again two important considerations:

1. The parameter controlling the string loop expansion is gs while the α′ expansion
is controlled by V−1/3. Hence perturbation theory does not break down if gs � 1
and V � 1. The first of these two conditions can be satisfied by an appropriate
choice of 3-form fluxes which stabilise Re(S) = g−1

s . On the other hand, the
second condition, as can be seen in (3.31), requires the parameter c to be tuned

such that c ∼ g
−(3/2+q)
s � 1 with q > 0 (for |ξ| ∼ O(1)). In fact, plugging

this relation in (3.31) one obtains 〈V〉 ' 26 g−3q
s � 1 for gs � 1. Given that

c = c(U) is a function of the complex structure moduli which are fixed in terms
of flux quanta, we expect this tuning to be possible in the string landscape by
scanning through different combinations of flux quanta.

2. The minimum in (3.31) is non-supersymmetric, since F T 6= 0, and AdS since
〈V 〉 ' −0.1 c gs |W0|2 〈V〉−10/3.

The vacuum energy can be set to zero via the same uplifting mechanisms mentioned
for KKLT and LVS models which are expected to yield only subleading corrections
to the location of the minimum in (3.31). Hence the gravitino mass turns out to be:

m3/2 '
√
gs
8π

|W0|
〈V〉

' λ
|W0|
g4
s c

3
with λ ∼ O(10−2) . (3.32)

In this case it is the tuned parameter c which controls the order of magnitude of
the gravitino mass. The generation of the soft terms in these models with purely
perturbative stabilisation of the Kähler moduli has not been studied. However we
expect them to have the same behaviour as in (3.28) for LVS models since the
contribution from anomaly mediation should feature a leading order cancellation
due to the no-scale structure also in this case where therefore the soft terms are
generated from gravity mediation.

3.2 SUSY breaking statistics with Kähler moduli

stabilisation

In Sec. 3.1 we have first explained why a proper understanding of the statistics of
the supersymmetry breaking scale in the type IIB flux landscape necessarily requires

4Notice that ξ < 0 would require h1,2 < h1,1 which for h1,1 = 1 would work only for rigid CY
manifolds without complex structure moduli, i.e. for h1,2 = 0. However the potential (3.30) could
also describe a more general situation with h1,1 � 1 where all Kähler moduli scale in the same way,
i.e. τi ∼ V2/3 ∀i = 1, ..., h1,1.
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the inclusion of the Kähler moduli, and we have then illustrated the key-features of
the main Kähler moduli stabilisation mechanisms based on different combinations of
perturbative and non-perturbative corrections to the 4D effective field theory. In this
section we shall instead determine the actual distribution of the gravitino mass, i.e.
the actual value of the coefficient β in (3.10), for each of these scenarios separately.

3.2.1 LVS models

Let us start our analysis of the distribution of the gravitino mass by focusing first on
LVS models since they do not require any tuning of the tree-level flux superpotential.
In these scenarios the minimum and m3/2 are given respectively by (3.25) and (3.26).
Notice that m3/2 in (3.26) does not depend on |W0| contrary to the expression (3.21)
of the gravitino mass in KKLT models which is mainly determined by |W0|.

Varying the gravitino mass with respect to the flux-dependent parameter gs and
the integer parameter n which encodes the nature of non-perturbative effects, and
working in the limit asτs � 1 where the instanton expansion is under control, i.e.
for c2 � gsn, we obtain:

dm3/2 =
∂m3/2

∂gs
dgs +

∂m3/2

∂n
dn ' c2

m3/2

(gsn)2
(n dgs + gs dn)

' m3/2

[
ln

(
Mp

m3/2

)]2

(n dgs + gs dn) , (3.33)

where in the last step we have introduced Planck units and we have approximated

m3/2 ∼Mp e
− c2
gsn .

As discussed in App. and recently in [100], the distribution of the string coupling
can be considered as approximately uniform5, implying dgs ' dN . On the other
hand, the distribution of the rank of the condensing gauge group in the string
landscape is still poorly understood.6 Ref. [101] estimated the largest value of n as a
function of the total number of Kähler moduli, counted by the topological number
h1,1, but did not study how the number of vacua varies in terms of n. Moreover the
F-theory analysis of [101] is based on the assumption that the formation of gaugino
condensation in the low-energy 4D theory is not prevented by the appearance of
unwanted matter fields.

In fact, as shown in [102, 103], F-theory sets severe constraints on the form of
‘non-Higgsable’ gauge groups which guarantee that the low-energy theory features a
pure super Yang-Mills theory undergoing gaugino condensation. Even if simple gauge
groups like SU(2) or SU(3) are allowed, they do not survive in the weak coupling
type IIB limit since they arise only from non-trivial (p, q) 7-branes that do not admit

5In A.1 we numerically study this distribution for rigid Calabi-Yaus while ref. [100] focused on
Calabi-Yaus where a discrete symmetry leaves effectively just 1 complex structure modulus. We
both find a uniform distribution. The analysis for general Calabi-Yaus remains challenging, for this
case we provide arguments based on our results for rigid Calabi-Yaus.

6We are thankful to R. Savelli, R. Valandro and A. Westphal for illuminating discussions on
this point.
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a perturbative description in terms of D7-branes. The only type IIB case allowed for
pure super Yang-Mills is SO(8) which corresponds to n = 6. This fits with the fact
that all explicit type IIB Calabi-Yau orientifold models which have been constructed
so far, feature exactly an SO(8) condensing gauge group [104, 105, 106, 75, 107].

A non-perturbative superpotential can however arise also in a hidden gauge
group with matter fields, even if there are constraints on the numbers of flavours
and colours [108]. Chiral matter can always be avoided by turning off all gauge
fluxes on D7-branes but vector-like states are ubiquitous features of type IIB models
obtained as the gs → 0 limit of F-theory constructions. Given that the interplay
between vector-like states and the generation of a non-perturbative superpotential
has not been studied in the literature so far, it is not clear yet if n can only take
two values, i.e. n = 1 for ED3s and n = 6 for a pure SO(8) theory, or an actual
n-distribution is indeed present in the string landscape. Even if we do not have a
definite answer to this question at the moment, we can however argue that, if an
actual n-distribution exists, the number of states N is expected to decrease when n
increases since D7-tadpole cancellation is easier to satisfy for smaller values of n. We
shall therefore take a phenomenological approach and assume dN ∼ −n−r dn with
r > 0. Therefore (3.33) reduces to:

dm3/2 ' nm3/2

[
ln

(
Mp

m3/2

)]2
1− c2 n

r−2

ln
(

Mp

m3/2

)
 dN . (3.34)

For 0 < r ≤ 2, the distribution of m3/2 is therefore driven mainly by the distribution
of the string coupling:

dN

dm3/2

' 1

nm3/2

[
ln

(
Mp

m3/2

)]−2

⇒ NLV S(m3/2) ∼ ln

(
m3/2

Mp

)
, (3.35)

where we neglected subleading logarithmic corrections.7 Comparing this results with
(3.11), we realise that in LVS models β = −2, and so we end up with the following
the distribution of the gravitino mass:

ρLV S(m3/2) ∼ 1

nm2
3/2

[
ln

(
Mp

m3/2

)]−2

. (3.36)

On the other hand, for r > 2, the distribution of the number of D7-branes starts to
play a rôle in the distribution of m3/2 when n is large. However, except for different
subdominant logarithmic corrections, the leading order expression for the number
of states as a function of the gravitino mass would still be given by (3.35). It is
reassuring to notice that our result is independent on the exact form of the unknown
n-distribution.8

7Notice that the result is unchanged if the distribution of the dilaton is taken to be power-law.
8This is true unless N decreases exponentially when n increases but this behaviour looks very

unlikely.
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Notice that the result (3.34) applies also to the distribution of the soft terms.
In fact, as summarised in (3.28) and as reviewed more in detail in App. A.2, the
gravitino mass can generically be written in terms of the energy scale associated
to the soft terms as m3/2 ' M

1/p
soft where for D7-branes p = 1, while for D3-branes

p = 2 for gaugino masses and p = 2 or p = 3/2 for scalar masses depending on the
‘uplifting’ mechanism. Thus in LVS models also the distribution of the soft masses
turns out to be logarithmic:

NLV S(Msoft) ∼
1

p
ln

(
Msoft

Mp

)
. (3.37)

This result is particularly important for models where the visible sector is realised
on stacks of D3-branes since in this case the visible sector gauge coupling is set by
gs which is therefore fixed by the phenomenological requirement of reproducing the
observed visible sector gauge coupling. Hence the distribution of m3/2 (or equivalently
Msoft) is entirely determined by the distribution of n. For this scenario, it would be
very interesting to know if a non-perturbative superpotential can indeed be generated
also in the presence of vector-like matter. If this does not turn out to be the case, then
the value of the gravitino mass in LVS models with the visible sector on D3-branes
can only take two values (setting the string coupling of order the GUT coupling
gs = αGUT = 1/25, As ∼ O(1− 10) and ξ = 1):

� ED3-instantons: in this case n = 1 and:

m3/2 = gs c1 e
− c2
gs ∼ O(10−26 − 10−27) GeV . (3.38)

� Pure SO(8): in this case n = 6 and:

m3/2 = gs
c1

6
e−

c2
6 gs ∼ O(109 − 1010) GeV . (3.39)

Notice that the ED3-case would be viable only for models where supersymmetry is
broken by brane construction, so that the soft terms are at the string scale which is
however around the TeV-scale. The extremely low value of m3/2 might be helpful to
control corrections to the vacuum energy coming from loops of bulk states [89]. The
pure SO(8) case instead corresponds to a more standard situation where however
TeV-scale soft terms could be achieved only via sequestering effects [63, 65].

3.2.2 KKLT models

Let us now study the distribution of the gravitino mass in KKLT models where the
minimum and m3/2 are given respectively by (3.19) and (3.21). Varying the gravitino
mass with respect to the two flux-dependent parameters gs and |W0|, and the integer
parameter n, we obtain:

dm3/2 ' m3/2

(
d|W0|
|W0|

+
1

2

dgs
gs
− 3

2

dn

n

)
, (3.40)
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where we neglected the subleading variation of the logarithm. Following the arguments
given in Sec. 3.2.1 and in App. A.1, we assume a uniform distribution of the string
coupling, i.e. dN ' dgs, and a phenomenological scaling of the distribution of n of
the form dN ' −n−r dn. Moreover the distribution of W0 as a complex variable is
also uniform [50], resulting in dN ' |W0|d|W0|. Thus (3.40) reduces to:

dm3/2 ' m3/2

(
1

|W0|2
+

1

2gs
+

3

2
nr−1

)
dN

'
M2

p

m3/2

[
gs

n3| lnW0|3
+
ε2

2

(
1

gs
+ 3nr−1

)]
dN , (3.41)

where ε ≡ m3/2/Mp. In order to trust the effective field theory description we need to
require ε� 1, which implies that the distribution of the gravitino mass is dominated
by the first term in (3.41), i.e. by the distribution of the flux superpotential:

dN

dm3/2

'
(
n3| lnW0|3

gs

)
m3/2

M2
p

'
m3/2

M2
p

⇒ NKKLT (m3/2) ∼
(
m3/2

Mp

)2

.

(3.42)
Comparing this results with (3.11), we realise that in KKLT models β = 0, in
agreement with previous predictions [47]. Thus we end up with the following the
distribution of the gravitino mass:

ρKKLT (m3/2) ∼ 1

M2
p

(
n3| lnW0|3

gs

)
∼ const. (3.43)

As reviewed App. A.2, in KKLT models the soft terms are proportional to the
gravitino mass (up to a possible 1-loop suppression factor for visible sector models on
D3-branes). Therefore (3.42) and (3.43) give also the distribution of the soft terms
in KKLT models.

3.2.3 Perturbatively stabilised models

Let us now study the distribution of the gravitino mass in perturbatively stabilised
models where the minimum and m3/2 are given respectively by (3.31) and (3.32).
Varying the gravitino mass with respect to the three flux-dependent parameters gs,
|W0| and c, we obtain:

dm3/2 ' m3/2

(
d|W0|
|W0|

− 4
dgs
gs
− 3

dc

c

)
, (3.44)

As discussed in [50] and in App. A.1, both gs and W0 are expected to be uniformly
distributed, and so we take dN ' dgs and dN ' |W0|d|W0|. Moreover, as stressed
in Sec. 3.1.6, the coefficient c is a function of the complex structure moduli which
are fixed in terms of flux quanta, and so it is naturally expected to be of order
c ∼ O(1 − 10). However the minimum in (3.31) lies at V � 1 only if the flux
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quanta are tuned such that c ∼ g
−(3/2+q)
s � 1 with q > 0. Given that this is a tuned

situation, we expect the number of vacua at c� 1 to be suppressed with respect to
the region with c ∼ O(1− 10). This behaviour is well described by a distribution of
c with a phenomenological scaling of the form dN ' −c−k dc with k > 0. Using all
these relations, (3.44) becomes:

dm3/2 ' m3/2

(
1

|W0|2
− 4

gs
+ 3 ck−1

)
dN

' m3/2

(
3 ck−1 − 4

gs

)
dN , (3.45)

where we focused on the region with |W0| ∼ O(1 − 10) and gs . 0.1. Notice that
for such a small value of the string coupling and 0 < k ≤ 1, the second term
in (3.45) would dominate over the first one. However this is a regime where the
distribution of the coefficient c would be almost uniform, and so c would be in the
regime c ∼ O(1− 10) where the effective field theory is not under control. We focus
therefore on k > 1 where the distribution of c starts to deviate from begin uniform,
signaling that c is tuned to large values. In this case the distribution of the gravitino
mass is dominated by the first term in (3.45) and becomes:

dN

dm3/2

' 1

m3/2 ck−1
'
(

g4
s

|W0|

) (k−1)
3 1

Mp

(
m3/2

Mp

) (k−4)
3

, (3.46)

which implies:

NPERT (m3/2) ∼
(
m3/2

Mp

) (k−1)
3

. (3.47)

Comparing this results with (3.11), we realise that in perturbatively stabilised models
β = (k − 7)/3. Hence we end up with the following distribution of the gravitino
mass:

ρPERT (m3/2) ∼ 1

M2
p

(
m3/2

Mp

) (k−7)
3

. (3.48)

This result is qualitatively similar to the one of KKLT models (which are reproduced
exactly for k = 7), showing that scenarios where the Kähler moduli are stabilised by
perturbative effects favour higher values of the gravitino mass. This behaviour is
somewhat expected since these models, similarly to KKLT, can yield trustable vacua
only relying on tuning the underlying parameters. This tuning, in turn, reflects
itself on the preference for larger values of m3/2. As mentioned in Sec. 3.1.6, in
perturbatively stabilised models the soft terms are expected to be proportional to
the gravitino mass, and so (3.47) and (3.48) give also the distribution of the soft
terms in these models.
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3.3 Discussion

In this section we summarise our results and discuss them in the context of the
original results of [46, 47, 48, 49, 50, 51], as well as the subsequent results obtained
in [68, 69, 70, 71].

3.3.1 Interplay with previous results

Firstly, we have stressed in Sec. 3.1 that Kähler moduli stabilisation is a critical
requirement for a proper treatment of the statistics of supersymmetry breaking. The
reason is that a stable solution requires the F-terms of the axio-dilaton and the
complex structure moduli to be suppressed with respect to the F-terms of the Kähler
moduli. The statistics of supersymmetry breaking is thus entirely driven by the
F-terms of the Kähler moduli at their stabilised values.

As we have shown, the no-scale structure at tree level has important consequences
for the statistics of supersymmetry breaking. It implies that in order to obtain vacua
where the α′ and gs expansions are under control, terms in the effective action which
are part of separate expansions have to be balanced against each other (see [96] for
a detailed discussion of this point). For example, in LVS we find that α′ corrections
associated with the overall volume are balanced against a non-perturbative correction
associated with a blow-up modulus. In KKLT, on the other hand, non-perturbative
effects are balanced against an exponentially small flux superpotential. This implies
that the stabilisation mechanism pushes us to particular regions in moduli space –
in LVS the overall volume is large, while in KKLT |W0| is inevitably small – where
the gravitino mass takes specific values.

This has important implications for the statistics of soft terms which in gravity
mediation are determined by m3/2. As we have seen in Sec. 3.2, different stabilisation
mechanisms predict different distributions of the gravitino mass (and hence the soft
terms) in the landscape. This is due to the fact that different no-scale breaking
effects used to fix the Kähler moduli lead to a different dependence of m3/2 on the
flux-dependent microscopic parameters W0, gs and c whose distribution (together
with the one of n) ultimately governs the statistics of the soft terms, as is evident from
(3.33), (3.40) and (3.45). In particular, we found that in LVS models the distributions
of the gravitino mass and soft terms are logarithmic, as shown in (3.35) and (3.37).
On the other hand, for KKLT and perturbative stabilisation, the distributions are
power-law, as shown in (3.42) and (3.47). The difference in behaviour comes from
the fact that in the LVS case one has from (3.26):

m3/2 ∼Mp e
− 1
gs , (3.49)

which, when combined with the fact that gs is uniformly distributed as shown in
App. A.1, yields a logarithmic distribution for m3/2. For KKLT, one has instead
from (3.21):

m3/2 ∼ |W0|Mp , (3.50)
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which results in a power-law distribution of the gravitino mass since since |W0|
is uniformly distributed. A similar reasoning applies in the case of perturbative
stabilisation.

Interestingly, we note that both power-law [47, 50, 51] as well as logarithmic
distributions [68, 69, 70, 71] have been obtained by different groups in the literature,
albeit for reasons different from the ones we have derived. The power-law distribution
of gravitino masses in (3.42) and (3.47) for KKLT and perturbatively stabilised
vacua reproduces the results of [47, 50, 51] which were based on the assumption
of a democratic distribution of complex structure F-terms caused by the uniform
distribution of |W0|, as we have reviewed in Sec. 3.1.1. In KKLT and perturbatively
stabilised vacua, the supersymmetry breaking scale is instead determined by the
F-terms of the Kähler moduli but we obtain the same behaviour given that in these
two Kähler stabilisation schemes they are also governed dominantly by |W0|. On the
other hand, the logarithmic distributions (3.35) and (3.37) of LVS models reproduce
the results of [68, 69, 70, 71] whose derivation was based on the general nature
of dynamical supersymmetry breaking: if the scale of supersymmetry breaking is
given by m3/2 ∼ Mp e

−8π2/g2 with a flat distribution in the coupling g2, then m3/2

would obey a logarithmic distribution. Indeed, this expectation is exactly reproduced
by the expression (3.49) for the gravitino mass in LVS models since in type IIB
compactifications the gauge coupling g of a hidden sector supporting non-perturbative
effects which break supersymmetry dynamically scales as g2 ∼ gs.

Determining which distribution, power-law or logarithmic, is more representative
of the structure of the flux landscape therefore translates into the question of which
vacua with stabilised Kähler moduli arise more frequently. Given that LVS models
can be realised for natural values of the vacuum expectation value of the flux
superpotential, |W0| ∼ O(1− 10), while KKLT models can be constructed only via
tuning |W0| to exponentially small values (similar considerations about tuning of
the underlying parameters apply also to perturbatively stabilised vacua), we tend to
conclude that the distribution of the scale of supersymmetry breaking seems to be
logarithmic. However, more detailed studies are needed in order to find a precise
definite answer to this important question (see [74, 75, 76, 77, 78] for initial studies
on the determination of the number of vacua as a function of |W0| and gs).

Finally, we would like to make a few comments discussing our results in the
context of the cosmological constant. The explicit analysis carried out in the previous
section focused on solutions with zero cosmological constant and so far we considered
the joint distribution of the supersymmetry breaking scale and the cosmological
constant. As we have mentioned before, soft masses for the SM sector are typically
predominantly determined by a small set of non-vanishing F-terms and D-terms
in the theory. On the other hand, the cosmological constant receives contributions
from all F and D-terms, many of which can be sequestered from the SM sector
and make subdominant contributions to supersymmetry breaking. This has two
implications: (i) to compute distributions of the cosmological constant one needs
to have a knowledge of all the uplift contributions, which is generally challenging;
and (ii) since a large number of contributions to the cosmological constant do not

67



affect the soft masses, one can expect the distribution of the cosmological constant
to be independent of the distribution of the soft masses. LVS models are a neat
example where the decoupling between the statistics of supersymmetry breaking and
the cosmological constant emerges clearly. In fact, combining the expression (3.24)
of the scalar potential of LVS models with the location of the minimum (3.25), it is
easy to see that the depth of the non-supersymmetric AdS vacuum is:

VLV S ∼ −
|W 2

0 |
V2
∼ −m3

3/2Mp . (3.51)

This implies that any hidden sector whose dynamics is responsible for dS uplifting
has to provide a contribution to the scalar potential whose order of magnitude is:

Vup ∼ |Fhid|2 ∼ m3
3/2Mp . (3.52)

In turn this hidden sector generates a contribution to the soft terms via gravity
mediation which is suppressed with respect to the gravitino mass:

δMsoft ∼
Fhid

Mp

= m3/2

√
m3/2

Mp

� m3/2 . (3.53)

Hence, if the F-terms of other hidden sectors (like for example the F-term of the
Kähler modulus controlling the volume of the 4-cycle wrapped by the SM stack of
D7-branes) generate soft terms of order m3/2, the contribution from Fhid is clearly
negligible. Notice that this implies that the distribution of the supersymmetry
breaking scale is the same at least for all vacua with cosmological constant in the
range ±VLV S. Of course, the distribution could change if we consider vacua with
much higher values of the cosmological constant.

3.3.2 Implications for phenomenology

We now turn to a brief discussion of the implications of our findings for low energy
phenomenology. The ATLAS collaboration has provided 95% CL search limits for
gluino pair production within various simplified models using data sets that vary
from 36-139 fb−1 at

√
s = 13 TeV [109]. The approximate bound from these searches

is that mg̃ & 2.2 TeV. The limits coming from CMS are comparable [110]. Searches
for top squark pair production yield the limit mt̃ & 1 TeV [111, 112].

We have found that the statistics of type IIB flux vacua generally prefers a draw
towards high scale supersymmetry: a mild logarithmic draw in the case of LVS, and
a strong power-law draw in the case of KKLT and perturbatively stabilised vacua.
Given the current limits on gluinos and squarks, can one surmise that it is this
statistical draw that is being played out at experiments?

Of course, the problem with this interpretation is that high scale supersymmetry
breaking leads to fine-tuning issues for the mass of the Higgs, obviating, at least
from the low-energy perspective, the introduction of supersymmetry as a solution
to the gauge hierarchy problem in the first place. The severity of this issue may
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be quantified by the choice of suitable fine-tuning measures. In other words, since
stringy naturalness (the bias towards a property favored by vacuum statistics, in this
case, high scale supersymmetry breaking) leads one to posit heavier superpartners,
this tendency should somehow be mitigated by a fine-tuning penalty as one goes to
higher scales. But which fine-tuning measure should one use, and how much penalty
should one impose?

The widely adopted Barbieri-Giudice measure [113] is defined as ∆BG ≡ maxi|
∂ lnm2

Z

∂ ln pi
|

with, for example, ∆BG < 10 corresponding to ∆−1
BG = 10% fine-tuning. The pi are

the fundamental parameters of the theory, while mZ denotes the mass of the Z
boson. Taking the parameters to be the various soft terms and µ parameter from the
mSUGRA/CMSSM model and requiring 10% fine-tuning, one obtains upper limits
of mg̃ ∼ 400 GeV [38]. Most other superpartners are also close to the weak scale
(defined as mweak ' mW,Z,h ∼ 100 GeV). It is thus clear from the Barbieri-Giudice
measure that supersymmetry is already very finely tuned from LHC data. From the
perspective of the landscape, one can impose a penalty on ∆BG for vacua with very
high scale supersymmetry breaking (while also allowing for the fine-tuning indicated
by data) but it is not entirely clear what the penalty should be or how to motivate it.

An alternative approach is to use anthropic arguments to motivate fine-tuning
penalties on vacua with high scale supersymmetry breaking [67, 114, 115].9 The
atomic principle [117] comes closest in relevance in this context. It can be incorporated
within the fine-tuning measure introduced in [118], whose starting point is the
expression for the mass of the Z boson in supersymmetry: m2

Z/2 ' −m2
Hu
− µ2 −

Σu
u(t̃1,2) (for details and exact expressions, we refer to the original paper and [38]).

Here, Σu
u contains the various radiative corrections [119]. The fine-tuning penalty

in this case posits that no single contribution in the expression for mZ can be too
much larger than any other. This is quantified by the measure ∆EW which is the
maximum among the quantities on the right hand side divided by the m2

Z/2.
It is now clear how the atomic principle naturally plays into the fine-tuning

measure ∆EW . Given that the mass of the Z boson is bounded by the atomic
principle, one obtains an anthropic bound on the scale of the superpartners stemming
from their contributions to the radiative corrections encapsulated in Σu

u. Indeed,
requiring that the mass of the Z boson should not exceed its measured value by
a factor of 4 imposes ∆EW . 30, which in turn translates into upper bounds on
superpartner masses entering through the radiative corrections Σu

u.
One thus has a logarithmic or power-law distribution of vacua biasing towards high

supersymmetry breaking scales, tempered by a penalty of ∆EW . 30 coming from
the atomic principle. For power-law distributions, this leads to several predictions for
superpartner masses that may be probed at the HL-LHC. For example, the statistical
distribution for gluinos and top squarks are peaked around 4 TeV and 1.5 TeV,
respectively. Suggestively, the Higgs mass appears to be peaked around 125 GeV
for power-law distributions. A logarithmic distribution from the landscape, on the
other hand, would imply that a low scale of supersymmetry breaking is reasonably

9Indeed, the landscape is already a fertile arena where such arguments have been used in the
past, most famously in the context of the cosmological constant problem [44, 116].
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probable, perhaps without relying too strongly on anthropic arguments. The value of
the weak scale may simply be a mild accident in that case. We leave a more detailed
treatment of the phenomenology of the logarithmic case for future work.

3.4 Conclusions

Understanding the distribution of the supersymmetry breaking scale in string vacua is
an important question which can potentially have deep phenomenological implications.
In this paper, we have revisited this question in the context of IIB flux vacua. In the
first part of the paper, we argued that the details of Kähler moduli stabilisation are
absolutely necessary to study the distribution of the supersymmetry breaking scale.
We then went on to study the distribution of the supersymmetry breaking scale
(primarily focusing on vacua with zero cosmological constant) in three scenarios for
Kähler moduli stabilisation: (i) models with purely non-perturbative stabilisation
like in KKLT vacua; (ii) models where the Kähler moduli are frozen by balancing
perturbative against non-perturbative effects as in LVS models; and (iii) models
with purely perturbative stabilisation. For KKLT and models with perturbative
stabilisation we found a power law distribution, while for LVS we found a logarithmic
distribution. The logarithmic distribution is particularly interesting as it could well
mean that we should remain optimistic about discovering superpartners in collider
experiments.

Let us mention that our results for the distribution of the supersymmetry breaking
scale in the type IIB flux landscape are based on the fact that |W0| and gs are
uniformly distributed.10 While in the literature there is a lot of evidence in favour of
this assumption (as we also have shown for the distribution of the string coupling for
rigid Calabi-Yaus), more detailed numerical studies are needed in order to confirm
the validity of this behaviour for the general case. This investigation is crucial also
to determine which distribution, power-law or logarithmic, is predominant in the
flux landscape since the distribution of the vacuum expectation value of the flux-
generated superpotential is a key input for determining the relative preponderance
of KKLT and LVS vacua. Furthermore, the results of [120] imply that knowledge
of the distribution of W0 is central to developing a detailed understanding of the
distribution of the cosmological constant.

This work opens up several interesting directions for future research. Firstly, it
is important to carry out a detailed study along the lines of [38] to understand the
phenomenological implications of the logarithmic distribution. In order to make
contact with observations it will be crucial to incorporate also bounds arising from
the cosmological context (such as the cosmological moduli problem). Our analysis has
focused on a small (but highly attractive from the point of view of phenomenology)
corner of the string landscape, i.e type IIB flux compactifications on Calabi-Yau
orientifolds. It will be interesting to carry out an analysis in the same spirit as this
paper in other corners of the landscape.11 A related but very challenging question is

10The result for LVS is unchanged as long as the distribution for gs is a power-law.
11Even within the context of type IIB, it will be interesting to explore the constructions in
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to investigate if early universe cosmology gives us a natural measure on the space of
solutions in string theory.

[121] which naturally have a high scale of supersymmetry breaking, even if the visible sector
phenomenology is not well developed in this setting. Another aspect of the IIB landscape that we
have not explored is the effect of warped throats. Since warped throats are a generic feature in IIB
flux compactifications [30, 122, 123], they could well have an important effect on the statistics of
the scale of supersymmetry breaking.
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Chapter 4

AXION STATISTICS

The Peccei-Quinn mechanism is without any doubt the most elegant solution to
the strong CP problem. It postulates the existence of an anomalous global U(1)PQ

symmetry which is spontaneously broken at fa. The corresponding Goldstone boson
is the so-called QCD axion a which enjoys a continuous shift symmetry. QCD
instantons lift the axionic direction and provide a minimum where CP is conserved.
The QCD axion develops a mass of order ma ∼ Λ2

QCD/fa and naturally contributes
to the dark matter (DM) abundance. The phenomenologically allowed window for
the axion decay constant fa is given by 109 GeV . fa . 1012 GeV, where the lower
bound is due to astrophysical and direct observations while the upper bound comes
from the requirement to avoid DM overproduction if the initial misalignment angle
takes natural O(1) values.

This scenario for the solution of the strong CP problem relies on some assumptions
which have to be checked in a UV complete embedding. Some crucial questions
which need to be answered are: (i) What is the origin of the axion shift symmetry?;
(ii) What dynamics breaks U(1)PQ spontaneously and sets the value of fa?; (iii) Is
fa related to other important physical quantities like the Planck scale Mp, the string
scale Ms, the GUT scale MGUT , the Kaluza-Klein scale MKK or the scale of soft
supersymmetry breaking terms Msoft?; (iv) what dynamics breaks U(1)PQ explicitly
and sets the value of ma?; (v) Is ma generated by QCD instantons or by other
effects?: (vi) How many axion-like particles (ALPs) can arise from UV physics?; (vii)
What is the allowed range of fa and ma for these ALPs?

Several studies performed during the last 15 years revealed that string theory can
provide a successful answer to many, if not all, of the previous questions [124, 125,
126, 127]. However, as mentioned in the introduction, string theory admits a plethora
of 4D solutions which goes under the name of string landscape. Even if all 4D string
vacua share some generic features about axion physics, the number of axions and the
corresponding values of fa and ma take different values in different string vacua. In
order to make contact with observations, it is therefore crucial to perform a statistical
analysis of the distribution in the string landscape of phenomenologically relevant
quantities like fa and ma which determine the axion DM abundance.

As stressed in chapter 3 where we derived the distribution of the supersymmetry
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breaking scale in the string landscape, these statistical studies need to be based
on a solid understanding of moduli stabilisation. In the case of axion physics, the
motivation is the following. We shall focus on the type IIB flux compactifications
which provide a well-defined subset of the string landscape. A model-independent
origin of 4D axions is provided by the higher-dimensional gauge form C4 which gives
rise to pseudoscalars with a continuous shift symmetry when reduced on internal
4-cycles Σi

4: θi =
∫

Σi4
C4. These axions are the imaginary parts of the Kähler moduli

Ti = τi + i θi whose real parts τi control the volume of Σi
4 in string units. Due to

a combination of supersymmetry, scale invariance and the axionic shift symmetry,
at tree-level each Ti is a flat direction [61]. The axionic directions θi are lifted by
instantons which preserve only a discrete shift symmetry. On the other hand, the
saxions τi can be stabilised either at perturbative or at non-perturbative level. Let
us comment on the implications of these two situations for axion physics:

� If a given saxion τ is fixed by non-perturbative physics as in KKLT models [33],
the stabilisation is at leading order supersymmetric, implying mθ ∼ mτ ∼ m3/2.
Given that the absence of any cosmological moduli problem requiresmτ & O(50)
TeV [81] and m3/2 sets the mass of the superpartners which cannot be lower
than the TeV-scale, in this case the axion θ is generically very heavy, and so
cannot play the role of the QCD axion [127].

� If τ is stabilised by perturbative physics (such as α′ and/or string loop cor-
rections to the Kähler potential), at this level of approximation mτ ∼ m3/2

while mθ = 0. In the regime where the effective field theory (EFT) is under
control, i.e. where non-perturbative contributions are exponentially suppressed
with respect to perturbative terms, instanton effects will lift θ while inducing
negligible corrections to the stabilisation of τ . This would produce the mass
hierarchy mθ � mτ ∼ m3/2 which identifies θ as a promising QCD axion
candidate with θ ' a/fa.

Besides focusing on models where τ is fixed at perturbative level, the other
conditions to be checked to get a viable QCD axion are that θ couples to the QCD
sector coming from stacks of D7-branes,1 and that stringy instantons generate a
mass mθ,str for θ which is smaller than the one developed by QCD instantons, i.e.
mθ,str � Λ2

QCD/fa.
If all these conditions are satisfied, one has still to derive the value of fa which

determines all the main phenomenological properties of the QCD axion: its mass, its
couplings and its contribution to the DM abundance. Depending on the topology
of the 4-cycle Σ4, fa can be either of order MKK for bulk cycles, or of order Ms

for blow-up modes [125, 127]. In a given moduli stabilisation framework, these
two fundamental scales can be explicitly written down in terms of the underlying
parameters (like the string coupling gs and the vacuum expectation value of the
tree-level superpotential W0) which depend on flux quanta. By exploiting the known

1Notice that when the QCD sector lives on D3-branes at singularities, C4-axions are eaten up
by anomalous U(1) and the QCD axion arises from open string modes [128].
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distributions of gs and W0 in the flux landscape [50], one can therefore derive the
distribution of fa. We shall perform this analysis by focusing on the Large Volume
Scenario (LVS) [32, 34] which fixes some Kähler moduli at perturbative level, and
find that fa features a logarithmic distribution.

We shall consider two possible realisations of the QCD axion: (i) axions associated
to blow-up modes, and (ii) axions associated to bulk cycles. In case (i) fa is
independent on the Standard Model (SM) gauge coupling, while in case (ii) the decay
constant is fixed around the GUT scale by the requirement of reproducing the observed
visible sector gauge coupling αSM . Hence, once we focus on phenomenologically
relevant vacua with α−1

SM ∼ O(10-100), only axions associated to blow-up modes
feature a logarithmic distribution of fa. However we consider this to be the generic
situation for vacua where the EFT is under control since axions from bulk cycles
require an anisotropic shape of the extra dimensions which corresponds to a tuned
situation for moduli stabilisation. The reason is the interplay between two conflicting
conditions: the low-energy 4D EFT can be trusted only for large values of the
internal Calabi-Yau (CY) manifold, while α−1

SM ∼ O(10-100) implies that the 4-cycle
supporting the SM brane system cannot be too large.

This result confirms the naive expectation that a generic 4D string model is
characterised by a QCD axion with a GUT scale decay constant which would
overproduce DM if the initial misalignment angle θin is not tuned close to zero.
However it also shows that string vacua with a QCD axion with an intermediate
scale fa and an O(1) value of θin are not so rare since the number of flux vacua grows
with fa only as a logarithm, instead of a power-law.

Interestingly, in chapter 3 we found that also the distribution of the gravitino mass
in the flux landscape is logarithmic,2 providing the intriguing indication that most,
if not all, of the phenomenologically interesting quantities in the string landscape
might feature a logarithmic distribution. Once the distributions of more than one
phenomenological quantity are known, it is important to look at potential correlations
among them. In our case, we find that vacua with an intermediate scale fa are also
characterised by TeV-scale soft-terms, as typical of LVS models [94].

Let us finally mention that a generic CY gives rise to many Kähler moduli in
the 4D EFT. If several of them are stabilised by perturbative effects, only one of
them will play the role of the QCD axion while all the others would behave as ALPs
which tend to be ultra-light in the regime where the computational control over the
EFT is solid. These ALPs have interesting applications to DM [131], dark radiation
[132, 133, 134, 135] and astrophysics [136, 137]. We shall therefore derive also the
distribution in the flux landscape of the decay constants, the mass spectrum and the
DM contribution of stringy ALPs, finding again a logarithmic dependence.

One may wonder whether our findings provide a trustable representation of the
generic situation for axion physics in the flux landscape since they are based on
the LVS framework while other moduli stabilisation mechanisms at perturbative

2To be more precise, in [1] we concluded that the distribution of the gravitino mass is logarithmic
in LVS models and power-law in KKLT scenarios. However recent explicit constructions of KKLT
models [76, 129, 130] might indicate a logarithmic distribution also for the KKLT case.
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level have been proposed [66]. However recent studies of the Kähler cone of CY
manifolds with a large number of Kähler moduli h1,1 revealed that, in the regime
where the volume of each holomorphic curve is larger than the string scale so that the
α′ expansion is under control, the overall volume in string units grows as V & (h1,1)7

[138]. This clearly implies that for a generic CY with h1,1 ∼ O(100), the EFT can
be under control only if the moduli are fixed at V & O(1014). Given that only LVS
models yield an exponentially large CY volume which can naturally account for such
a large value of V , we believe that the genericity of our results is rather robust. Ref.
[90] presented an explicit LVS moduli stabilisation procedure which can lead to an
exponentially large CY volume for arbitrarily large h1,1 exploiting instantons on del
Pezzo divisors and O(α′3) corrections at O(F 2) and O(F 4) (where F denotes an
F-term). This moduli stabilisation scenario leads to several ultra-light axions in
agreement with the expectation of [138].

Moreover, ref. [139, 140] derived the distributions of the axion decay constants
and masses for different values of h1,1 but at a given point in the moduli space,
focusing in particular on the tip of the so-called stretched Kähler cone, i.e. the
point closest to the origin which allows to keep the EFT under control. Interestingly,
they found that the mean value of fa decreases as h1,1 increases. Our results are
complementary to the ones of [139, 140] since we included moduli stabilisation and
worked out the distribution of fa and ma as a function of flux quanta, i.e. moving in
the moduli space at fixed h1,1. The results of [139, 140] can be integrated with ours
since they provide the boundaries of the region in moduli space where the EFT is
under control and our logarithmic distributions can be trusted, i.e. our logarithmic
distributions are valid for fa . fa,max(h1,1) or ma . ma,max(h1,1) with fa,max(h1,1)
and ma,max(h1,1) as given in [139, 140] as a function of the number of Kähler moduli
h1,1.

Similar considerations apply to the comparison of our findings with the ones
of [141] which noticed that, in the presence of N � 1 ALPs which are effectively
massless, there is just a linear combination of them which couples to photons.
Ref. [141] derived the distribution of the corresponding ALP-photon coupling gaγγ
as a function of N (with N ∼ h1,1) at a fixed point in moduli space, choosing
again the tip of the stretched Kähler cone. For type IIB flux vacua, they found
gaγγ(N) ∼ 10−21N4 GeV−1 which, according to our previous considerations, can be
considered as a lower bound for a logarithmic distribution of gaγγ as a function of
different flux vacua at fixed N , when moduli stabilisation is taken into account along
the lines of this work.

This chapter is organised as follows. In Sec. 4.1 we discuss in depth the interplay
between axion physics and moduli stabilisation. We first describe in detail an example
with h1,1 = 4 where the QCD axion can arise from either a bulk or a blow-up cycle,
and then we discuss a more general example with arbitrarily large h1,1. In Sec. 4.2
we derive the distribution in the type IIB flux landscape of several quantities of
axion physics relevant for phenomenology: decay constants, masses, DM abundance,
axion couplings to gauge bosons and axion dark radiation in Fibre Inflation models
[142, 143, 144, 145, 90, 146, 147, 148]. We discuss our results and present our
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conclusions in Sec. 4.3. Three appendices are devoted to provide technical details:
App. B.1 gives the details of the axion canonical normalisation; App. B.2 provides
a few benchmark points which reproduce the observed fuzzy DM abundance for
ultra-light stringy ALPs; App. B.3 shows the distribution of additional quantities
relevant for phenomenology, like moduli masses and the reheating temperature from
moduli decay, which also feature a logarithmic distribution in the flux landscape.

4.1 Axions and moduli stabilisation

As explained in Sec. 4, axions can be light (i.e. much lighter than the gravitino
and the soft terms) only if supersymmetry is broken and the corresponding saxions
are fixed at perturbative level. Moreover models with a large number of Kähler
moduli require a huge CY volume to keep control over the α′ expansion. These two
considerations single out type IIB LVS models as the best framework to study the
interplay between axion physics and moduli stabilisation.

We shall now describe moduli stabilisation for a toy-model which can feature up
to 3 light axions. This model is, at the same time, simple enough to perform moduli
stabilisation in full detail, and rich enough to be a good representative of a more
generic situation. In fact, it has 1 axion which becomes as heavy as the gravitino
because of non-perturbative stabilisation, 1 ultra-light bulk axion which plays the
role of an ALP, and 2 QCD axion candidates arising from the reduction of C4 over a
bulk or a local 4-cycle.

4.1.1 The geometry

The total number of Kähler moduli is h1,1(X) = 4 and the CY X features a K3
or T 4 divisor D1 fibred over a P1 base contained in a second divisor D2, and two
additional rigid divisors D3 and D4 with only self-intersections. The Kähler form
can be expanded in a basis of (1, 1)-forms as J = t1D̂1 + t2D̂2 − t3D̂3 − t4D̂4 where
the ti are 2-cycle volumes and the negative signs have been chosen to ensure that all
2-cycle volumes are positive (in particular those dual to rigid divisors). The only
non-vanishing intersection numbers are k122, k333 and k444. Explicit examples with
these properties can be found in [149, 143, 144]. Thus the CY volume form looks
like:

V =
1

6

∫
X

J ∧ J ∧ J =
1

2
k122 t1t

2
2 −

1

6
k333 t

3
3 −

1

6
k444 t

3
4 . (4.1)

The 4-cycle moduli τi = 1
2

∫
X
D̂i ∧ J ∧ J become:

τ1 =
1

2
k122t

2
2 , τ2 = k122t1t2 , τ3 =

1

2
k333 t

2
3 , τ4 =

1

2
k444 t

2
4 . (4.2)

These relations can be inverted and V can be written in terms of 4-cycle moduli as:

V = α
(√

τ1τ2 − γ3τ
3/2
3 − γ4τ

3/2
4

)
, (4.3)
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where α = 1√
2k122

, γ3 = 2
3

√
k122
k333

and γ4 = 2
3

√
k122
k444

.

Before dwelling on the details of moduli stabilisation, let us outline the main
features of this representative model. We assume that the SM is built on stacks of
D7-branes wrapping a 4-cycle in the geometric regime. As typical of LVS models,
the internal volume is stabilised at exponentially large values. On the other hand,
the 2 blow-up modes τ3 and τ4 are fixed at small values, and so the volume can
be approximated as V ' α

√
τ1τ2. Given that V is controlled by 2 moduli, we can

consider 2 different regimes in moduli space:

1. Isotropic limit with SM on a local cycle: In this case τ1 ∼ τ2 � τ3 ∼ τ4.
Both τ1 and τ2 are exponentially large, and so none of them can be wrapped
by the SM D7-stack since the corresponding gauge coupling α−1

SM = τi, i = 1, 2,
would be hyper-weak. Hence the SM lives on a D7-stack wrapping the local
divisor D3. τ4 and θ4 are fixed by instantons which make both of them as heavy
as the gravitino. τ1 and τ2 are fixed by a combination of α′ and gs effects, and
so the corresponding axions θ1 and θ2 are ultra-light ALPs. τ3 is stabilised
by a combination of D-terms, F-terms of matter fields and string loops. The
associated axion θ3 plays the role of the QCD axion with a decay constant of
order Ms which is around the intermediate scale for TeV-scale soft terms.

2. Anisotropic limit with SM on a bulk cycle: In this case τ2 � τ1 ∼ τ3 ∼ τ4.
τ1 and τ2 are again frozen by perturbative corrections to the Kähler potential,
and τ3 by non-perturbative contributions to the superpotential. Contrary to
the previous case, τ3 is instead stabilised by non-perturbative physics. Given
that τ1 is hierarchically smaller than τ2, the underlying CY has an anisotropic
shape with 2 extra dimensions much larger than the other 4. Thus the SM can
live on the bulk divisor D1. θ1 becomes the QCD axion with a decay constant
set by the Kaluza-Klein scale associated to the fibre divisor D1 which turns out
to be of order the GUT scale. The mass of θ3 and θ4 is around m3/2, whereas
θ1 plays again the role of an ultra-light ALP.

4.1.2 Moduli stabilisation: leading results

The model-independent closed string moduli involve the axion dilaton S = e−φ + iC0,
h1,2(X) complex structure moduli Ua, and h1,1(X) = 4 Kähler moduli Ti = τi + i θi.
Dimensional reduction yields the following tree-level Kähler potential:3

Ktree = −2 lnV − ln
(
S + S̄

)
+ ln

(
−i
∫
X

Ω ∧ Ω̄

)
. (4.4)

S and the U -moduli are fixed at tree-level by turning on the 3-form flux G3 =
F3 + iSH3 which generates the superpotential:

Wtree =

∫
X

G3 ∧ Ω(U) , (4.5)

3Here and in the following we set Mp = 1 but we will reinsert the correct powers of Mp in the
main results.
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where Ω(U) is the U -dependent holomorphic (3, 0)-form of X. The complex structure
moduli and the axio-dilaton develop a mass of order m3/2, and so the associated
axions are too heavy to be relevant for low-energy phenomenology.

Because of the no-scale cancellation, the T -moduli remain flat at semi-classical
order. These directions are lifted by including non-perturbative corrections to (4.5)
and perturbative corrections to (4.4). Focusing just on the Kähler sector and including
only the leading order α′ effects and instanton contributions, K and W become:

K = −2 ln

(
V +

ξ

2g
3/2
s

)
, W = W0 + A4 e

−a4T4 , (4.6)

where ξ = −χ(X)ζ(3)
2(2π)3

with χ(X) the Euler number of X and ζ(3) ' 1.2, W0 is the

vacuum expectation value of (4.5), A4 ∼ O(1) and a4 = 2π for an ED3 wrapping D4,
while a4 = 2π/n4 for gaugino condensation on a stack of n4 D7-branes on D4.

Plugging (4.6) into the standard form of the 4D N = 1 supergravity F-term scalar
potential, we end up with (up to an overall S and U -dependent factor):

V =
8

3α2
a2

4A
2
4

√
τ4

V
e−2a4τ4 + 4a4A4τ4 cos(a4θ4)

W0

V2
e−a4τ4 +

3ξ

4g
3/2
s

W 2
0

V3
. (4.7)

Minimising (4.7) with respect to the 3 moduli V , τ4 and θ4 results in:

〈V〉 =
3α

4a4A4

√
〈τ4〉W0 e

a4〈τ4〉, 〈τ4〉 =
1

gs

(
ξ

2α

)2/3

, 〈θ4〉 = (2k+ 1)
π

a4

k ∈ Z .

(4.8)
This vacuum is AdS but there exist several mechanisms to uplift it to a dS solution
[93, 92, 57, 150]. The order of magnitude of the induced moduli masses is:

mτ4 ' mθ4 ' m3/2 =

√
gs
2π

W0Mp

V
, mV ' m3/2

√
m3/2

Mp

, (4.9)

showing that the axion θ4 becomes too heavy to be relevant for low-energy phe-
nomenology sincem3/2 sets also the order of magnitude of the soft terms, Msoft ' m3/2,
which cannot be below the TeV-scale. At this level of approximation all the other
Kähler moduli are still flat.

4.1.3 Moduli stabilisation: subleading results and axion physics

Let us now describe the stabilisation of the remaining Kähler moduli by including
additional contributions to K and W which are subdominant with respect to those
considered in Sec. 4.1.2. The small parameters controlling the gs and α′ expansions
are respectively eφ � 1 and V−1/3 � 1. We shall consider the isotropic and
anisotropic limits separately.
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4.1.4 Isotropic limit with SM on a local cycle

In this case the SM lives on D7-branes wrapped around the ‘small’ rigid divisor D3.
Because of the well-known tension between chirality and non-perturbative effects
[151], τ3 cannot be stabilised by instantons, and so θ3, contrary to θ4, remains light
and can play the role of the QCD axion. Let us see this important issue in detail.

Moduli stabilisation

The total world-volume fluxes on the SM D7-stack and an ED3 instanton (similar
considerations apply to gaugino condensation) on D3 look like:

FSM = fSMD̂3 +
1

2
D̂3 −B , FED3 =

1

2
D̂3 −B , (4.10)

where fSM ∈ Z and the half-integer contributions are due to Freed-Witten anomaly
cancellation on non-spin divisors [152, 153]. In order to obtain an O(1) instanton
which contributes to W , the B-field has to chosen as B = 1

2
D̂3 so that FED3 = 0.

This, in turn, gives:
FSM = fSMD̂3 , FED3 = 0 . (4.11)

The number of chiral intersections between the ED3 and the SM D7-stack is then
given by:

ISM−ED3 =

∫
X

(FSM −FED3) ∧ D̂3 ∧ D̂3 = k333fSM . (4.12)

These zero modes can kill the ED3 contribution to W if they develop vanishing
vacuum expectation values, as expected for visible sector fields in order not to break
any of the SM gauge symmetries at high energies. In fact, the gauge flux FSM in
(4.11) induces the following U(1)-charge for the modulus T3:

qT3 =

∫
X

FSM ∧ D̂3 ∧ D̂3 = k333fSM , (4.13)

and W has to be gauge invariant. This implies that the prefactor of the non-
perturbative W has also to depend on charged matter fields. Considering for
simplicity just a single open string field φ, the relevant U(1) transformations are:

δφ = iqφφ , δT3 = i
qT3
2π

. (4.14)

Thus the non-perturbative superpotential (including the possibility of gaugino con-
densation):

WED3 = A3 e
−a3T3 with A3 = Aφn and a3 =

2π

n3

, (4.15)

transforms under the anomalous U(1) as:

δWED3 = WED3

(
n
δφ

φ
− 2π

n3

δT3

)
= iWED3

(
n qφ −

qT3
n3

)
, (4.16)
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implying that WED3 can be gauge invariant if n = qT3/(n3qφ). As can be clearly seen
from (4.15), A3 = 0 if 〈φ〉 = 0 (for n > 0).

This problem comes along with the following correlated issue. A non-zero gauge
flux on the D7-stack generates also a moduli-dependent Fayet-Iliopoulos term of the
form [154, 155]:

ξSM =
1

4πV

∫
X

J ∧ FSM ∧ D̂3 = −qT3
4π

t3
V

= −fSM
√

2k333

4π

√
τ3

V
. (4.17)

If 〈φ〉 = 0, a vanishing D-term potential requires ξSM = 0 which, in turn, implies
τ3 → 0, causing the collapse of the divisor D3 to a singularity. This shrinking can
be avoided in 2 ways: (i) by considering a slightly different geometry where the
2 rigid divisors D3 and D4 intersect each other so that ξSM = 0 would just fix τ3

in terms of τ4; (ii) by considering the case where φ is a SM gauge singlet (like a
right handed sneutrino) which can develop a non-zero vacuum expectation value by
D-term cancellation.

In what follows we shall focus on the option (ii) since in the case (i) the anomalous
U(1) would become massive by eating up a combination of the θ3 and θ4, leaving no
light closed string axions to behave as the QCD axion.

The D-term potential reads (taking, without loss of generality, φ as a canonically
normalised field):

VD =
g2
SM

2

(
qφ|φ|2 + ξSM

)2
. (4.18)

A vanishing D-term potential then fixes the open string field at:

〈|φ|2〉 =
n

4π

t3
V

= c

√
τ3

V
with c =

n

4π

√
2

k333

. (4.19)

The anomalous U(1) becomes massive by eating up a combination of θ3 and the
phase θφ of φ = |φ| eiθφ . Its mass is given by:

M2
U(1) ' g2

SMM
2
p

(
f 2

op + f 2
cl

)
, (4.20)

where:

f 2
op = 〈|φ|2〉 = c

√
τ3

V
, (4.21)

is the decay constant of the open string axion θφ, while fcl is the decay constant of
the closed string axion θ3. This last quantity can be derived from the kinetic terms:

Lkin ⊃
1

4

∂2K

∂τ 2
3

∂µθ3∂
µθ3 =

1

2
∂µa∂

µa , (4.22)

where a ' θ3fcl is the canonically normalised axion, implying:

f 2
cl =

1

2

∂2K

∂τ 2
3

=
1

8

√
k122

k333

1

V√τ3

. (4.23)
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Comparing (4.21) with (4.23), it is easy to see that fop � fcl for τ3 � 1, signaling
that the combination of θ3 and θφ eaten up by the anomalous U(1) is mostly given
by the open string axion θφ since the largest contribution to MU(1) in (4.20) comes
from fop [128]. Thus θ3 survives in the low-energy theory and can play the role of
the QCD axion a. The corresponding saxion τ3 develops a potential via 2 effects:

1. The F-term potential of the matter field φ generated by supersymmetry breaking
effects, after writing |φ| in terms of τ3 using (4.19):

Vmatter = m2
3/2|φ|2 = c

W 2
0

√
τ3

V3
. (4.24)

2. The potential generated by string loop corrections to the Kähler potential due
to the exchange of Kaluza-Klein modes between the D7-stack wrapped around
D3 and O7-planes or D3-branes [99, 36]:

Vloop = cloop
W 2

0

V3
√
τ3

, (4.25)

where cloop is expected to be an O(1 − 10) coefficient which depends on the
U -moduli.

The potential Vmatter + Vloop admits a minimum at 〈τ3〉 = cloop/c ∼ O(10) which
reproduces the correct order of magnitude of the SM gauge coupling g−2

SM ' 〈τ3〉. It
can be easily checked that the saxion τ3 develops a mass of order m3/2 similarly to
τ4 and θ4.

Notice that T3-dependent instanton corrections to W as in (4.15) would generate
a potential of the form (using (4.19) and setting θφ = 0 and n3 = 1):

V =
32Acπ2

3α2

τ
(1+n)/2
3

V1+n
e−4πτ3 + 8πAcn/2τ

1+n/4
3 cos(2πθ3)

W0

V2+n/2
e−2πτ3 . (4.26)

For n = qT3/qφ ≥ 2 and 2πτ3 � 1 (i.e. the limit where higher-order instanton
corrections can be neglected), the potential (4.26) is exponentially suppressed with
respect to Vmatter + Vloop, and so it produces just a tiny shift of the minimum for τ3.
On the other hand, it would generate a mass for θ3 of order:

mθ3 '
√
K−1

33 Vθ3θ3 ∼
(
m3/2

Mp

)n−2
4

m3/2 e
−πτ3 , (4.27)

which for n ≥ 2, m3/2 . O(1010) GeV and τ3 = α−1
SM ' 25 is always subdominant

with respect to the contribution from QCD instantons ma ' Λ2
QCD/fa for any possible

fa .Mp. This guarantees that θ3 is a good QCD axion candidate.
The only saxion which remains to be fixed is the fibre modulus τ1. This field

develops a potential via string loop corrections which experience an ‘extended no-scale
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cancellation’ that suppresses them with respect to the leading α′ correction [37]. The
resulting scalar potential for τ1 reads [142]:4

Vgs =

(
g2
s

A

τ 2
1

− B

V√τ1

)
W 2

0

V2
, (4.28)

where A and B are flux-dependent parameters. The minimum of (4.28) is located at:

〈τ1〉 = λg4/3
s 〈V〉2/3 = αλ3/2g2

s〈τ2〉 , λ ≡
(

4A

B

)2/3

. (4.29)

This result has 3 important implications:

1. For α ' λ ' O(1) and gs ' O(0.1), τ1 is roughly of the same order as τ2,
implying that the CY volume is isotropic. Without loss of generality, in what
follows we shall consider αλ3/2g2

s = 1, i.e. 〈τ1〉 = 〈τ2〉.

2. The scalar potential (4.28) scales as V−10/3, and so for V � 1 it is indeed
suppressed with respect to the leading order LVS potential (4.7) which scales
as V−3.

3. For V � 1 the SM cannot live either on τ1 or on τ2 since the resulting gauge
coupling would be too small. Hence the SM has to be supported by τ3.

Notice that the axions θ1 and θ2 are lifted only by tiny non-perturbative corrections
to the superpotential of the form:

W ⊃ A1 e
−a1T1 + A2 e

−a2T2 . (4.30)

with A1 ' A2 ' O(1), and ai = 2π/ni for i = 1, 2. Given that τ1 ' τ2 � 1, these
effects would make θ1 and θ2 2 ultra-light, i.e. almost massless, ALPs.

Mass spectrum and decay constants

The mass spectrum of the 3 moduli fixed at leading order, V, τ4 and θ4 has been
given in (4.9). The mass of the remaining moduli turns out to be:

mτ3 ' m3/2 , mτ1 ' m3/2

(
m3/2

Mp

)2/3

,

mθ3 ≡ ma '
Λ2
QCD

fθ3
, mθ1 'Mp e

−πτ1/n1 , mθ2 'Mp e
−πτ2/n2 . (4.31)

Notice that α′ effects are under control when V ' τ
3/2
1 ' τ

3/2
2 & 103 since the

corresponding expansion parameter is V−1/3 . 0.1. In this regime the 2 ALPs θ1

and θ2 are almost massless, mθ1 ∼ 0 and mθ2 ∼ 0, since their mass would turn out

4We neglected loop corrections suppressed by additional powers of gs � 1.
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to be smaller than the present value of the Hubble constant, H0 ' 10−33 eV, for
n1 = n2 = 1. Larger values of n1 and n2 can however raise mθ1 and mθ2 above H0,
with interesting application to fuzzy DM [131]. In what follows we shall therefore
consider θ1 and θ2 as ultra-light.

The decay constants of the QCD axion θ3 and the 2 ALPs θ1 and θ2 can be
derived from canonical normalisation and take the generic form (see [127] and App.
B.1.1):

fθi ≡
( ni

2π

)√
2λiMp , (4.32)

where λi is the i-th eigenvalue of the Kähler metric and ni determines the periodicity
of the cosine potential which enjoys a discrete shift symmetry (with n3 = 1 for the
QCD axion). The details of canonical normalisation for this explicit example are
provided in App. B.1. The eigenvalues of the Kähler metric (B.5) are given by 1

2τ22
,

1
4τ21

and 3αγ3
8

1
V√τ3 , and so the decay constants become:

fθ3 ≡ fa =
c3

〈τ3〉1/4
Mp√
〈V〉

, fθ1 = c1
Mp

〈τ1〉
= c1α

2/3 Mp

〈V〉2/3
, fθ2 = c2

Mp

〈τ2〉
= c2α

2/3 Mp

〈V〉2/3
,

(4.33)
where the ci’s are moduli-independent coefficients:

c3 =

√
3αγ3

4π
, c1 =

n1

2π
√

2
, c2 =

n2

2π
. (4.34)

Notice that the QCD axion decay constant scales as the string scale, fa ' Ms '
Mp/
√
V , while the decay constants of the 2 ultra-light ALPs behave as the Kaluza-

Klein scale, fθ1 ' fθ2 'MKK 'Mp/V2/3.
The order of magnitude of all these mass scales is set by the overall volume V.

An interesting regime in moduli space is the one where W0 ∼ O(1− 10) and V ∼
O(1014−15) which leads to TeV-scale supersymmetry, Msoft ∼ m3/2 ∼ O(1− 10) TeV,
and a QCD axion decay constant at intermediate scales, fa ∼Ms ∼ O(1010 − 1011)
GeV. Smaller values of the CY volume, like V ∼ O(103 − 104), would push Msoft to
intermediate scales and fa around the GUT scale.

Axion couplings to gauge bosons

Other quantities which are relevant for phenomenology are the couplings of the
axions to the gauge fields of the visible and hidden sectors. We shall focus just on
the couplings of the QCD axion and the 2 ultra-light ALPs which we will express
in terms of the corresponding canonically normalised fields a3 ≡ a, a1 and a2 (see
App. B.1 for the details of canonical normalisation). The visible sector lives on D3

while the hidden sector involves 2 intersecting stacks of D7-branes wrapped around
D1 and D2. Knowing that the gauge kinetic function of each sector is given by the
corresponding unnormalised Kähler modulus, and denoting the field strengths of the
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canonically normalised gauge bosons respectively as Fvis, F1 and F2, we obtain:

Lax−gauge =
a

fa

[
λ1

〈τ3〉
F̃visFvis +

√
〈τ3〉
〈V〉

(
λ2F̃1F1 + λ3F̃2F2

)]
+λ4

a1

Mp

F̃1F1+λ5
a2

Mp

F̃2F2,

(4.35)
where the λi’s are numerical O(1) coefficients. Notice that the QCD axion a has a
stronger than Planckian coupling to the visible gauge bosons while its coupling to
hidden sector degrees of freedom is very suppressed. On the other hand, the 2 ALPs
have a standard O(1/Mp) coupling to hidden gauge bosons but they are decoupled
from the visible sector. These results are due to the combination of two effects: (i)
the visible sector lives on a shrinkable del Pezzo D3 which has no intersection with
the bulk divisors D1 and D2; (ii) the axions θ1 and θ2 are in practice massless.

4.1.5 Anisotropic limit with SM on a bulk cycle

In LVS scenarios the SM can be realised on a stack of D7-branes wrapped around a
bulk cycle only if the underlying geometry has an anisotropic shape. In this case the
overall volume can be exponentially large in agreement with a SM gauge coupling
which is not too small.

Moduli stabilisation

We focus on the case where the SM lives on the K3 or T 4 fibre D1. Hence the visible
sector gauge coupling is given by α−1

SM = τ1 ' O(10-100). Given that V ' α
√
τ1τ2

is exponentially large, the internal geometry needs to be anisotropic with 2 extra
dimensions much larger than the other 4. This can be achieved via the following
moduli stabilisation procedure:

� V , τ4 and θ4 are stabilised as in (4.8) and the CY volume becomes exponentially
large in string units.

� Given that D3 is not wrapped by the SM D7-stack, the non-perturbative
superpotential (4.15) is not suppressed anymore due to chiral intersections with
visible sector states. Hence the freezing of τ3 and θ3 is completely similar to
the stabilisation of τ4 and θ4. Contrary to the isotropic scenario, in this case
θ3 acquires a mass of order m3/2 and plays no role for low-energy physics.

� The fibre divisor τ1 is stabilised by string loop corrections as in (4.29) but with
αλ3/2 = 1 and gs � 1.5 This results in the following hierarchy:

〈τ1〉 = g2
s 〈τ2〉 � 〈τ2〉 . (4.36)

5To be more precise, we envisage a situation similar to the explicit CY cases discussed in [144]
where the volume (neglecting blow-up modes) is V '

√
τ1τ2τ̃2. Due to the intersection between τ2

and τ̃2, the Fayet-Iliopoulos term induced by gauge fluxes fixes τ2 ∝ τ̃2 for vanishing VEVs of open
string fields. An appropriate combination of closed string axions is eaten up by the corresponding
anomalous U(1). Substituting τ2 ∝ τ̃2 in V , one obtains effectively the same expression that we are
considering: V ' √τ1τ2.

84



� T1-dependent non-perturbative corrections to W would be very suppressed due
to: (i) the presence of chiral intersections as for T3-dependent instantons in the
isotropic case; (ii) the fact that D1 is a non-rigid cycle with extra fermionic
zero modes which tend to kill instanton contributions. Therefore the closed
string axion θ1 is a perfect QCD axion candidate which becomes massive via
standard QCD instantons.

� The remaining closed string axion θ2 is an almost massless ALP which develops
a tiny mass via non-perturbative corrections to W which are exponentially
suppressed in terms of the large 4-cycle τ2.

Mass spectrum and decay constants

The mass of V, τ4 and θ4 is again given by (4.9). The mass spectrum of the other
moduli instead reads:

mτ3 ' mθ3 ' m3/2 , mτ1 . m3/2

√
m3/2

Mp

,

mθ1 ≡ ma '
Λ2
QCD

fθ1
, mθ2 'Mp e

−πτ2/n2 . (4.37)

The decay constants of the QCD axion θ1 and the ALP θ2 now become:

fθ1 ≡ fa = c1
Mp

〈τ1〉
= c1αSMMp , fθ2 = c2

Mp

〈τ2〉
= c2αSMg

2
sMp , (4.38)

where c1 and c2 are again given by (4.34) with n1 = 1 for the QCD axion θ1. Notice
that the QCD axion decay constant is proportional to the visible sector gauge
coupling since α−1

SM = 〈τ1〉 and so α−1
SM ∼ O(10 − 100) implies a GUT-scale decay

constant fa 'MGUT . Contrary to the isotropic scenario where the SM was supported
on a local cycle and the QCD axion decay constant could take different values from
MGUT to intermediate scales depending on the value of V , in this case the QCD axion
decay constant is fixed at MGUT by the requirement of reproducing the observed
value of the SM gauge coupling.

Moreover, for gs . 0.1 and 〈τ1〉 & 10, (4.36) yields 〈τ2〉 & 103 which, in turn,
implies that the ALP θ2 is ultra-light, i.e. mθ2 ∼ 0. The decay constant of this ALP
is set by the Kaluza-Klein scale of the effective 6D theory since:

M 6D

KK '
Ms√
t1
' Mp

ατ2

' fθ2 . (4.39)

Interestingly, this scale is one order of magnitude above the gravitino mass since:

m3/2 '
Mp

V
'
√
αSM M

6D

KK ∼ O(0.1)M 6D

KK . (4.40)

The decay constant fθ2 can take different values depending on the order of magnitude
of τ2. Varying τ2 corresponds to varying V which is mainly controlled by gs, as can
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be seen from (4.8). The string coupling affects also the relation (4.36) where however
τ1 has to remain fixed to get the right SM gauge coupling. This can be achieved
by varying W0 as well. Hence (4.8), (4.36) and τ1 = α−1

SM ∼ O(10− 100) imply an
interesting relation between W0 and gs (ignoring O(1) numerical factors):

W0 ∼
(
α−1
SM

gs

)3/2

e−
a4
gs ∼ O(103) g−3/2

s e−1/gs . (4.41)

Thus this class of constructions can reproduce the right visible sector gauge coupling
only for flux vacua which satisfy the relation (4.41). This implies that larger scales are
more natural since fθ2 ' 1014 GeV can be obtained for gs ' O(0.1) and W0 ' O(1),
but fθ2 ' 1012 GeV needs gs ' O(0.01) that would require a severe tuning of W0

down to values of order W0 ' O(10−38). We conclude that this scenario naturally
predicts a QCD axion decay constant around the GUT scale, an almost massless
ALP with decay constant around 1014 GeV and supersymmetry at intermediate
scales.

Axion couplings to gauge bosons

Let us now focus on the coupling of the canonically normalised QCD axion a1 ≡ a and
ALP a2 to gauge bosons belonging to the visible sector on D1 and hidden sectors on
D2 and D3. In fact, SM particles are not charged under the gauge symmetries of the
D7-stack wrapping D3 since D3 does not intersect with D1. Similar considerations
apply to D4, and so we shall ignore the possibility of a hidden sector on D4 since it
would have the same features of the hidden sector on D3. On the other hand, the
SM degrees of freedom can be charged under the gauge group on D2 since there is an
intersection among D1 and D2. However this would still be a hidden sector since τ2

is a big cycle, and so the corresponding gauge coupling would be hyper-weak. Thus
the relevant couplings are (see App. B.1 for the details of canonical normalisation):

Lax−gauge =
a

Mp

[
µ1 F̃visFvis + µ2

〈τ3〉3/2

〈V〉
F̃2F2 + µ3

(
ma

mθ3

)2

F̃3F3

]
+ µ4

a2

Mp

F̃2F2 ,

(4.42)
where the µi’s are O(1) numerical coefficients. Notice that the QCD axion a has
a standard Planckian coupling to visible gauge bosons since it arises from a bulk
cycle. On the other hand its coupling to the hidden gauge bosons on D2 is V-
suppressed, while a is essentially decoupled from the hidden sector on D3 since
(ma/mθ3)

2 ∝ (ΛQCD/Mp)
4 ' 10−76. The ALP a2 features instead an O(1/Mp)

coupling to hidden gauge bosons on D2 but it is decoupled from the other sectors.
These results are again due to the fact that a2 is essentially massless and D3 has no
intersection with D1 and D2.

4.1.6 An example with arbitrary h1,1

A generic CY threefold is characterised by hundreds of Kähler moduli, i.e. h1,1 ∼
O(100), and so one may wonder whether the axion physics of this more complicated
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case would display features similar to the ones of the relatively simple case with
h1,1 = 4 analysed above. As we have stresses, this depends on the details of moduli
stabilisation. In this section we shall describe how to freeze all Kähler moduli for
arbitrary h1,1 following [90]. We will obtain an LVS vacuum where V can be taken
large enough to trust the α′ expansion.

The only requirement on the geometry is the presence of 2 blow-up modes, the
first, DSM , to host the SM and the second, Dnp, to support non-perturbative effects.
This condition is not too restrictive since del Pezzo divisors arise very frequently in
CY constructions. We shall therefore consider an internal volume of the form:

V =
1

6

N∑
i,j,k=1

kijktitjtk − γSMτ 3/2
SM − γnpτ

3/2
np , with N = h1,1 − 2� 1 . (4.43)

As explained in Sec. 4.1.2, the leading contributions to the scalar potential in a large-
V expansion arise from O(α′3) corrections to K and Tnp-dependent non-perturbative
corrections to W as in (4.6), which stabilise τnp ∼ g−1

s , θnp ∼ π/anp and V ∼ e1/gs .
Similarly to the isotropic case studied in Sec. 4.1.4, the SM cycle τSM is instead
fixed by the interplay of D-terms, F-terms of matter fields and τSM-dependent loop
corrections. This stabilisation procedure ensures that the internal volume can be
exponentially large while τSM = α−1

SM ∼ O(10 − 100) can reproduce the observed
value of the SM gauge coupling. Moreover the axion θSM behaves as a perfect QCD
axion candidate with a decay constant of order the string scale.

At this level of approximation, there are still (N − 1) saxionic and N axionic flat
directions (without considering the QCD axion θSM which we assume to be lifted by
QCD instantons). All the (N−1) flat saxions can be lifted by including subdominant
α′ effects. In 10D the first higher derivative corrections which modify the 4D scalar
potential upon dimensional reduction, arise at O(α′3) and scale as G2

3R
3. In 4D

they generate the term proportional to ξ in (4.7). Additional 10D O(α′3) terms
scale as G4

3R
2, G6

3R and G8
3, and they give rise in 4D to higher F-term contributions

to the scalar potential which scale respectively as F 4, F 6 and F 8 [156]. When the
superspace derivative expansion is under control [120], these terms represent just
negligible corrections to the LVS potential (4.7). However they can be the leading
effects to lift any remaining flat direction. In particular, the form of O(α′3) F 4

corrections for an arbitrary CY X has been determined to be [156] (ignoring the
dependence on del Pezzo moduli):

VF 4 =
λW 4

0

V4

N∑
i=1

Πiti , (4.44)

where λ ∝ g
−1/2
s is a positive coefficient [157] and the Πi’s are O(1) topological

quantities which can be expressed in terms of the second Chern class c2 as Πi =∫
X
c2 ∧ D̂i [156]. Notice that Πi ≥ 0 ∀i = 1, ..., N in a basis of the Kähler cone where

ti ≥ 0. The total potential can thus be written schematically as:

Vtot = VLV S(V) + VF 4(V , ti) , (4.45)
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where we have highlighted the moduli-dependence of each contribution. Extremising
with respect to the 2-cycle moduli, we obtain:

∂Vtot

∂ti
=

(
∂VLV S
∂V

− 4λW 4
0 Πktk
V5

)
τi +

λW 4
0 Πi

V4
. (4.46)

Using tiτi = 3V , it is easy to realise that ti∂tiVtot = 0 implies:

∂VLV S
∂V

=
11λW 4

0

3V5
Πiti . (4.47)

Plugging this result in (4.46) we find:

Πktk
3V

=
Πi

τi
∀i = 1, ..., N . (4.48)

This relation fixes (N − 1) moduli in terms of one of them, say τN , as:

τj =
Πj

ΠN

τN , ∀j = 1, ..., N − 1 . (4.49)

The positivity of λ and the Πj’s ensures that this is a well-behaved minimum [90].
Substituting (4.49) in (4.43), we obtain:

τN = hN(kijk,Πi)V2/3 , ⇒ τi = hi(kijk,Πi)V2/3 , ∀i = 1, ..., N , (4.50)

where hi(kijk,Πi) are functions of the intersection numbers and the topological
quantities Πi. The overall volume V is fixed by solving (4.47) which would yield
just a subleading shift of the standard LVS solution (4.8). For V ∼ e1/gs and
hi ∼ O(1− 10) ∀i, the minimum (4.50) leads to an isotropic CY where all divisor
volumes are large enough to trust the α′ expansion.

Given that this stabilisation is purely perturbative, at this level of approximation
N axions are still flat. They can be lifted by including non-perturbative corrections
to W which however tend naturally to give rise to axion masses below the present
Hubble constant for V & (h1,1)7 & 1014. Let us stress that for such a large value of
V the SM is naturally expected to be supported on a blow-up mode since matching
τ∗ = α−1

SM ∼ O(10-100) for a bulk cycle τ∗ would need from (4.49) a very unnatural
hierarchy between Π∗ and ΠN of order 10−8 for τN ∼ V2/3 ∼ 1010.

Mass spectrum and decay constants

The mass of the 3 moduli fixed at leading order, V , τnp and θnp is given in (4.9). The
mass spectrum of the remaining moduli becomes:

mτSM ' m3/2 , mτj ' m3/2

(
m3/2

Mp

)5/6

, ∀j = 1, ..., N − 1 ,

mθSM ≡ ma '
Λ2
QCD

fθSM
, mθi 'Mp e

−πτi/ni ∼ 0 , ∀i = 1, ..., N , (4.51)

88



where all the ALPs θi’s are essentially massless. The decay constants scale as in the
isotropic case with h1,1 = 4 analysed in Sec. 4.1.4:

fθSM ≡ fa =
cSM
〈τSM〉1/4

Mp√
〈V〉

, fθi = ci
Mp

〈τi〉
=
ci
hi

Mp

〈V〉2/3
, ∀i = 1, ..., N , (4.52)

where cSM and the ci’s are O(1) moduli-independent coefficients. The decay constant
of the QCD axion θSM scales again as the string scale, whereas the decay constant of
each ultra-light ALP is controlled by the Kaluza-Klein scale. Contrary to the case
with h1,1 = 4 where values of V of order V ∼ O(103 − 104) could still be compatible
with an EFT under control, for h1,1 ∼ O(100) we should focus only on the region
V & O(1014). Thus we are naturally led to the region with TeV-scale supersymmetry
and an intermediate scale QCD axion decay constant.

Axion couplings

We assume that the SM can be realised with a stack of magnetised D7-branes wrapped
around DSM . On the other hand, the ‘big’ divisors Di, i = 1, ..., N , can in principle
host several hidden sectors. The coupling of the QCD axion and the N ultra-light
ALPs to visible and hidden gauge bosons can be derived from the moduli-dependence
of the corresponding gauge kinetic functions. Denoting the canonically normalised
QCD axion as a, the ALPs as ai (the results of App. B.1 can be easily generalised
to the isotropic case with many bulk Kähler moduli), and the field strengths as Fvis

and Fi, we end up with:

Lax−gauge =
a

fa

[
λSM
〈τSM〉

F̃visFvis +

√
〈τSM〉
〈V〉

N∑
i=1

λ̃iF̃iFi

]
+

N∑
i=1

λ̂i
ai
Mp

F̃iFi , (4.53)

where again λSM , the λ̃i’s and the λ̂i’s are numerical O(1) coefficients. The coupling
of the QCD axion a to visible gauge bosons is enhanced with respect to 1/Mp while
the coupling to hidden degrees of freedom is V-suppressed. This is due again to the
fact that DSM is a shrinkable del Pezzo divisor and the vanishing of the mass of the
N ALPs.

4.2 Statistics of axion physics in the flux land-

scape

Building on the results from chapter 3, we investigate the statistical distribution
in the type IIB flux landscape of various quantities of axion physics which are
phenomenologically interesting. To this end, we first express these quantities in
terms of the microscopic parameters, as we did in Sec. 4.1 via moduli stabilisation,
and we then exploit their distributions. In particular the shall consider the following
distributions for the underlying flux-dependent parameters gs and W0, and the rank
n of the condensing gauge group which generates non-perturbative corrections to the
superpotential:
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� The distribution of the string coupling gs is taken to be uniform. This result
was explicitly checked in [1] for rigid CY manifolds and is believed to hold for
more general cases as well [100]. Hence in the following we shall take dN ' dgs
where N is the number of flux vacua.

� Based on the seminal work [50], the tree-level superpotentialW0 is assumed to be
uniformly distributed as a complex variable, resulting in dN ' |W0|d|W0|. Note
that this distribution might be different in regions where |W0| is exponentially
small since recent constructions of KKLT vacua obtained |W0| ∼ e−1/gs [76,
129, 130]. However, as explained in Sec. 4, KKLT vacua feature only heavy
axions with a mass of order m3/2, and so we shall focus just on regions where
|W0| ∼ O(1-10) where its distribution can be taken as uniform.

� The distribution of the rank of the condensing gauge group n in the type
IIB flux landscape is still poorly understood. All globally consistent type IIB
CY models which have been constructed so far feature contributions to the
superpotential which arise from just gaugino condensation in a pure SO(8)
sector (corresponding to n = 6) and ED3 instantons (with n = 1). It is therefore
still unclear if an actual distribution of n exists. If so, we argue that it should
scale as dN ' −n−rdn with r > 0, since the number of flux vacua N is expected
to decrease when n increases as D7-tadpole cancellation is easier to satisfy for
smaller values of n.

4.2.1 Axion decay constants

Let us start with the axion decay constants. After evaluating the decay constants
at the minimum of the scalar potential, we compute their distributions in the flux
landscape using the scaling of the number of vacua N with the underlying parameters
gs, W0 and n.

Isotropic limit

The axion decay constants in the isotropic limit are given in (4.33). Being exponen-
tially large, the main quantity which controls their distribution is the overall volume
V . Using (4.8), we can therefore approximate the axion decay constants as:

fa ∼Mp e
− c
gsn4 , fθ1 ∼ fθ2 ∼Mp e

− 4c
3gsn4 with c = π

(
ξ

2α

)2/3

. (4.54)

Notice that, at leading order, the decay constants do not depend on W0. Hence we
can vary them with respect to just gs and n4, obtaining:

df =
∂f

∂gs
dgs +

∂f

∂n4

dn4 '
f

(gsn4)2
(n4 dgs + gs dn4)

' f

[
ln

(
Mp

f

)]2

(n4 dgs + gs dn4) , (4.55)
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where f can be any of the 3 decay constants, fa, fθ1 and fθ2 , and in the last step
we have introduced Planck units. Using dgs ' dN and dN ' −n−r4 dn4 with r > 0,
(4.55) takes the form:

df ' n4 f

[
ln

(
Mp

f

)]2
1− c̃ nr−2

4

ln
(
Mp

f

)
 dN , (4.56)

where c̃ = c for fa and c̃ = 4c/3 for fθ1 and fθ2 . Ignoring subdominant logarithmic
effects, we therefore obtain that the distributions of the decay constants of both the
QCD axion and the 2 ultra-light ALPs scale as:

N(fa) ∼ ln

(
fa
Mp

)
and N(fθi) ∼ ln

(
fθi
Mp

)
, i = 1, 2 . (4.57)

Let us stress 3 important points:

1. Isotropic models with the SM localised on a blow-up cycle feature only a mild
logarithmic preference for higher values of the axion decay constants.

2. As can be seen from (4.56), for f �Mp and 0 < r ≤ 2, the distribution of f
is driven mainly by the distribution of gs. Moreover the final result (4.57) is
unchanged if the distribution of gs is taken to be power-law.

3. As can be seen again from (4.56), the unknown distribution of n4 would start
being important only for r > 2. However it is reassuring to notice that it would
affect only the form of subleading logarithmic corrections to (4.57).

Anisotropic limit

For the anisotropic case the axion decay constants are given in (4.38). As already
observed in Sec. 4.1.5, the QCD axion decay constant is fixed around the GUT
scale, fa ∼ MGUT , by the need to match the correct SM gauge coupling. If this
phenomenological condition is dropped, however fa would feature a logarithmic
distribution as in (4.57). The same is true for the distribution of the decay constant
of the ALP θ2. However in this case the phenomenological requirement α−1

SM = τ1 '
O(10-100) still leaves some freedom to vary fθ2 in the flux landscape since from (4.38)
we have fθ2 ' n2g

2
sMGUT . Notice that the ALP decay constant does not depend on

W0 which has however to respect the relation (4.41) to keep τ1 = α−1
SM constant when

gs is varied. Differentiating fθ2 with respect to gs and n2 we thus obtain:

dfθ2
fθ2

=
∂fθ2
∂gs

dgs
fθ2

+
∂fθ2
∂n2

dn2

fθ2
= 2

dgs
gs

+
dn2

n2

. (4.58)

Using again dgs ' dN and dN ' −n−r2 dn2 with r > 0, (4.58) reduces to:

dfθ2 '
√
n2

√
fθ2 MGUT

(
1− gs

2
nr−1

2

)
dN . (4.59)
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For 0 < r ≤ 1, n2 ≥ 1 and gs � 1, the second term in brackets in (4.59) is always
smaller than unity. This term could instead become larger than 1 for r > 1. However,
for gs . 0.1, this would require large values of n2 which are hard to realise in explicit
examples (the largest value obtained so far is n2 = 6 for gaugino condensation in a
pure SO(8) gauge theory which would however still yield a second term of O(1) for
r ≤ 3). We shall therefore consider the term in brackets in (4.59) of order unity, and
obtain:

N(fθ2) ∼
√

fθ2
MGUT

. (4.60)

Let us make 2 important observations:

1. Interestingly, we obtained now a power-law distribution for the ALP decay
constant whose scaling is however very similar to the logarithmic case due to
the mild square root dependence.

2. The distribution (4.60) holds as long as W0 can be tuned to satisfy the relation
(4.41) which implies W0 ∼ e−1/gs . In the absence of a dynamical mechanism
which fixes the flux superpotential in terms of dilaton-dependendent non-
perturbative effects, this relation would however not hold anymore when gs
is taken very small. A good estimate for the lowest value of the ALP decay
constant for which (4.60) still applies, can be obtained for gs ' 0.01 which
would give fθ2 & 1012 GeV.

Model with arbitrary h1,1

As shown in Sec. 4.1.6, the results of the isotropic case with the SM on a blow-up
cycle can be generalised to models with an arbitrarily large number of Kähler moduli
where all saxions can be explicitly stabilised by α′ corrections to the scalar potential.
In this case the axion decay constants are given in (4.52), and they scale with the CY
volume as in the isotropic case discussed above. Hence we expect again a logarithmic
distribution in the type IIB flux landscape as in (4.57):

N(fa) ∼ ln

(
fa
Mp

)
and N(fθi) ∼ ln

(
fθi
Mp

)
, ∀i = 1, ..., N . (4.61)

Let us comment on the regime of validity of these distributions. They hold at fixed
h1,1 when moving in the Kähler moduli space by varying microscopic parameters
like gs after the decay constants are written in terms of them thanks to moduli
stabilisation. These results are complementary to the ones of [139, 140] (see also [141]
for qualitatively similar findings) which found an approximate log-normal distribution
for the axion decay constants of a given CY model focusing at the tip of the stretched
Kähler cone. Moreover they found that the mean value of the fθi ’s decreases when
h1,1 increases.

Given that the tip of the stretched Kähler cone corresponds to the smallest values
of the Kähler moduli which are compatible with a controlled α′ expansion, and the
axion decay constants are inversely proportional to 4-cycle volumes, the values of the
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fθi ’s obtained by [139, 140] represent the largest values of the axion decay constants
compatible with a trustable EFT. These values would therefore provide an upper
bound for the regime of validity of our logarithmic distributions (4.61) which can be
integrated with the results of [139, 140] to describe how the number of flux vacua
changes has a function of both fθi and h1,1.

As an illustrative example, we consider the distribution N(f, h1,1) where f is
the mean value of the axion decay constants. As derived in [138], the requirement
to trust the α′ expansion implies that the volume of each 4-cycle grows with h1,1

as τi & (h1,1)3 ∀i = 1, ..., h1,1 (at least for basis elements obtained from generators
of the cone of effective divisors). On the other side, as we have seen in Sec. 4.1,
the axion decay constants scale as fθi 'Mp/τi. Combining the two results gives a
qualitative understanding of the fact the mean value f of the log-normal distribution
found in [139, 140] decreases as h1,1 increases. Moreover, we can obtain an explicit
estimate of the upper bound for our logarithmic distributions:

f . fmax(h1,1) ' Mp

(h1,1)3
, (4.62)

where, for a given h1,1, f can take different values by moving in the stretched Kähler
cone in a way compatible with moduli stabilisation, and f = fmax at the tip. Hence
we expect the following distribution for the number of type IIB flux vacua as a
function of f and h1,1 (see Fig. 4.1):

N(f, h1,1) ∼ ln

(
f

Mp

)
with f .

Mp

(h1,1)3
. (4.63)
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Figure 4.1: Distribution of the number of flux vacua as a function of the mean value of
the axion decay constants f and h1,1 with the constraint f . Mp/(h

1,1)3. At fixed h1,1,
N(f) ' ln(f/Mp). The plot on the right hand side shows a logarithmic scale for f .

4.2.2 Axion masses

Let us now compute the distribution of axion masses in the flux landscape. As in
the previous section we first compute the differential of the masses and then use the
known scaling of the parameters gs, W0 and n in order to determine the distribution.
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Isotropic limit

The mass spectrum of the isotropic case with SM on a blow-up cycle is summarised
in (4.31). Using (4.56) which can be approximated as dfa ' fa dN , the distribution
of the mass of the QCD axion takes the form:

dma ' −
ma

fa
dfa ' −ma dN ⇒ N(ma) ∼ − ln

(
ma

Mp

)
. (4.64)

On the other hand, the distributions of the masses of the two ultra-light ALPs can
be easily derived by noticing that their masses can be expressed in terms of the
corresponding decay constants as:

mθ1 'Mp e
− Mp

2
√
2fθ1 and mθ2 'Mp e

− Mp
2fθ2 . (4.65)

This result implies:

dmθi ' mθi

Mp

fθi

dfθi
fθi
' mθi ln

(
Mp

mθi

)
dN ∀ i = 1, 2 , (4.66)

which yields the following distribution (neglecting subdominant logarithmic correc-
tions):

N(mθi) ∼ ln

(
mθi

Mp

)
∀ i = 1, 2 . (4.67)

Notice that we find again a logarithmic distribution for the mass of both the QCD
axion and the 2 ultra-light ALPs. However (4.64) and (4.67) have a different sign,
implying that, in the QCD axion case, the type IIB flux landscape has a mild
logarithmic preference for low scale masses, while the ALP case features more vacua
at large mass values.

Anisotropic limit

The masses for the anisotropic geometry with SM on the bulk divisor D1 are
summarised in (4.37). As already pointed out in the previous section, this model is
strongly constrained by the requirement to match the observed SM coupling. This
sets the QCD axion decay constant around the GUT scale, fa ' MGUT , without a
distribution. Thus the QCD axion mass would also be fixed at ma ' Λ2

QCD/fa ' 1
neV.

The mass of the ALP θ2 can instead take different values in the flux landscape
with a distribution which is again logarithmic. This result can be easily inferred by
first writing mθ2 as in (4.65) and then differentiating as below:

dmθ2 ' mθ2

Mp

fθ2

dfθ2
fθ2
' mθ2

[
ln

(
Mp

mθ2

)]3/2

dN , (4.68)
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where we used (4.58) approximated as:

dfθ2
fθ2
' dgs

gs
'

√
Mp

fθ2
dN '

√
ln

(
Mp

mθ2

)
dN . (4.69)

Barring subleading logarithmic effects, (4.68) therefore implies:

N(mθ2) ∼ ln

(
mθ2

Mp

)
. (4.70)

This distribution, similarly to the one of fθ2 derived in (4.60), holds as long as W0

can be tuned to satisfy the condition (4.41) which keeps τ1 = α−1
SM fixed at the right

SM gauge coupling. In the case of the ALP decay constant, we estimated that its
distribution is valid for fθ2 & 1012 GeV. Using (4.65), this gives however a lower
bound for the ALP mass which can be safely ignored since it would be much smaller
than today’s Hubble constant: mθ2 & e−106 Mp � H0.

Model with arbitrary h1,1

The mass spectrum for the model with a generic number of Kähler moduli is given
in (4.51). Following the discussion of the distribution of the axion decay constants,
the results for the distribution of the axion masses for the model with arbitrary
h1,1 would again be qualitatively similar to the isotropic case. Hence we expect
logarithmic distributions of the form:

N(ma) ∼ − ln

(
ma

Mp

)
and N(mθi) ∼ ln

(
mθi

Mp

)
∀ i = 1, ..., N . (4.71)

As for the case of the axion decay constants discussed above, the results of [139, 140]
can be combined with ours to give an upper bound for the regime of validity of the
distributions of the ALP masses as a function of h1,1, i.e. mθi . mmax

θi
(h1,1).

4.2.3 Dark matter abundance

Let us now study the distribution of the axion DM abundance produced via the
standard misalignment mechanism. We distinguish between the case where the DM
particle is the QCD axion and the case where it is an ultra-light ALP. In the QCD
axion case, the DM abundance is given by:

ΩQCDh
2

0.112
' 6.3 ·

(
fa

1012 GeV

)7/6(
θin

π

)2

, (4.72)

while for the case of an ALP θi, it reads:

ΩALPh
2

0.112
' 1.4 ·

( mθi

1 eV

)1/2
(

fθi
1011 GeV

)2(
θi,in
π

)2

. (4.73)

For natural O(π) values of the initial misalignment angles θin and θi,in, the QCD
axion can reproduce the observed DM adundance for fa ' 1011 GeV, while an ALP
would require mθi ' 5 · 10−21 eV for fθi ' 1016 GeV (see App. B.2 for a detailed
scan through the underlying parameter space and some benchmark points).
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Isotropic limit and model with arbitrary h1,1

In the isotropic case with SM on a blow-up cycle, the distribution of QCD axion DM
abundance can be computed deriving (4.72) with respect to fa and then using the
result (4.56) which, at first approximation, implies dfa ' fa dN . Hence we end up
with:

d
(
ΩQCDh

2
)

=
7

6

(
ΩQCDh

2
) dfa
fa
'
(
ΩQCDh

2
)
dN , (4.74)

which gives:
N
(
ΩQCDh

2
)
∼ ln

(
ΩQCDh

2
)

(4.75)

This result is very important since it implies that the number of type IIB flux vacua
which can reproduce the correct value of the DM abundance for θin ∼ O(π) is only
logarithmically suppressed with respect to what has been considered so far as the
typical stringy case with fa ∼MGUT and a tuned initial misalignment angle.

The isotropic case features 2 ultra-light ALPs, θ1 and θ2. Both of them can
behave as cold DM. Noticing from (4.65) that the microscopic model sets a correlation

between mθi and fθi of the form mθi ' Mp e
−βi

Mp
fθi with βi ∼ O(1) ∀i = 1, 2, the

distribution of the ALP DM abundance (4.73) is mainly controlled by mθi . We can
therefore derive (4.73) just with respect to mθi and obtain:

d
(
ΩALPh

2
)

=

[
1

2

dmθi

mθi

+ 2
dfθi
fθi

] (
ΩALPh

2
)
' dmθi

mθi

(
ΩALPh

2
)
'
(
ΩALPh

2
)
dN ∀ i = 1, 2 ,

(4.76)
where we used (4.66) approximated as dmθi ' mθi dN . This implies for both θ1 and
θ2:

N
(
ΩALPh

2
)
∼ ln

(
ΩALPh

2
)
. (4.77)

Thus we realise that also the distribution of the ALP DM abundance features
a logarithmic behaviour. As already explained, this result should apply also to
the distribution of the DM abundance of each ultra-light ALP of the model with
arbitrarily large h1,1.

Anisotropic limit

In the anisotropic limit with the SM on the fibre divisor, the value of the QCD axion
decay constant is fixed around the GUT scale once we focus just on vacua which
match the SM coupling. Hence this would represent a typical stringy case which
has been considered as ‘anthropic’ since for fa ∼ MGUT ∼ 1016 GeV (4.72) would
reproduce the correct DM abundance only for θin ∼ 0.001π.

The DM abundance associated to the ultra-light ALP θ2 would instead be
distributed as:

d
(
ΩALPh

2
)
' dmθ2

mθ2

(
ΩALPh

2
)
'
(
ΩALPh

2
)
dN ⇒ N(ΩALPh

2) ∼ ln
(
ΩALPh

2
)
,

(4.78)
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where we used dmθ2 ' mθ2 dN from (4.68). Similarly to the isotropic case, we find
again a logarithmic distribution with however the difference, as already pointed
out, that in the anisotropic case all expressions, (4.73) included, are valid only for
fθ2 & 1012 GeV (while we have seen that any value of mθ2 is allowed).

4.2.4 Axion couplings to gauge bosons

Let us now study the distribution of the couplings between axions and gauge fields.
Following the analysis of the previous sections, we first evaluate the couplings at the
minimum of the scalar potential and we then determine their distribution in the flux
landscape.

Isotropic limit and model with arbitrary h1,1

We start with the couplings in the isotropic case which are summarised in (4.35).
The axion couplings to visible and hidden gauge bosons feature a similar behaviour
also in the model with arbitrarily many Kähler moduli, as can be seen from (4.53).
Hence the results which we will obtain for the isotropic case can be directly extended
to the more general case with arbitrarily large h1,1 and SM built with a stack of
D7-branes wrapped around a local del Pezzo divisor.

Interestingly, each ultra-light ALP couples in practice just to the corresponding
hidden gauge fields with a coupling that is fixed at Planckian strength without a
distribution in the landscape. This is a typical stringy behaviour, as expected for
the imaginary part of a standard bulk modulus. On the other hand, the coupling
between the QCD axion a and SM gauge fields γ is controlled by the string scale
Ms ∼Mp/

√
V since it is inversely proportional to fa:

gaγγ =
λ1

〈τ3〉 fa
∼ 1

Ms

. (4.79)

Thus the distribution of gaγγ takes the form:

dgaγγ ' −gaγγ
dfa
fa
' −gaγγ dN ⇒ N(gaγγ) ∼ − ln (gaγγ) . (4.80)

where we used (4.56) approximated as dfa ' fa dN . Notice the mild logarithmic
preference for smaller couplings. The coupling of the QCD axion to hidden gauge
bosons γh living on stacks of D7-branes wrapped around the bulk divisors D1 and
D2, is instead weaker than Planckian since these two divisors do not intersect with
the del Pezzo 4-cycle D3:

gaγhγh =
λi
√
〈τ3〉

〈V〉 fa
∼
(
fa
Mp

)
1

Mp

� 1

Mp

∀i = 1, 2 . (4.81)

Hence, using dfa ' fa dN ' gaγhγh dN , the distribution of the coupling between the
QCD axion and hidden gauge bosons scales as:

dgaγhγh ' dfa ' gaγhγh dN ⇒ N(gaγhγh) ∼ ln (gaγhγh) . (4.82)
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Contrary to the coupling to visible gauge fields, in this case the flux landscape
features a logarithmic preference for larger couplings.

Anisotropic limit

The axion-gauge couplings for the anisotropic case are summarised in (4.42). Contrary
to the isotropic case, the coupling of the QCD axion to visible sector gauge fields
does not show a distribution since it is fixed at 1/Mp, as typical of a string modulus.
The difference with the isotropic case in this regard is due to the different topological
origin of the QCD axion which in the isotropic case arises from the reduction of C4

on a local del Pezzo 4-cycle while in the anisotropic case it is associated to the bulk
divisor D1. The behaviour of the ultra-light ALP a2 is instead similar to the one of
the 2 ALPs in the isotropic case since a2 couples just to hidden degrees of freedom
on D2 with a fixed strength of order 1/Mp.

In the anisotropic case, the only couplings which can take different values in the
flux landscape are the couplings of the QCD axion to the gauge bosons of the hidden
sectors on D2 and D3, which we denote respectively as γ2 and γ3. The coupling
gaγ2γ2 scales as:

gaγ2γ2 =
µ2

Mp

〈τ3〉3/2

〈V〉
∼
(
fθ2
Mp

)
1

Mp

. (4.83)

As we have already estimated, in this case 1012 GeV . fθ2 . 1016 GeV, which implies
10−6 . gaγ2γ2 Mp . 10−2. In this regime of validity, the distribution of the coupling
gaγ2γ2 turns out to be:

dgaγ2γ2 ' dfθ2 '
√
gaγ2γ2 dN ⇒ N(gaγ2γ2) ∼

√
gaγ2γ2 , (4.84)

where dfθ2 '
√
fθ2 dN from (4.59). Hence the coupling of the QCD axion to hidden

gauge fields on D2 is weaker than Planckian with a mild (due to the square root)
power-law preference for couplings close to 0.01/Mp. The QCD axion is instead
almost decoupled from the degrees of freedom of the hidden D7-stack wrapping D3

since gaγ3γ3 scales as:

gaγ3γ3 =
µ3

Mp

(
ma

mθ3

)2

∼
(

Λ2
QCD

MGUTfθ2

)2
α−1
SM

Mp

, (4.85)

where mθ3 ' m3/2 '
√
αSM fθ2 from (4.37) and (4.40), and ma ' Λ2

QCD/MGUT .
For α−1

SM ' 100 and 1012 GeV . fθ2 . 1016 GeV, this coupling would be of order
10−66 . gaγ2γ2 Mp . 10−58, and so we can safely set it to zero in the whole flux
landscape.

4.2.5 Dark radiation in Fibre Inflation

A generic feature of models where reheating occurs due to the decay of a closed
string modulus is the production of ultra-light bulk axions which yield extra dark
radiation [132, 133, 134, 135]. This happens also in the interesting case of type
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IIB Fibre Inflation models [142, 143, 144, 145, 90, 146, 147, 148] where the CY
volume takes the same form as in (4.3) and the fibre modulus τ1 plays the role of
the inflaton. The inflationary potential is generated by perturbative corrections to
the Kähler potential and the CY volume is fixed around V ' 103-104 by the need to
reproduce the observed amplitude of the density perturbations generated by inflaton
fluctuations during inflation. In order to have an efficient production of SM degrees
of freedom at reheating, the SM D7-stack has to wrap the fibre divisor D1. Hence a
viable realisation of Fibre Inflation models requires to focus on the anisotropic case.

The inflaton τ1 is the lightest Kähler modulus and its perturbative decay after
the end of inflation produces SM particles together with the QCD axion θ1 and the
ultra-light ALP θ2 which are both relativistic and yield a gs-dependent contribution
to the effective number of relativistic species Neff [158]. One can thus exploit the
known distribution of gs to derive the distribution of extra dark radiation in the
flux landscape of Fibre Inflation models. The amount of extra dark radiation is
parameterised by ∆Neff which is determined by the ratio of the inflaton branching
ratio into hidden and visible degrees of freedom [158]:

∆Neff =
43

7

Γhid

Γvis

(
g∗(Tdec)

g∗(Trh)

)1/3

' 0.6

γ2
, (4.86)

where the parameter γ controls the coupling of the inflaton to visible sector gauge
bosons and depends on the string coupling:

γ = αSMτ1 = g4/3
s αSMV2/3 , (4.87)

where we have used (4.36) with α = 1 in the the volume form (4.3). Let us stress
that in Fibre Inflation models the CY volume is fixed around V ' 103 by the need
to reproduce the observed amplitude of the density perturbations generated by
inflaton fluctuations during inflation. Hence in (4.87) V should be considered as
constant. When varying gs, this can be achieved by an appropriate choice of W0

(see (4.8)). Moreover gs should be varied by keeping the SM coupling fixed at its
phenomenological value. Given that αSM reads:

α−1
SM = τ1 −

h(F)

gs
= γ α−1

SM −
h(F)

gs
, (4.88)

where h(F) ≥ 0 is a non-negative function of the intersection numbers and the gauge
flux F on the SM D7-brane stack, this implies that any variation of γ (by varying gs)
should be compensated by a suitable change of h(F) by considering a different choice
of F (if this is allowed by the discreteness of the gauge flux quanta and by tadpole
cancellation). Notice that h(F) vanishes for F = 0, implying from (4.88) γ = 1 and
∆Neff fixed at ∆Neff ' 0.6 [158]. However h(F) > 0 for F 6= 0, and so in this case
∆Neff features a distribution in the flux landscape due to its dependence on gs. We
can estimate the regime of validity of this distribution by setting in (4.87) α−1

SM = 25,
V = 5 · 103 and gs . 0.25 to trust perturbation theory, which gives ∆Neff & 0.17. We
can also obtain an upper bound on ∆Neff by requiring τ1 ≥ α−1

SM from (4.88) since
h(F) > 0. This gives γ ≥ 1 from (4.87), and so ∆Neff . 0.6.
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Varying now (4.86) with respect to γ using (4.87) and dgs ' dN , we obtain:

d(∆Neff)

∆Neff

' −dγ
γ
' −dgs

gs
' −∆N

3/8
eff dN ⇒ N(∆Neff) ∼ ∆N

−3/8
eff .

(4.89)
which gives a power-law distribution for extra dark radiation:

N(∆Neff) ∼ ∆N
−3/8
eff for 0.17 . ∆Neff . 0.6 . (4.90)

Interestingly we find that the flux landscape of Fibre Inflation models features more
vacua around ∆Neff ' 0.17 which helps to satisfy current bounds on extra relativistic
species. We stress again that this distribution is valid only for values of ∆Neff

corresponding to values of gs which are compatible with a choice of h(F) that keeps
αSM constant.

4.3 Discussion and conclusions

In this chapter we studied the statistics of axion physics in the type IIB flux
landscape focusing on the model-independent case of closed string axions coming
from the dimensional reduction of C4. We argued that a proper understanding of
moduli stabilisation is crucial in order to derive the main features of the low-energy
phenomenology of stringy axions.

In KKLT-like scenarios all axions are as heavy as the corresponding saxions due
to non-perturbative stabilisation. If the saxion masses are larger than O(50) TeV
in order to avoid cosmological problems, each axion is thus too heavy to behave
as the QCD axion or as a very light ALP for fuzzy DM. On the contrary, moduli
stabilisation schemes which rely on perturbative corrections are characterised by
axion masses which are exponentially suppressed with respect to saxion masses. This
singles out LVS models as the best case scenarios for analysing axion physics since
they also yield an exponentially large CY volume which allows to keep the EFT
under control even for a large number of Kähler moduli.

Hence we focused on an LVS model with h1,1 = 4 which is simple enough to
perform moduli stabilisation in full detail but, at the same time, rich enough to show
all the main features of axion physics which we consider to be valid in general for
models with more Kähler moduli. We considered two regimes: (i) the isotropic limit
with the SM on D7-branes wrapping a local blow-up cycle, and (ii) the anisotropic
limit where the SM lives on a D7-stack wrapped around a bulk divisor. In both
cases all phenomenologically interesting quantities, like axion decay constants, axion
masses, contributions to the DM abundance and axion-gauge bosons couplings,
feature a logarithmic distribution in the flux landscape. In the isotropic case however,
the request to reproduce the correct SM gauge coupling selects a subset of the
underlying parameter space where some distributions turn into a mild power-law
behaviour.

Regarding the QCD axion, in the isotropic case it comes from the reduction of C4

on a blow-up mode, whereas in the anisotropic case it is associated to a bulk cycle. In
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the last case its decay constant is fixed around the GUT scale by the need to match
αSM . On the other hand, in the first case fa is distributed logarithmically with just
a mild preference for GUT-scale values in comparison with cases where fa is around
intermediate scales. We consider this case to be more generic in the string landscape
since realisations of the QCD axion from bulk cycles require an anisotropic moduli
fixing which would require a good amount of tuning for relatively large values of V ,
while the case of a blow-up QCD axion can work with either isotropic or anisotropic
models. We therefore conclude that what has been so far claimed to be the typical
stringy situation with a GUT-scale QCD axion decay constant and a tuned initial
misalignment angle to avoid DM overproduction, could be not so predominant in
the flux landscape with respect to more natural cases where fa ∼ O(1011) GeV and
θin ∼ O(π).

On top of the QCD axion, the isotropic and anisotropic scenarios feature either
1 or 2 ultra-light ALPs. In agreement with previous studies [139, 138, 140, 141],
we argued that the presence of several ultra-light ALPs is a general characteristic
of 4D string models where the EFT is under control, as we have shown explicitly
in a model with arbitrary h1,1 where full moduli stabilisation can be achieved by
exploiting higher derivative α′ corrections following [90]. Interestingly, we found that
the decay constants, the mass spectrum and the contribution to the DM abundance
of all these ultra-light ALPs are also logarithmically distributed in the type IIB flux
landscape.

In the previous chapter we found that the number of flux vacua is also a logarithmic
function of the gravitino mass and the supersymmetry breaking scale. Moreover in
App. B.3 we showed that other quantities relevant for phenomenology, as the moduli
masses and the reheating temperature from moduli decay, share the same statistical
properties. We are therefore tempted to argue that most, if not all, of the low-energy
properties of the string theory landscape seem to obey a logarithmic distribution
once moduli stabilisation is properly taken into account. Apart from the particular
case of extra dark radiation in Fibre Inflation models, the only exception which we
have encountered so far seems to be the supersymmetry breaking scale in KKLT
scenarios which might be characterised by a power-law distribution. However its
statistical significance is still unclear since this result relies on the assumption that
W0 is uniformly distributed [50] also in the exponentially small regime where however
it is very hard to built explicit examples. The only ones which have been constructed
so far feature W0 = 0 and a flat direction at perturbative level [76, 130, 129]. The
flat direction is lifted by non-perturbative physics which generates dynamically an
exponentially small W0 ∼ e−1/gs . Exploiting the uniform distribution of the string
coupling, this relation would again produce a logarithmic distribution of the gravitino
mass.

It is worth stressing that these distributions follow from moduli stabilisation
which applies only to corners of the string landscape where the EFT is under control
thanks to supersymmetry and weak couplings. In order to judge their genericity one
would have therefore to be able to control the EFT beyond the regime of validity of
these approximations. Despite the difficulty to achieve this goal, scaling arguments
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and approximate symmetries inherited from the 10D theory [61] could be used as a
powerful guideline to shed light on larger portions of the string landscape. This top-
down analysis of the statistical properties of quantities relevant for phenomenology
is crucial to provide more theoretical guidance to recent bottom-up approaches
to understand naturalness and string theory predictions for several observables
[67, 159, 160, 161, 162, 163].

We finally comment on the fact that the relative flatness of logarithmic distribu-
tions in the string landscape might be seen at first sight as an indication of a difficulty
to make sharp predictions from string theory. However a key-feature of string theory
is the correlation between different low-energy phenomenological quantities due to
the underlying UV framework. It is this interplay which should be used to sharpen
the predictions of the string landscape. As an example, we mention the fact that
in LVS models an intermediate scale QCD axion decay constant would correlate
with TeV-scale soft terms and a volume mode mass around 1 MeV. Thus, in the
absence of a mechanism to avoid cosmological problems associated to the presence
of such a light modulus [82], a natural QCD axion DM situation with fa ∼ O(1011)
GeV and θin ∼ O(π) would not be viable even if the number of vacua with these
features is only logarithmically suppressed with respect to the number of vacua with
a GUT-scale decay constant. We leave the important study of the UV correlation
between different particle physics and cosmological observables with logarithmic
distributions for future work.
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Chapter 5

SUPERPOTENTIAL
STATISTICS

Central to the venture of string phenomenology is to carry out explicit constructions
of reliable vacua which are phenomenologically viable. In this light, particularly
attractive are type IIB flux compactifications [30]. Here, the complex structure
moduli and axio-dilaton can be stabilised by turning on background 3-form fluxes.
There are instead various scenarios for stabilising the Kähler moduli (see for example
[33, 32, 66, 86, 34, 93, 90, 57, 164, 91]). The Standard Model can be realised on
intersecting D-branes, branes at singularities or their F-theory generalisations [39].
Cosmic inflation can also be driven by either closed or open string moduli [165, 166].
Furthermore, the large number of possibilities for choosing flux quanta leads to
a multitude of solutions which can provide a way to tune the parameters of the
associated 4-dimensional effective theory [44, 167].

Our understanding of the physics of type IIB flux compactifications has been
growing steadily. This often involves the discovery of a novel class of solutions which
have some desirable property needed for the construction of string vacua. One such
very interesting class has been discovered recently [76]. These vacua are in the large
complex structure limit of the underlying Calabi-Yau of the compactification. They
correspond to choices of flux quanta that yield a Gukov-Vafa-Witten superpotential
[83] which, when computed using the perturbative part of the prepotential, is a degree-
2 homogeneous polynomial in the complex structure moduli and the axio-dilaton. As
a result, at this level, these vacua have a flat direction and the expectation value of
the Gukov-Vafa-Witten superpotential vanishes along the flat direction. Therefore,
these vacua have been dubbed ‘perturbatively flat’. The flat direction is lifted when
non-perturbative corrections to the prepotential are incorporated. With this, the
Gukov-Vafa-Witten superpotential acquires a value which is exponentially small (at
weak string coupling).

This discovery is particularly interesting in the context of KKLT models [33].
Defining as in [76] the vacuum expectation value of the Gukov-Vafa-Witten superpo-
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tential as1

W0 ≡
√

2

π
〈eK

∫
X

G3 ∧ Ω〉 , (5.1)

where K is the Kähler potential for the complex structure moduli and axio-dilaton,
G3 is the complexified 3-form flux, and Ω the holomorphic 3-form of the underlying
(orientifolded) Calabi-Yau X, controlled KKLT vacua require exponentially small
values of |W0|.2 This is effectively realised in perturbatively flat vacua which feature
|W0| ∼ e−2π/(cgs) � 1 at small string coupling gs � 1 (with c ∈ Q+). The paper [76]
presented an explicit choice of flux quanta in an orientifold of the Calabi-Yau obtained
by considering a degree-18 hypersurface in CP[1,1,1,6,9], which yielded |W0| ∼ 10−8 (for
earlier work on obtaining low values of |W0| see for example [168, 78]). Not stopping
at that, an explicit example with |W0| as low as 10−95 was presented in [169, 170].
Here, important advances were made in developing Kähler moduli stabilisation in this
context. Furthermore, [129, 171] extended the method to settings with a shrinking
conifold modulus, an essential ingredient of the KKLT construction for anti-brane
uplifting. The generalisation to F-theory has been considered in [172].

Perturbatively flat vacua are important also for recent LVS explicit realisations of
the Standard Model with D3-branes at an orientifolded dP5 singularity [173]. In these
constructions the cancellation of all D7-charges and Freed-Witten anomalies forces
the presence of a hidden D7-sector with non-zero gauge fluxes which induce a T-brane
background suitable for de Sitter uplifting [92]. As can be seen from equations (5.41)
and (5.46) of [173] the T-brane contribution can give a leading order Minkowski
vacuum if |W0| takes a form similar to the one typical of perturbative flat vacua
since |W0| ∼ λ1 e

−2πλ2/gs where λ1 and λ2 are O(1) model-dependent coefficients
which depend on microscopic quantities like the Calabi-Yau Euler characteristic
and intersection numbers, the number of blow-up modes, gauge flux quanta and
the rank of condensing gauge groups. Phenomenologically viable vacua with a de
Sitter minimum and soft terms above the TeV scale can require |W0| as small as
|W0| ∼ 10−13.3 All of these are significant developments in the direction of explicit
constructions of fully reliable de Sitter vacua in string theory.

Returning to a broader discussion, phenomenological requirements will invariably
lead us to specific subclasses of flux vacua (such as perturbatively flat vacua for low
|W0|). As we continue to examine flux vacua in detail, we will certainly discover
many other interesting subclasses. Given a subclass of flux vacua, there are two
important questions that are natural to ask:

� How does the subclass fit within the larger ensemble of the full set of vacua?
More specifically, what can we say about the set from the point of view of
the statistical approach to string phenomenology [174, 46, 50, 49, 51] (see

1Unless otherwise stated, in this chapter we will follow all the conventions of [76].
2For a general discussion on the magnitude W0 in the context of moduli stabilisation and

phenomenological implications, see [120] and references therein.
3Notice that very small values of |W0| are not a necessary condition for T-brane uplifting since

this depends crucially on the model-dependent values of λ1 and λ2. In fact, [107] found explicit
LVS de Sitter models with |W0| ∼ O(1− 10).
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[62, 175, 176, 177, 55, 52, 53, 54, 178, 123, 179, 180, 77, 181, 182] for studies
in various settings in this context)?

� How can one carry out exhaustive searches which will allow us to have a
complete understanding of the vacua in this set (and their physics)?

The goal of this work is to take the first steps and develop the methods necessary
to answer the above questions in the context of perturbatively flat vacua. In the
process, we hope to learn some lessons which should be applicable to the study of
any subclass. Apart from the general motivation, there are interesting reasons to
address both questions in the context of perturbatively flat vacua.

Usually, finding flux vacua requires solving a coupled set of equations involving
the flux quanta and the complex structure moduli. In the case of perturbatively flat
vacua, there is considerable simplification. As we will review below, to find vacua
one just needs to solve a set of diophantine equations involving the flux quanta
(once solutions to this set are found, the vacuum expectation values of the complex
structure moduli are automatically determined by a simple analytic formula). Given
this simplification, perturbatively flat vacua are the ideal set to look at to develop
methods for exhaustive searches for flux vacua.

As already mentioned, perturbatively flat vacua provide a natural way to construct
KKLT models and can be useful for effective T-brane uplifting in some LVS models.
Thus, developing an understanding of how they fit into the full set of flux vacua
(in the statistical context) is important for obtaining the statistical predictions for
observables in these models. For instance, the analysis of [1, 3] implies that if
|W0| is exponentially small in the dilaton in most vacua in a set, then the scale
of supersymmetry breaking has a logarithmic distribution. The above property is
true for all perturbatively flat vacua. Therefore, gaining an understanding of what
fraction of the vacua at low |W0| are perturbatively flat is central to determining
the distribution of the scale of supersymmetry breaking in KKLT models. The
distribution of the scale of supersymmetry breaking in the landscape is of course of
much interest [72, 47, 68, 183, 184, 70].

Before closing the introduction, we would like to make some comments regarding
the approach that this article takes. Work on the search for flux vacua and their
properties is a two step process - development of methods and then extensive
numerical scan through models. The focus of the present paper is on the former.
While we will make use of specific models to illustrate the methods,4 we will not
be carrying out any extensive numerical scans through models. In fact, we will
often stop midway with the analysis of particular models when the necessary point
regarding the methods is made. We leave detailed numerical scans of models for
future work.

This chapter is organised as follows. In Sec. 5.1 we review the main ingredients
of perturbatively flat vacua, while in Sec. 5.2 we discuss their statistical significance.
Sec. 5.3 provides all the details of an algorithm to perform exhaustive searches for

4For this we will work with models with 2 complex structure moduli, keeping the numerics light.
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perturbatively flat vacua for the case with 2 complex structure moduli. In Sec. 5.4
we outline instead a more general search algorithm which is valid in principle to
obtain perturbatively flat vacua for examples with an arbitrarily large number of
complex structure moduli. We present our conclusions and discuss our results in Sec.
5.5. Some technical details regarding our numerical search for cases with 2 complex
structure moduli are summarised in App. C.1.

5.1 A brief review of perturbatively flat vacua

In this section we first recapitulate some basic material on type IIB flux compactifica-
tions and then go on to review [76]. Our discussion in the first part shall be primarily
to set notation and will be quite brief. We refer the reader to [185, 186, 187, 188, 30]
for further details.

As explained in the introduction, type IIB flux compactifications have an internal
manifold that is conformally an orientifolded Calabi-Yau X. To describe these in
the language of special geometry, one works with a symplectic basis for H3(X,Z),
{Aa, Ba} for a = 1, ..., h1,2

− (X) with Aa ∩ Ab = 0, Aa ∩ Bb = δ b
a , and Ba ∩ Bb = 0,

and projective coordinates on the complex structure moduli, Ua (in what follows, we
will take U0 = 1). The central object is the prepotential F , which is degree-2 and
homogeneous in the projective coordinates. The period vector is given by

Π =

( ∫
Ba

Ω∫
Aa

Ω

)
=

(
Fa
Ua

)
. (5.2)

The flux vectors F and H are obtained by integrating the 3-form field strengths of
the type IIB theory over the Aa and Ba cycles

F =

( ∫
Ba
F3∫

Aa
F3

)
, H =

( ∫
Ba
H3∫

Aa
H3

)
. (5.3)

Dirac quantisation conditions require that these are integer valued. The flux super-
potential, which is classically exact, is given by

W =
√

2
π

(F − τH)T · Σ · Π , (5.4)

where

Σ =

(
0 −1
1 0

)
, (5.5)

is the symplectic matrix. The tree-level Kähler potential (for the complex structure
moduli and the axio-dilaton) is

K = − ln
(
−iΠ† · Σ · Π

)
− ln (−i(τ − τ̄)) . (5.6)

In the large complex structure limit,5 the prepotential is a sum of perturbative terms
which are at most degree-3 and instanton corrections, i.e F(U) = Fpert(U) +Finst(U)

5For detailed studies of flux vacua in the large complex structure limit see e.g. [189, 75, 190,
191, 192, 193, 194].
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with

Fpert(U) = − 1

3!
KabcUaU bU c +

1

2
aabU

aU b + baU
a + ξ , (5.7)

where Kabc are the triple intersection numbers of the mirror Calabi-Yau, aab and
ba are rational, and ξ = − ζ(3)χ

2(2πi)3
, with χ the Euler number of the Calabi-Yau. The

instanton corrections are

Finst(U) =
1

(2πi)3

∑
~q

A~q e
2πi~q·~U , (5.8)

where the sum runs over effective curves in the mirror Calabi-Yau.
Supersymmetric vacua which have W = 0 at the perturbative level of the

prepotential and also have a flat direction were termed as perturbatively flat in [76].
The basic idea of [76] is that, when the instanton corrections are incorporated, the
flat direction is lifted and W acquires an exponentially small vacuum expectation
value. Furthermore, the paper provides an explicit algorithm to obtain perturbatively
flat vacua, which was stated in the form of a Lemma.

The statement of the Lemma is: if there is a pair ( ~M, ~K) ∈ Zn × Zn satisfying

Nflux ≡ −1
2
~M · ~K ≤ QD3 (QD3 being the D3-charge tadpole bound), such that

Nab ≡ KabcM c is invertible, and ~KTN−1 ~K = 0, and ~p ≡ N−1 ~K lies in the Kähler
cone of the mirror Calabi-Yau, and such that aabM

b and baM
a take on values in

integers; then there exists a choice of fluxes for which a perturbatively flat vacuum
exists. The perturbative F-flatness conditions are satisfied along the 1-dimensional
subspace ~U = τ~p, on which Wpert vanishes. The Lemma is easily verified by taking
the flux vectors to be

F = ( ~M ·~b, ~MT · a, 0, ~MT ) and H = (0, ~KT , 0, 0) . (5.9)

The above choice of the flux vectors is also the most general that leads to a su-
perpotential that is a degree-2 homogenous polynomial in the

(
h1,2
− + 1

)
moduli.6

Note that this guarantees that the F-flatness conditions imply W = 0, and also the
existence of the flat direction.

As mentioned earlier, the flat direction is lifted by the non-perturbative terms
in F . Choosing the axio-dilaton to be the coordinate along the flat direction, the
superpotential which is effectively generated looks like

Weff(τ)√
2/π

= Ma∂aFinst =
∑
~q

A~q ~M · ~q
(2πi)2

e2πiτ~p·~q . (5.10)

The above superpotential can lead to a controlled racetrack stabilisation if the two
dominant instantons (which we will call ~q1 and ~q2) satisfy ~p · ~q1 ≈ ~p · ~q2. Furthermore,
stabilisation at weak string coupling requires that there is a hierarchy between
the prefactors of the instantons. This amounts to a hierarchy in the associated
Gopakumar-Vafa invariants [196, 197].

6Degree-2 homogeneous flux superpotentials and associated flat directions in toroidal compactifi-
cations were discussed in [195].
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5.2 Expectations from statistics

As discussed in the introduction of this chapter, it is of much interest to develop an
understanding of how perturbatively flat vacua fit in the larger ensemble of type
IIB flux vacua in the statistical sense. The question is central to understanding
the distribution of the scale of supersymmetry breaking for KKLT vacua that we
derived in chapter 3. Perturbatively flat vacua are supersymmetric (even after the
incorporation of instanton effects in the prepotential) and have low values of |W0|.
The statistical properties of such vacua were derived in [50]. The number of such
vacua N with the value of |W0|2 below λ∗ is given by an integral of a density over
the moduli space7

N (Nflux ≤ QD3, |W0|2 ≤ λ∗) =
(2πQD3)2mπλ∗

2(2m)!

∫
M
d2mz

√
g ρ(z) , (5.11)

where the density function is given by

ρ(z) =
2πm

π2mQD3

I(F) for I(F) =

∫
d2h1,2− Z e−|Z|

2|det

(
0 ZJ
ZI eKFIJKZ̄K

)
|2,

(5.12)
with m = h1,2

− + 1 (h1,2
− being the number of complex structure moduli). The d2mz

integration runs over the 2m-dimensional space of the complex structure moduli and
the axio-dilaton and it involves its metric. FIJK are components of triple derivatives
of the prepotential expressed in a local frame. The integration variables ZI are
related to derivatives of the flux superpotential, but can be thought of as dummy
integration variables for the purposes of computation of I(F).

Now, let us turn to examining perturbatively flat vacua in this context. For this,
we will exploit universal properties of these vacua. A striking property of these vacua
is that for all of them, at their minima

~U = τ~p , (5.13)

where the vector ~p is real and has all positive entries. The real parts of ~U are axionic.
Thus, after the axions are brought to their fundamental domain, the relations in
(5.13) will continue to hold modulo factors of integers. Therefore, the solutions under
consideration are contained in a subspace of the moduli space which is isomorphic

to Mτ × (R+)
h1,2− . Given that perturbatively flat vacua are a subset of the set

of all solutions satisfying (5.13), a necessary criterion for them to have statistical
significance is that the set of all solutions on the subspace (5.13) have statistical
significance. This question can be examined from the point of view of the densities
of [50]. Notice that the entire moduli space is 2

(
h1,2
− + 1

)
-dimensional, while the

subspace described by (5.13) is only
(
h1,2
− + 2

)
-dimensional. Since the subspace (5.13)

is of lower dimensionality than the entire moduli space, and the densities are smooth

7In the discussion below, we translate the results of [50] and report them in the conventions of
[76].
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function on the entire moduli space, even the set of all vacua on this subspace are not
expected to be of statistical significance, implying the same for perturbatively flat
vacua. Hence perturbatively flat vacua are expected to be statistically sparse in the set
of flux vacua with low |W0| as given by the distribution from [50] which already gives
a much smaller number of vacua with respect to cases with |W0| ∼ O(1− 10) since
(5.11) is linear in λ∗, implying (at fixed QD3) N (|W0|2 ≤ λ∗)/N (|W0|2 ≤ 1) ∼ λ∗.

Notice that comparisons in [50] of results of explicit searches to the predictions
making use of densities did show local fluctuations (such as overdensities and voids)
but these were local effects not having any effect on the overall statistical predictions.
It is however important to check if the distributions of [50] are peaked along the
space described by (5.13). Consider the subspace in which the axio-dilaton is purely
imaginary. Being on (5.13), then implies that Ua are also purely imaginary. The
densities of [50] can be expressed in terms of the Kähler potential, the metric on the
moduli space and triple derivatives of the prepotential FIJK . For the perturbative
part of the prepotential (which dominates in the large complex structure limit), all
the above quantities are independent of the real part of Ua. Thus the densities
are also independent of the real part of Ua. Therefore, at fixed purely imaginary
axio-dilaton, moving away from the locus (5.13) by switching on a non-zero real part
of Ua does not lead to a fall in the value of the density. Similar considerations also
apply when the axio-dilaton is not purely imaginary.

We would like to close this section with a cautionary remark. The diagnostics
presented here relies on the fact that the basic assumption of [50] is valid, i.e. that the
space of flux vacua of a given compactification can be described by smooth density
functions obtained by replacing sums over flux quanta by integrals. If for some
reason this fails, the diagnostics would be irrelevant. Next, we turn our discussion
of setting up exhaustive searches for perturbatively flat vacua, which is crucial for
developing a full understanding of their properties.

5.3 Exhaustive search with two moduli

5.3.1 The CP[1,1,1,6,9] example

In this section we describe algorithms for carrying out exhaustive searches for
perturbatively flat vacua in Calabi-Yau threefolds with 2 complex structure moduli.
As mentioned in the introduction, even if this paper intends mainly to focus on
methods for searches of flux vacua, for completeness we will present an explicit
example in full detail. We do so by looking at the degree-18 hypersurface in
CP[1,1,1,6,9] used in [76] (studied in the context of mirror symmetry in [198]).

We begin by recalling some basic facts about the Calabi-Yau and some details
of the analysis of [76]. The Calabi-Yau has 272 complex structure moduli but has
a G = Z6 × Z18 symmetry. By considering G-invariant fluxes, one is guaranteed to
stabilise on the G-symmetric locus (see [168]). Thus the stabilisation problem is
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effectively reduced to a 2-moduli one. The relevant geometric data are

K111 = 9 , K112 = 3 , K122 = 1 , a =
1

2

(
9 3
3 0

)
, ~b =

1

4

(
17
6

)
, (5.14)

and the instanton corrections are

(2πi)3Finst = F1 + F2 + · · · , (5.15)

F1 = −540 q1 − 3 q2 , (5.16)

F2 = −1215

2
q2

1 + 1080 q1q2 +
45

8
q2

2 , (5.17)

where qa = exp(2πiUa) with a ∈ {1, 2}. We consider the orientifold involution
described in [101] which yields a D3-charge QD3 = 138.

Making use of (5.14), the condition ~KTN−1 ~K = 0 gives

M1 =
M2K2 (2K1 − 3K2)

(K1 − 3K2)2 , (5.18)

and the flat direction is

~U = τ

(
p1

p2

)
=
τ (K1 − 3K2)

M2

(
−K2/K1

1

)
. (5.19)

The following choice of the vectors ( ~M, ~K)

~M =

(
−16

50

)
, ~K =

(
3
−4

)
, (5.20)

meets all the conditions of the Lemma and the flat direction can be lifted by the
inclusion of non-perturbative terms.

In the large complex structure limit, the Kähler potential (for the complex
structure moduli and axio-dilaton) is given by

K = − ln

(
i
1

6
Kabc(Ua − Ūa)(U b − Ū b)(U c − Ū c) + 4iξ

)
− ln (−i(τ − τ̄)) . (5.21)

We are interested in the locus Ua = paτ . Furthermore, since in this limit Im(Ua) > 1,
the term involving ξ is subdominant. Thus, along this locus one has

K = − ln

(
1

6
Kabcpapbpc (−i(τ − τ̄))3 + 4iξ

)
− ln (−i(τ − τ̄))

∼ − ln

(
1

6
Kabcpapbpc

)
− 4 ln (−i(τ − τ̄)) . (5.22)

The effective superpotential for stabilising the perturbatively flat direction takes the
form

Weff(τ) = c
(
e2πip1τ + Ae2πip2τ

)
+ · · · , (5.23)

where c =
√

2
π

8640
(2πi)2

and A = − 5
288

. Making use of the fluxes in (5.24), it can be

easily found that |W0| ' 2× 10−8.
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5.3.2 The algorithm

Now, we describe an algorithm for finding all perturbatively flat vacua in the
CP[1,1,1,6,9] model, which can however be easily generalised to other 2-moduli examples.
The F-flatness condition is DτWeff = (∂τ + ∂τK)Weff = 0. Note that the form of the
Kähler potential (5.22) implies that ∂τK ∝ (Imτ)−1 = gs. Therefore, for consistent
stabilisation at weak string coupling, the term involving ∂τK must be a small
correction to the F-flatness condition. The F-flatness condition neglecting this term
is

e2πiτ(p1−p2) = −Ap
2

p1
. (5.24)

Let us start our search by considering the cases with p1 > p2. Now, by making use
of (5.19) the condition p1 > p2 translates to

− K2

K1
> 1 . (5.25)

Thus K1 and K2 have to be of opposite sign. Furthermore, the entire set of conditions
in the Lemma have a symmetry:

~K → − ~K and ~M → − ~M . (5.26)

This in fact corresponds to an S-duality transformation with the centre of the group.
Thus, without loss of generality, we will look at cases with K1 > 0 and K2 < 0. With
this, the factor (K1 − 3K2) in (5.19) is positive, implying that M2 must be positive
(so that p2 is positive, as required by the Kähler cone condition in the Lemma). With
these signs of K1, K2 and M2, equation (5.18) gives the sign of M1 to be negative.
This implies that A = M2/(180M1) has to be negative, which can be compatible
with (5.24) if at the minimum Re(τ) = k/(p1 − p2) mod Z with k ∈ Z. The above
suggests the following efficient algorithm to carry out an exhaustive search for vacua:

1. Consider a rational number x between 0 and 1, express this as x = p/q such
that p and q are positive and have no common factors. Define the vector

~̃K =

(
K̃1

K̃2

)
=

(
p
−q

)
. (5.27)

The vector ~̃K will eventually be related to the vector ~K being searched for.

2. Now, compute the ratio

y =
K̃2
(

2K̃1 − 3K̃2
)

(
K̃1 − 3K̃2

)2 . (5.28)

Note that this is related to the ratio M1/M2 as given by (5.18). Express y as
r/s, such that r and s have no common factors, and s > 0. Define

~̃M =

(
r
s

)
. (5.29)
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The vector ~̃M will be eventually related to the vector ~M being searched for.

3. Check if KabcM̃
c is invertible or not. If it is not invertible, discard x and start

again with a new one. If it is invertible, then proceed further.

4. Compute the values

αa . ~̃M and α~b . ~̃M , (5.30)

for α = 1, 2, 4. Determine the minimum value of α for which the above
quantities are integer valued. Call this α̂. Note that they certainly must be
integer valued for the case of α = 4, given the form of a and ~b in equation
(5.14).

5. Consider the quantity

− 1

2
α̂ ~̃M . ~̃K . (5.31)

If this does not satisfy the D3-tadpole bound, then discard x and move to
another x. If it lies in the allowed range, we have a solution satisfying all
conditions of the Lemma with

~M = α̂ ~̃M and ~K = ~̃K . (5.32)

Also, for any positive integer β such that −1
2
βα̂ ~̃M.K̃ satisfies the D3-tadpole

bound, we have solutions

~M = α̂β1
~̃M and ~K = β2

~̃K , (5.33)

where β1 and β2 are positive and provide a factorisation of β.

6. To scan through all x, note that the signs of Ka and Ma (with our working
assumption of K1 > 0) are such that M1K1 < 0 and M2K2 < 0. Thus both

terms contribute with a positive sign to the inner product −1
2
~M. ~K. Therefore,

the maximum value of |K2| necessary to carry out an exhaustive search is
2QD3 = 2 × 138 (as higher values would violate the D3-tadpole condition).
This bound on |K2| implies that we need to consider only those x for which
q ≤ 2QD3. Reduced rationals between 0 and 1 with a fixed upper bound on
the denominator are given by the Farey sequence. Thus an exhaustive search
is carried out by selecting x from the set Farey2QD3

.

7. Scan through the solutions obtained in this way, checking that non-perturbative
effects lead to stabilisation at weak string coupling. Discard the ones that do
not satisfy this condition.

8. Enlarge the solution list by considering the solutions obtained by the above
process and then generating the solutions related to them by the S-duality
symmetry

~K → − ~K and ~M → − ~M . (5.34)
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9. Finally, run the same algorithm considering the possibility of p1 ≤ p2.

Carrying out the search using the above algorithm, after S-duality identification,
we find that there exist only 2 solutions which satisfy the conditions of the Lemma,
although one of them does not have a very low value of |W0| since it features just
|W0| ' 0.3. We report these in Tab. 5.1 along with the associated value of |W0|,
after stabilisation by non-perturbative effects (the second entry in the table is the
solution reported in [76]). We conclude that the CP[1,1,1,6,9] model essentially features
only 1 perturbatively flat solution with very low |W0|.

~MT ~KT ~b. ~M (a. ~M)T Nflux τ |W0|
(32, -98) (-1, 2) -11 (-3, 48) 114 4.884 i 0.2871
(16, -50) (-3, 4) -7 (-3, 24) 124 6.855 i 2.048× 10−8

Table 5.1: All perturbatively flat vacua for the CP[1,1,1,6,9] example.

5.3.3 General treatment of 2-moduli case

In this section we will present a general discussion of the cases with 2 complex
structure moduli. A key-feature of the algorithm in Sec. 5.3.2 was the bound on
the range of the elements of the vectors ~M and ~K. First we show that this follows
from general considerations. The definition ~p = N−1 ~K , together with the equation
~KTN−1 ~K = 0 implies

~KT~p = 0 . (5.35)

The requirement that ~p lies in the Kähler cone, then implies that K1 and K2 have
opposite signs. By making use of the definition of ~p again, the equation ~KTN−1 ~K
can alternatively be written as

papbKabcM
c = 0 . (5.36)

The requirement that ~p lies in the Kähler cone implies also that p̃c ≡ papbKabc has
positive entries. Thus the vector ~M satisfies an equation similar to ~K, i.e.

~MT ~̃p = 0 . (5.37)

Therefore, M1 and M2 have to have different signs.
Now, if K1 and M1 have the same sign, then so would K2 and M2. And this

would imply a negative value for Nflux = −1
2
~M. ~K, which is impossible for imaginary

self dual fluxes.8 Thus viable solutions feature K1 and M1 of opposite sign. This

8Any fluxes that solve the conditions being imposed are imaginary self dual from the 10-
dimensional perspective (see e.g. [30]).
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implies that both terms contributing to the Nflux inner product have to be positive.
Thus, an exhaustive search can be carried out by considering the range

|Ma| ≤ 2QD3 and |Ka| ≤ 2QD3 , (5.38)

which is the same as for the CP[1,1,1,6,9] example, obtained by using slightly different
considerations. As an example, we have carried out the analysis for the Calabi-Yau
embedded in CP[1,1,2,2,2] discussed in [199]. To gain a model-independent picture, we
treat QD3 as a free parameter. The results are summarised in Tab. 5.2.

QD3 Number of perturbatively flat vacua
50 37
100 128
250 531
500 1445

Table 5.2: Number of perturbatively flat vacua in the CP[1,1,2,2,2] model taking QD3 as a free
parameter. The reported numbers are before imposing any of the following 3 requirements:
stabilisation at weak string coupling, low |W0|, S-duality identification.

All these solutions can potentially correspond to perturbatively flat vacua but these
numbers would be reduced by the following 3 requirements which have still to be
imposed: (i) dilaton stabilisation at weak string coupling by instanton effects; (ii)
a value of |W0| which is indeed very small (i.e. not of order |W0| ' 0.3 as for 1
solution in the CP[1,1,1,6,9] example); (iii) possible equivalences between solutions via
S-duality. Given that these numbers are still small to be attractive in the context of
a landscape, we do not push the analysis further.

It is important to note that the key-element in obtaining the bounds in (5.38)

was the sign correlations between the elements in ~M and ~K. While the arguments
in the first part of this section hold for any number of moduli, it is easy to see that
the sign correlations need not hold when there are more than 2 moduli. To remedy
this, we will discuss a more general method in Sec. 5.4.

5.3.4 Comparison with statistics

Let us compare our results with the statistical expectations of [50]. For h1,2
− = 2,

(5.11) yields

N (Nflux ≤ QD3, |W0|2 ≤ λ∗) =

(
26π4

5!

)
Q5

D3λ∗

∫
M
d6z
√
g e2KFabcF̄abc , (5.39)

where the indices of F have been converted to tangent bundle ones. For the CP[1,1,1,6,9]

example discussed in Sec. 5.3.1, carrying out the integration over the large complex
structure patch one finds

N (Nflux ≤ QD3 = 138, |W0|2 ≤ λ∗) ' 3× 1012λ∗ . (5.40)
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As pointed out in [76], this predicts the lowest value of |W0| being of order 6× 10−7,
close to what was found. On the other hand, the same formula predicts O(108)
vacua for |W0| . 0.01, even if our exhaustive search has shown that there is only
1 vacuum with such a feature, in agreement with the argument presented in Sec.
5.2.9 We therefore conclude that in the CP[1,1,1,6,9] model, perturbatively flat vacua
are interesting examples to show explicitly the existence of vacua with very low
|W0|, but they do not possess any tuning freedom in the value of |W0|. Given the
argument presented in Sec. 5.3.3, we expect this conclusion to hold for all cases
with 2 complex structure moduli. Notice, for example, that in the CP[1,1,2,2,2] model
the number of perturbatively flat vacua summarised in Tab. 5.2 is also much less
than as predicted by the Q5

D3 scaling of (5.39). Models with more than 2 complex
structure moduli require a refined analysis for exhaustive searches which we outline
in the next section, although the analysis of Sec. 5.2 indicates that they should still
be statistically sparse.

Let us close this section by stressing that a key-assumption in the derivation of
the results of [50], is a high density of flux vacua allowing for the sums over integer
fluxes to be converted to integrals. Our results indicate that for the CP[1,1,1,6,9] model,
under these circumstances, there are many more vacua at low |W0| that remain to
be discovered.

5.4 A more general search algorithm

The key to carry out exhaustive searches is isolating the region in the flux vector
space which contains all perturbatively flat vacua. Once such a region is obtained,
one can carry out numerical searches in this region to obtain all solutions (if the
region is not too large). In this section we present a general method to isolate such
regions which is in principle valid for examples with an arbitrary large number of
complex structure moduli. Here, we will discuss the method and leave its detailed
numerical implementation for future work.10

Central to our arguments will be certain properties of Nflux. Recall that the
quantity −1

2
~M. ~K is equal to the contribution of the fluxes to the D3-charge

Nflux = −1

2
~M. ~K =

1

(2π)4α′2

∫
X

H3 ∧ F3 , (5.41)

where the integration is over the Calabi-Yau X. The fluxes of interest to us correspond
to an imaginary self dual G3, i.e.

∗ H3

gs
= − (F3 − C0H3) . (5.42)

9In this context, we would like to mention that the values of |W0| obtained after stabilisation
crucially depend on the hierarchy in the Gopakumar-Vafa invariants. However, the densities of [50]
in the moduli space in the large complex structure limit have mild sensitivity to this. This is in
keeping with the arguments of Sec. 5.2 which suggest that perturbatively flat vacua are a small
fraction of the vacua at low |W0|.

10Our preliminary analysis indicates that the numerics can be quite involved when one considers
models with more than 2 moduli.
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Thus (see e.g. [200]) ∫
X

H3 ∧ F3 =
1

3!gs

∫
X

d6y
√
g6H

2
3 . (5.43)

This is the usual argument given to show that Nflux is positive semi-definite. Here
we list two consequences that are important for our arguments:

(a) Equation (5.43) implies that the only way for Nflux to vanish is H3 = 0.
Equation (5.42) then implies that F3 = 0. Translating this in terms of the

vectors ~M and ~K, one learns that, for consistent solutions, Nflux = 0 only if
~M = ~K = 0.

(b) The derivation of (5.43) does not make use of flux integrality. Thus, the
conclusions of the above point remain valid even when one considers fluxes
which do not obey the Dirac quantisation conditions (we will do so as an
intermediate step in our analysis).

Now, returning to finding the solutions to the conditions of the Lemma, let us
think of carrying out a search by scanning through the vectors ~M and ~K, by starting
from the origin and progressively going through points with larger and larger | ~M |
and | ~K|. We would like to obtain upper bounds on the values of | ~M | and | ~K| which
can possibly yield solutions to the conditions of the Lemma. For this, we write the
D3-tadpole condition as

− 1

2
| ~M || ~K|ε ≤ QD3 , (5.44)

where ε is the cosine of the angle between the vectors ~M and ~K. Since both | ~M |
and | ~K| are bounded from below, the only way | ~M | or | ~K| (or both) can be large is
if |ε| is small. While in general the cosine of the angle between two vectors in Zn can
be arbitrarily small, our interest is only in vectors that satisfy the conditions of the
Lemma (i.e. provide consistent solutions to the type IIB equations of motion). We
begin by defining

m̂ =
~M

| ~M |
, k̂ =

~K

| ~K|
and n̂ab = Kabcm

c . (5.45)

The vectors ~m and ~k lie on the unit sphere and the integrality condition of the fluxes
is now that the ratio of any two components of the vectors is rational. The equation
constraining the vectors in the Lemma becomes

k̂T n̂ k̂ = 0 . (5.46)

We will consider the equation (5.46) as an equation over real variables ~m and ~k
(taking values on the unit sphere). Furthermore, we will demand that the vector
p̂ = n̂−1 k̂ lies in the Kähler cone of the mirror Calabi-Yau. With the variables taking
on values over reals, the solution space can be studied using standard numerical
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methods. A lower bound on |ε| can be obtained by numerically searching for the
minimum (or infimum) of |m̂.k̂| in the solution space. Once such a bound is obtained,
an exhaustive search can be carried out by scanning through

0 < | ~M |, | ~K| ≤ 2QD3

|ε|inf

. (5.47)

We note that a bound so obtained is conservative, due to the expansion of the domain
of the variables to the reals.

Next, we would like to discuss some aspects of the minimisation problem at hand.
As we have reviewed above, as long as one is in the physically allowed region of the
moduli space, Nflux is always greater than zero, i.e. |ε| > 0. Thus there are two
possibilities for the infimum of |ε|: either it is a positive number or it is equal to zero.

In the former case, an exhaustive search can be carried by considering | ~M | and | ~K|
in the range (5.47).

The later case (in which |ε| takes on arbitrarily small values) is more subtle.
In this case, there would be a point with |ε| = 0 as a limit point of points in the
solution space. Since all points in the physically allowed region must have |ε| > 0,
the limit point must lie in the boundary of the physical region. Typically, as one
approaches the boundary, one loses control over the effective field theory or encounters
phenomenological challenges. Taking this into consideration will lead to an effective
|ε|inf which can be used to determine a region to carry out exhaustive searches.11

To illustrate the method in a concrete setting, we consider the 39 Calabi-Yau
threefolds with 2 Kähler moduli12 constructed by Kreuzer and Skarke in [201] and
listed (along with the intersection numbers) in Table 11 of [91]. In all these cases
we have followed the above described procedure to determine |ε|inf . For 22 of them,
|ε|inf does not take values close to zero, implying a strong bound on the region where
all solutions are contained. We record the associated values of |ε|inf for them in Tab.
3 in App. C.1.

On the other hand, in the remaining 17, the numerics yield very low values
of |ε|inf . Thus these models might seem to be more promising to find a larger
number of perturbatively flat vacua (from the perspective of the present algorithm).
However, as we discuss below, most of the would-be solutions would not be ideal
for phenomenological applications. In fact, in these cases we find a solution to the
equations with |ε| = 0 on the boundary of the Kähler cone, i.e. p̂b = 0 for some b.

The definition of n̂ in (5.45) together with the definition of p̂ implies that ~p = p̂ |
~K|
| ~M |

.

Thus we have the relation

~U = p̂
| ~K|
| ~M |

τ . (5.48)

11In principle, there can be situations where there are no good reasons to exclude a region of
arbitrary small ε. In such a case, one would need to carry out a more extensive search along vectors
~m and ~k in this region.

12The mirrors have 2 complex structure moduli. Of course, our analysis in Sec. 6.3 already
provides regions for exhaustive searches for these. The goal here is to obtain the analogous regions
from the algorithm presented in this section. We will proceed without worrying about issues that
can arise from orientifolding.
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Being in the large complex structure limit requires Im(U c) > 1 ∀c. In the limit where

p̂b → 0 for one of the b,13 this can be achieved by either | ~K|
/
| ~M | � 1 or Im(τ)� 1.

However both cases are problematic for the following reasons. | ~K|
/
| ~M | � 1 will

induce large hierarchies in the vector ~p, making it unsuited for racetrack stabilisation
at small string coupling. On the other hand, Im(τ) = g−1

s cannot become too small
without inducing phenomenological problems. In fact, in type IIB compactifications
the Standard Model can either be realised on D3- or D7-branes. In the first case,
the strength of the gauge couplings is set by gs, and in the second by the Einstein
frame volume of the 4-cycle wrapped by the D7-stack (which we denote as Re(TSM)).
In the scenario at hand, however Kähler moduli stabilisation [170] gives

4π

g2
SM

= Re(TSM) ' 1

2π
ln |W0|−1 ∼ 1

gs
. (5.49)

Thus, irrespective of how the Standard Model is realised, in perturbatively flat vacua
the strength of its gauge couplings is always determined by gs.

14 This effectively
sets a lower bound on the range of interest for gs (for instance one can demand
10−3 . gs . 0.1). Thus, the regions of small ε should be effectively avoided, implying
that also the remaining 17 models are not expected to produce a large number of
perturbatively flat vacua which are phenomenologically viable.

Before closing this section, we note that the key-aspect of the algorithm has been
that, by determining the minimum value of the angle between the flux vectors, one
can isolate a region by scanning through which exhaustive searches can be carried
out. It will be interesting to see if the same considerations can be used in other
settings.

5.5 Conclusion and discussion

In this chapter we have developed exhaustive search algorithms to find perturbatively
flat vacua. The 2-moduli case has been discussed in detail and an algorithm applicable
to any number of moduli has been presented. Detailed numerical scans going through
specific models (including ones with higher number of complex structure moduli) is
subject of future studies.

In Sec. 5.2 we have also examined perturbatively flat vacua as part of the entire
ensemble of vacua at low |W0| from the point of view of a statistical approach. We
found that they are statistically sparse when compared to the expectation from the
distribution of low values of |W0| from [50]. This expectation has been confirmed in
Sec. 5.3 by our numerical searches for cases with 2 complex structure moduli. In
particular, for the CP[1,1,1,6,9] model we found that there is only 1 perturbatively flat

13In none of the 17 cases both p̂1 and p̂2 tend to zero.
14Notice that in the string frame Re(TSM)|str = gsRe(TSM) ∼ O(1), implying that one should

consider all perturbative and non-perturbative α′ corrections at string tree-level, except when
|W0| � 1 for those which come from 10-dimensional terms proportional to G2n

3 with n > 1 [202].
However, as shown in [170], these α′ effects should induce just a subdominant shift of the KKLT
minimum for |W0| � 1.
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solution with |W0| . 0.01 (featuring |W0| ∼ 10−8), while [50] would predict around
O(108) flux vacua. We argued that similar considerations apply to all other 2-moduli
cases. We therefore conclude that this set by itself does not provide tuning freedom
for phenomenological applications. Using the general algorithm outlined in Sec. 5.4,
it would be interesting in the future to perform a detailed search for cases with
more than 2 complex structure moduli, although one expects them to be statistically
sparse from the analysis of Sec. 5.3. Let us just mention here that, as one goes
to higher values of h1,2

− , one can expect more solutions. However, the analysis of
[49] implies that with higher values of h1,2

− the vacua in the large complex structure
limit give a lower contribution to the statistics. This poses an interesting challenge
for achieving statistical tuning in phenomenological applications. Furthermore, one
can expect that the numerics required to obtain all vacua explicitly should become
harder as one goes up in the number of complex structure moduli.

Let us also stress that our analysis in Sec. 5.3 relied heavily on the specific form
of the vacuum expectation values of the complex structure moduli (equation (5.13)
which is specific to the vacua of [76]) but in principle there can be other families of
vacua featuring W = 0 at perturbative level. An interesting question is to develop
diagnostic methods to study the statistical significance of the vacua of [76] in general.
Let us touch upon this briefly. For all such vacua, the instanton effects that give W0

a non-zero value would also be responsible for giving the perturbatively flat direction
a mass. Thus a universal property is a modulus (in the subspace spanned by the
complex structure moduli and the axio-dilaton) with a low mass, more specifically a
mass proportional to a positive power of |W0|. Given this, one can ask whether there
is a correlation between low |W0| and a modulus of low mass. This question can be
addressed by examining the bosonic mass matrix of Sec. 3.2 of [50] (for which we
refer the reader to the paper, as when presented in full glory the formulae are quite
involved and we will only need some general features of the matrix for our discussion).
If one of the masses scales as |W0|k (for some positive k), then the determinant of
the mass matrix would scale as |W0|2k, i.e. it would vanish in the W0 → 0 limit. On
the other hand, taking W0 → 0 (which is equal to X in the notation of [50]) is not
a sufficient condition for the vanishing of the determinant. This indicates that the
correlation is not universal, and so that there should exist another set of vacua with
W = 0 at perturbative level but with no flat directions. This observation agrees with
the analysis of [61] based on scale invariance of the 10-dimensional tree-level type IIB
action. One family of the two original scaling symmetries is broken spontaneously by
the vacuum expectation value of the dilaton, resulting in a massless Goldstone boson
in 4 dimensions which can be identified with τ . Non-zero background fluxes can
act as explicit symmetry breaking parameters (like non-zero quark masses in chiral
perturbation theory), and can lift this flat direction. However, W = 0 is not enough
to guarantee no explicit breaking, and so no flat direction, since also derivatives of
W should vanish.

Let us close by pointing out that, given a model, the statistical significance of any
family of perturbatively flat vacua can be determined by the cut in the integration
range of the flux variable ZI (of [50]) put by the requirement of a low mass (at |W0|
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below a certain value). We hope to return to this question in the future.
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Part III

DARK MATTER FROM
STRING THEORY
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Chapter 6

SUPERHEAVY DARK MATTER

While there are various lines of evidence for the existence of dark matter (DM)
in the universe [203], the nature of DM remains a major problem at the interface
of cosmology and particle physics. Weakly interacting massive particles (WIMPs)
have long been a promising candidate and the focus of most direct, indirect and
collider searches. In an attractive scenario, called the ‘WIMP miracle’, the DM relic
abundance is obtained via thermal freeze-out in a radiation dominated (RD) universe
for the nominal value of the DM annihilation rate 〈σannv〉 = 3× 10−26 cm3 s−1. This
scenario, however, has been coming under increasing scrutiny by recent experiments,
namely the Fermi-LAT results from observations of dwarf spheroidal galaxies [204] and
newly discovered Milky Way satellites [205]. A recent analysis [206] has specifically
ruled out thermal DM with a mass below 20 GeV in a model-independent way
(unless there is P-wave annihilation or co-annihilation). Masses up to 100 GeV can
be excluded if specific annihilation channels are considered.

The situation is different if the universe is not RD at the time of DM freeze-
out [207]. This typically happens in non-standard thermal histories where the
universe is not in a RD phase from inflationary reheating all the way to Big Bang
nucleosynthesis (BBN) [208]. An important example is an epoch of early matter
domination (EMD) driven by a component whose equation of state is the same
as matter. This is a generic feature of early universe models arising from string
theory constructions [209, 210, 211]. In this context, a string modulus is displaced
from the minimum of its potential during inflation. Due to its long lifetime, the
modulus dominates the energy density and gives rise to a period of EMD in the
post-inflationary history. The modulus eventually decays and a RD universe is
established prior to BBN. Various production mechanisms during EMD can yield the
correct DM abundance for both 〈σannv〉 < 3× 10−26 cm3 s−1 and 〈σannv〉 > 3× 10−26

cm3 s−1 [212].
Furthermore, the DM relic abundance can be completely decoupled from 〈σannv〉

if its main source is direct production from the decay of the component that drives
an EMD phase [213]. In this scenario, the relic abundance depends on the branching
fraction for decay to DM (hence the ‘branching scenario’ [214]) and the yield from the
decay of the matter-like component. Non-thermal production of supersymmetric DM
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via the branching scenario has been studied in explicit string theory constructions
where the volume modulus drives an epoch of EMD just before the onset of BBN [215].
A successful realization along these lines seems to be challenging for two reasons.
First, the branching fraction of the volume modulus to DM is such that the correct
abundance can be obtained for DM ∼ O(10) GeV. Second, the decay of the volume
modulus typically produces dark radiation (DR) in addition to DM, and avoiding an
excess of DR severely constrains the branching scenario [128].

However, in this chapter we shall show that the branching scenario could instead
arise very generically in 4D string models with superheavy WIMPs. Several scenarios
of supersymmetry breaking and inflation have already been realized in the context
of string theory. Combining low-energy supersymmetry with successful inflationary
model building is notoriously hard to achieve [184]. The main reason is that the
requirement of obtaining density perturbations of the correct size tends to fix the
inflationary scale at relatively high energies. In turn, masses of the supersymmetric
particles are also generically pushed to large values, typically at an intermediate
scale around 1010 − 1011 GeV. A possible way to reconcile inflation with low-energy
supersymmetry is to sequester the visible sector from the source of supersymmetry
breaking in the bulk of the extra dimensions. Sequestered models, however, require a
very specific brane configuration and Kähler metric for matter fields [216, 65]. This
solution therefore is not very generic. We note that we have seen in the previous
chapters that high scale supersymmetry is a generic feature of the string landscape
regardless of inflation.

Though the thermal DM scenario is known to overproduce superheavy WIMPs [217],
the DM abundance may be diluted by epochs of EMD driven by string moduli. Hence
two generic features of string compactifications, high-scale supersymmetry break-
ing and late time epochs of modulus domination, can successfully accommodate
superheavy WIMPs with a mass around 1010 − 1011 GeV. Incidentally, if such a DM
candidate is unstable and has the right coupling to neutrinos, its decay into very
energetic neutrinos could provide a tantalizing explanation of the ultra-high-energy
cosmic rays recently observed by IceCube and ANITA [218].

We will illustrate this general picture by presenting an explicit model that involves
two periods of EMD. The first one is driven by inflaton oscillations at the end of
which the inflaton mainly decays to DR in a hidden sector, and produces superheavy
DM via its tiny coupling to the visible sector. A second stage of EMD is driven by
the volume modulus, which is dominantly coupled to the visible sector and is lighter
than the DM. As a result, this second EMD phase only dilutes the abundance of
DM and DR produced in inflaton decay down to observationally acceptable values.

This chapter is organized as follows. In Sec. 6.1 we briefly review the branching
scenario for DM production. In Sec. 6.2 we discuss a successful framework for
production of superheavy DM via the branching scenario. In Sec. 6.3 we introduce
an explicit string theory model for realizing this scenario. In Sec. 6.4 we identify the
allowed parameter space of this model for a successful inflation and a correct DM
abundance, and we present numerical results for the post-inflationary evolution for a
benchmark point. We conclude in Sec. 6.5, and discuss generalized scenarios that
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involve more than one modulus in App. D.1.

6.1 Branching scenario: a brief review

Let us consider a post-inflationary history that includes an EMD era driven by
coherent oscillations or non-relativistic quanta of a long-lived scalar field ϕ with
mass mϕ and decay width Γϕ. The continuous decay of ϕ feeds radiation (assuming
that decay products thermalize immediately) during the period that it dominates the
energy density of the universe. The decay of ϕ completes when the Hubble expansion
rate is H ' Γϕ, at which time the universe enters a RD phase. The resulting reheat
temperature is TR = (90/π2g∗,R)1/4(ΓϕMP)1/2, where g∗,R is the number of relativistic
degrees of freedom at T = TR.

The energy densities of ϕ and radiation, denoted by ρϕ and ρR respectively, and
the number density nχ of DM particles χ are found by solving the following system
of Boltzmann equations:

ρ̇R + 4HρR = Γϕρϕ ,

ρ̇ϕ + 3Hρϕ = −Γϕρϕ , (6.1)

ṅχ + 3Hnχ = 〈σannv〉
(
n2
χ,eq − n2

χ

)
+ BrχΓϕnϕ .

The first term on the right-hand side (RHS) of the last equation accounts for DM
annihilation and inverse annihilation from the thermal bath (〈σannv〉 denotes the
thermally-averaged annihilation/inverse annihilation rate). The second term accounts
for direct production of DM from ϕ decay [219] (where Brχ is the number of DM
particles produced per ϕ decay). Freeze-out/in of DM happens during the EMD
epoch if Tf > TR, where Tf ' mχ/20 in the case of freeze-out and Tf ' mχ/4 for
freeze-in [220, 221].

Assuming that freeze-out/in production is subdominant, the main contribution
to the DM relic density comes from direct production at H ' Γϕ, and the number
density of DM particles at this time is given by:

nχ ' Brχnϕ =
3Γ2

ϕM
2
P

mϕ

Brχ . (6.2)

The comoving number density of DM follows this expression, hence the name
‘branching scenario’ [213, 214], provided that residual annihilation of DM particles
to the thermal bath is inefficient. This will be the case if 〈σannv〉nχ < Γϕ, where
nχ is substituted from (6.2). Otherwise, partial annihilation will somewhat reduce
the DM number density leading to the so-called ‘annihilation scenario’ of DM
production [210, 222, 223, 224]. The annihilation scenario can only be successful if
〈σannv〉 > 3× 10−26 cm3 s−1, which happens to be the case for weak-scale Wino and
Higgsino DM. For small values of 〈σannv〉, as in the case of Bino DM or for mχ & 100
TeV, only the branching scenario can yield the correct DM abundance.
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After normalizing nχ in (6.2) by the entropy density s = 2π2g∗,RT
3
R/45 at T = TR,

the DM relic abundance in the branching scenario is found to be:

nχ
s

=
3TR

4mϕ

Brχ . (6.3)

Here 3TR/4mϕ is the yield factor that is related to dilution due to entropy released by
ϕ decay. In order for the branching scenario to work, this must match the observed
value: (nχ

s

)
obs
' 4.2× 10−10

(
1 GeV

mχ

)
. (6.4)

A natural question is if the branching scenario can be successfully realized in
explicit particle physics models of the early universe. This issue has been discussed in
the context of type IIB string compactifications where ϕ is the volume modulus [215].
In this case, we have TR/mϕ ' (mϕ/MP)1/2. Also, for supersymmetric DM, three-
body decays of ϕ result in a lower bound Brχ & O(10−3). Considering that TR & 3
MeV (corresponding to mϕ & 50 TeV) is required for BBN, (6.3) and (6.4) imply that
the correct DM abundance can be obtained for mχ . O(10) GeV. Moreover, avoiding
excessive production of DR, which typically accompanies DM production in string
compactifications [132, 225, 135, 158], seems to favor the annihilation scenario [128].

6.2 Branching scenario and superheavy DM

In this Section we lay down a framework for production of superheavy DM via the
branching scenario. To overcome the challenges mentioned in Sec. 6.1, we invoke
two epochs of EMD driven by the inflaton and a modulus field respectively, as in
generic string models. We also consider constraints from the cosmic microwave
background (CMB) on such a scenario. In Sec. 6.3 we shall present an explicit
type IIB string model that successfully realizes this scenario (see also App. D.1 for
another explicit string model which realizes this scenario with an additional epoch
of moduli domination).

6.2.1 Scenario with an epoch of modulus domination

The scenario we consider involves two periods of EMD driven by the inflaton σ and
a modulus field φ in succession. Both of these fields behave as the field ϕ described
in Sec. 6.1. The inflaton σ is responsible for inflation at the end of which the Hubble
expansion rate is Hinf . The inflaton mass at the minimum of its potential is mσ and
its couplings to the visible and hidden sectors are cvis/MP and chid/MP respectively
where cvis � chid. We will also assume that there is no stable non-relativistic particle
in the hidden sector, so that the inflaton decay into hidden sector degrees of freedom
just produces DR. Therefore, the inflaton decay rate into DR dominates over the
one into visible sector particles since Γσ→DR ' c2

hidm
3
σ/M

2
P � Γσ→vis ' c2

vism
3
σ/M

2
P.

We will also denote the total inflaton decay width as Γσ = Γσ→vis + Γσ→DR.
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The modulus φ has mass mφ < mσ. Its coupling to the visible sector is dvis/MP,
while its coupling to the hidden sector is dhid/MP with dvis � dhid. We will assume
again that the modulus decay into the hidden sector produces just DR. This gives
Γφ→vis ' d2

vism
3
φ/M

2
P � Γφ→DR ' d2

hidm
3
φ/M

2
P. The total modulus decay width is

instead Γφ = Γφ→vis + Γφ→DR. We assume that mφ < mχ so that φ decay to DM is
kinematically forbidden. The modulus acquires a displacement φ0 from the minimum
of its potential during inflation.

Below, we summarize the important stages of the post-inflationary history in this
scenario in chronological order:

1- Γσ . H < Hinf : The universe is in an EMD phase driven by inflaton oscillations
about the minimum of its potential. φ also starts oscillating at this stage and
ρφ = (φ0/MP)2ρσ. The inflaton decay completes at H ' Γσ and mainly populates
the hidden sector.

2- HD . H < Γσ: The universe is in a RD phase at this stage. The modulus
oscillations behave like matter, and hence ρφ is redshifted more slowly than ρR. As
a result, φ starts to dominate at HD ' (φ0/MP)4Γσ, which is the onset of a second
phase of EMD.

3- Γφ . H < HD: The universe is in a modulus-driven EMD epoch during this
stage. The modulus decay completes when the Hubble expansion rate is H ' Γφ
and reheats the visible sector. This results in the formation of a RD universe prior
to the onset of BBN.

The inflaton decay to the visible and hidden sectors produces DM and DR
respectively. Given that mχ > mφ, the modulus decay dilutes both abundances and
reproduces some amount of DR in the hidden sector. The number density of DM
particles directly produced by the inflaton decay at H ' Γφ is:

nχ ' nσ Brχ

(
aσ
aD

)3(
aD

aφ

)3

, (6.5)

where nσ = 3Γ2
σM

2
P/mσ is the inflaton number density at the end of stage 1,

(aσ/aD)3 = (HD/Γσ)3/2 is the number density redshift during stage 2, and (aD/aφ)3 =
(Γφ/HD)2 is the number density redshift during stage 3.

If DM is the lightest R-parity odd particle in the visible sector, we have:

Brχ '
Γσ→vis

Γσ
Brvis,odd . (6.6)

The first factor on the RHS of this expression is the fraction of σ quanta that decay
to the visible sector. The second factor is the ratio of the number of R-parity odd
particles (which subsequently decay to DM) to the total number of particles in the
visible sector produced per σ decay. In the explicit example that we discuss later,
the σ decay into the visible sector mainly occurs through two-body decays to gauge
fields. Two-body decays to R-parity odd particles are highly suppressed, but they are
produced via three-body decays including one gauge field and two gauginos resulting
in Brvis,odd ' 10−3 (which is essentially a phase space factor) [214].
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Therefore, after normalizing nχ by the entropy density s, we find:

nχ
s
' 3

4
× 10−3 1

Y 2
φ

Γσ→vis

Γσ

Γφ
Γφ→vis

TR

mσ

, (6.7)

where:

TR =

(
90

π2g∗,R

Γφ→vis

Γφ

)1/4√
ΓφMP , (6.8)

with g∗,R denoting the number of relativistic degrees of freedom in the visible sector
at T = TR, and Yφ ≡ φ0/MP.

Regarding DR, its energy density at H ' Γφ is:

ρDR ' ρσ
Γσ→DR

Γσ

(
aσ
aD

)4(
aD

aφ

)4

+ ρφ
Γφ→DR

Γφ
, (6.9)

where ρσ ' 3Γ2
σM

2
P, (aσ/aD)4 = (HD/Γσ)2 is the energy density redshift during

stage 2, (aD/aφ)4 = (Γφ/HD)8/3 is the energy density redshift during stage 3, and
ρφ ' 3Γ2

φM
2
P. Hence, the final fractional energy density of DR is given by:

ρDR

ρR

' 1

Y
8/3
φ

(
Γφ
Γσ

)2/3
Γσ→DR

Γσ

Γφ
Γφ→vis

+
Γφ→DR

Γφ→vis

. (6.10)

This ratio must be small enough to satisfy the observational constraints on the DR
abundance.

6.2.2 Constraints from CMB

Inflation is the dominant paradigm for generating the almost scale-invariant pertur-
bations. The number of e-foldings between the time when perturbations of a given
wavelength exit the horizon and the end of inflation depends on the scale of inflation
as well as the post-inflationary thermal history. One or more periods of EMD change
the number of e-foldings from that in a standard thermal history.

In the scenario discussed in Sec. 6.2.1, the number of e-foldings of inflation
between the time when the pivot scale k∗ = 0.05 Mpc−1 left the horizon and the end
of inflation can be written as [226, 227]:

Ne ' 57 +
1

4
ln r − 1

4
Nreh −

1

4
Nφ, (6.11)

where r is the tensor-to-scalar ratio and:

Nreh '
2

3
ln

(
Hinf

Γσ

)
,

Nφ '
2

3
ln

(
HD

Γφ

)
' 2

3
ln

(
Y 4
φ

Γσ
Γφ

)
. (6.12)
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Here Nreh and Nφ denote the duration of EMD phases from inflationary reheating
and modulus domination (stages 1 and 3 above) respectively. This results in:

Ne ' 57 +
1

4
ln r − 1

6
ln

(
Y 4
φ

Hinf

Γφ

)
. (6.13)

In important universality classes of inflation, the scalar spectral index ns is related
to Ne through a simple relation [228]:

ns = 1− a

Ne

. (6.14)

For example, in the Starobinsky model and Higgs inflation, as well as the specific
model of string inflation that we will discuss later, a = 2. This then leads to:

Ne =
2

1− ns

. (6.15)

This implies that:

Ne &
2

1− ns,min

, (6.16)

where ns,min is the minimum value in the 2σ region allowed by Planck data [229].
For a given model of inflation where Hinf is known, this in turn sets an upper bound
on Y 4

φ Γ−1
φ through (6.13).

On the other hand, for known inflaton parameters mσ and Γσ, (6.7) and (6.10)
result in a lower bound on Y 4

φ Γ−1
φ in order not to overproduce DM and DR in our

scenario.
Therefore, obtaining the correct abundance of DM (while avoiding an excessive

production of DR) and getting an acceptable value of ns constrain the epoch of
modulus domination in opposite ways.1 This can be understood intuitively as follows.
While diluting the abundance of DM and DR produced from inflaton decay to
acceptable levels requires a long enough bout of modulus domination, satisfying the
lower bound on ns limits the duration of that period from above.

6.3 A string model with an epoch of modulus

domination

In this Section we shall present an explicit string model which successfully realizes
inflation and superheavy DM via the branching scenario with an epoch of modulus
domination.

1The implications of CMB constraints for non-thermal DM in low-scale supersymmetry has been
studied in [230].
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6.3.1 The setup

We consider a type IIB model with 3 Kähler moduli Ti = τi + ici, i = 1, ..., 3 and a
Calabi-Yau volume of the form:

V = τ
3/2
big − τ

3/2
vis − τ

3/2
inf . (6.17)

The visible sector is realized via a stack of D7-branes wrapped around the 4-cycle
whose volume is controlled by τvis, while inflation is driven by the modulus τinf as in
Kähler moduli inflation [231]. A hidden sector lives instead on a stack of D7-branes
wrapped around the 4-cycle whose volume is given by τinf .

The structure of the effective supergravity theory is determined by the Kähler
potential K and the superpotential W . K is given by:

K = −2 ln

(
V +

ξ

2g
3/2
s

)
, (6.18)

where gs is the string coupling and ξ is anO(1) coefficient which controls α′ corrections
[232] beyond the tree-level expression. W instead reads:

W = W0 + Avis e
−avisTvis + Ainf e

−ainfTinf , (6.19)

where W0 ∼ O(10− 100) is the tree-level contribution, while the terms proportional
to Avis and Ainf are non-perturbative effects [233] (all A’s and a’s are expected to be
O(1) constants).

Moduli stabilization produces a typical LVS minimum [234] at exponentially large

volume in string units, V ' τ
3/2
big ∼ e1/gs , while the two blow-up modes are fixed at

smaller values τvis ∼ τinf ∼ 1/gs ∼ O(10), where we take the string coupling in the
perturbative regime gs . 0.1. Notice that τvis sets the value of the visible sector
gauge coupling α−1

vis = 4πg−2
vis = τvis ∼ O(10) which turns out to be in the appropriate

phenomenological regime.
Moduli stabilization proceeds as follows: at leading order in a 1/V expansion,

non-perturbative corrections to W combined with α′ corrections to K stabilize V,
τvis, cvis, τinf and cinf , leaving 1 flat direction parameterized by the axion cbig.2 This
axion turns out to be ultra-light since it receives a tiny mass due to additional
Tbig-dependent non-perturbative corrections to W . Thus cbig plays the role of hidden
sector dark radiation. This system admits a non-supersymmetric AdS minimum
which can however be uplifted to dS via several possible mechanisms (anti D3-branes
[235], T-branes [92], non-perturbative effects at singularities [93], non-zero F-terms
of the complex structure moduli [57]).

2More precisely τvis should be fixed by perturbative corrections to K [34] due to the interplay
between chirality and non-perturbative effects [151]. However this detail is almost irrelevant for the
phenomenological implications of our model.

130



6.3.2 Moduli mass spectrum

The determination of the moduli mass spectrum and couplings to both visible and
hidden sector fields requires first to go to canonically normalized fields. Following
the notation of Sec. 6.2, we will denote them as: (i) σ for τinf since this modulus
plays the role of the inflaton; (ii) φ for τbig since this modulus will give rise to an
EMD epoch after the end of inflation; and (iii) aDR for the closed string axion cbig

which behaves as dark radiation. Defining:

ε ≡ W0

V
� 1 and κ ≡ gs

8π
� 1 , (6.20)

the mass spectrum of the relevant moduli around the minimum becomes [236, 237]
(see [238] for the correct normalization factor κ):

m2
σ ' κ ε2 (ln ε)2 M2

P

m2
φ '

εm2
σ

g
3/2
s W0 | (ln ε)3 |

� m2
σ for ε� 1

m2
aDR

' κ e−2V2/3

M2
P ∼ 0 . (6.21)

This setup allows to realize Kähler moduli inflation [231] where the inflaton is
σ since this modulus becomes much lighter than H ' mφ as soon as it is displaced
from its minimum. τvis, cvis, and cinf are heavy spectator fields which do not get
displaced during inflation since their mass is of the same order of the mass of σ
around the minimum, and so it is much larger than H. On the other hand, all the
other moduli get displaced from their minimum during inflation. We shall focus
just on φ since the axion aDR remains almost massless and behaves as a source
of extra dark radiation. We shall also denote the displacement of the canonically
normalized light Kähler modulus as φ0 = YφMP. Explicit computations have shown
that Yφ ' 0.01− 0.1 [211]. Due to this displacement during inflation, φ gives rise to
a period of modulus domination. Moreover supersymmetry is broken due to non-zero
F-terms of the Kähler moduli which generate a gravitino mass m3/2 together with
gaugino and scalar masses of order [95]:

m3/2 =
√
κ εMP , m0 'M1/2 '

m3/2

| ln ε|
. (6.22)

Taking the DM mass of the same order as the soft terms, mχ ' m0 ' M1/2, we
realize that:

m2
φ '

ε | ln ε|
g

3/2
s W0

m2
χ � m2

χ for ε� 1 , (6.23)

which ensures that DM cannot be reproduced from the decay of the light modulus φ.
Notice that in order to avoid any cosmological moduli problem, the mass of φ

has to be mφ & O(50) TeV. Using (6.21) and setting gs ' 0.1 and 1 . W0 . 100,
this gives the bound 5× 10−9 − 10−8 . ε � 1 which, when translated in terms of
the overall volume, becomes 1 � V . 108 − 5 × 109. This, in turn, produces a
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scenario of superheavy DM since it sets a lower bound on the DM mass of order
mχ & 1010−1011 GeV. As we shall see in the Sec. 6.4, values of V below 108−5×109

are also required to generate, during inflation, the observed value of the amplitude
of the density perturbations.

6.3.3 Hidden sector configuration

Let us comment a bit more on the configuration of the hidden sector D7-stack wrap-
ping τinf . This has to provide a non-perturbative contribution to the superpotential
which generates the inflationary potential, and be such that the inflaton decay into
the hidden sector produces just relativistic degrees of freedom without additional
contributions to the DM abundance. This dark radiation component is subsequently
diluted by the decay of the lightest modulus. If the hidden sector is a supersymmetric
SU(Nc) theory with Nf flavors, it would confine if Nf < Nc. The corresponding scale
of strong dynamics Λ can be shown to be above the inflaton mass, mσ < Λ [236],
and so σ cannot decay into glueballs (gg), ‘gluinoballs’ (g̃g̃), and ‘glueballinos’ (gg̃)
since they all develop a mass of order Λ. Hence we need to discard the pure SYM
case. For Nf > 0 with soft supersymmetry breaking terms, squarks and quarks form
scalar and fermionic condensates which all develop a mass of order m0 'M1/2 � mσ

[239], except for pion-like mesons which are exactly massless in the absence of a
supersymmetric quark mass term in W . Therefore σ could decay into these heavy
condensates but some of them would be stable in the absence of EW interactions. We
conclude that the hidden sector cannot be a simple SU(Nc) theory with Nf flavors.
The best configuration for the hidden sector is instead a copy of the visible sector, i.e.
an MSSM-like hidden sector, with however 3 differences with respect to the visible
sector: (i) the scale of strong dynamics Λ is much higher than in ordinary QCD; (ii)
R-parity is not conserved so that hidden protons are unstable; (iii) the mass of the
hidden electrons is very small so that they are still relativistic, like neutrinos. In this
scenario, all hidden degrees of freedom produced from the inflaton decay eventually
decay into hidden massless gauge bosons or hidden relativistic matter fermions.

A final requirement is the absence of any leakage of energy between hidden and
visible sector degrees of freedom due to kinetic mixing between U(1)s or a possible
moduli portal. The first option can be avoided by construction if the hidden gauge
group does not contain any Abelian U(1) factor.3 On the other hand, a moduli
portal between the two sectors could be created by the volume modulus φ. However,
we expect this effect to be negligible since, as we shall see in Sec. 6.3.4, this field
couples only with Planckian strength to both sectors, and so any leakage would be
proportional to (1/MP)4.

3Even in the presence of a U(1) kinetic mixing, we expect the mixing parameter to be very small
due to the geometric separation between τvis and τhid [240].
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6.3.4 Moduli couplings and decay rates

Due to the geometric separation in the extra dimensions between τvis (which supports
the visible sector D7 stack) and τinf (which supports a hidden sector D7 stack), the
coupling of the canonically normalized inflaton σ to hidden sector gauge bosons is
much stronger than the one to visible sector gauge fields [236]:

L ⊃ −1

4

chid

MP

σ F hid
µν F

µν
hid −

1

4

cvis

MP

σ F vis
µν F

µν
vis , (6.24)

with:
chid ' g3/4

s

√
V � 1 and cvis ' c−1

hid . (6.25)

Notice that the interactions in (6.24) provide the main contributions to the inflaton
decay rate to both visible and hidden degrees of freedom. In fact, since m0 'M1/2 �
mσ, the inflaton decay into supersymmetric partners is mass suppressed. The same
consideration applies to the inflaton decay into both visible and hidden sector matter
fermions. The decay rate into Higgses is also mass suppressed except for the case of
a Giudice-Masiero interaction in K which we assume to be absent.4 This implies the
following important relation for the determination of the DM abundance using (6.7):

Γσ→vis

Γσ
=

Ng

Nhid
g

1

c4
hid

1(
1 + Ng

Nhid
g

1
c4hid

) ' Ng

Nhid
g

1

g3
s V2

� 1 , (6.26)

where we included also the number of visible and hidden sector gauge bosons denoted
respectively as Ng and Nhid

g . For an MSSM-like visible sector we have Ng = 12 while
Nhid
g is a model-dependent parameter which can also be larger than Ng.

On the other hand the light modulus φ can decay to:

� Hidden sector gauge bosons:

L ⊃ −1

4

λhid

MP

φF hid
µν F

µν
hid , λhid '

1

| ln ε|

� Dark radiation bulk axions:

L ⊃ λDR

m2
φ

MP

φ aDR aDR , λDR '
1√
6

� Visible sector gauge bosons:

L ⊃ −1

4

λvis

MP

φF vis
µν F

µν
vis , λvis '

1

| ln ε|
4Including a Giudice-Masiero coupling between σ and Higgs degrees of freedom would not modify

our results qualitatively.
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� Visible sector Higgs h0 and would-be Goldstone bosons G0 and G± [135]:

L ⊃ c
m2
φ

MP

φ
[
(h0)2 + (G0)2 + (ReG+)2 + (ImG+)2

]
with c = Z/(2

√
6) where Z is an O(1) parameter controlling Giudice-Masiero

contributions to the Kähler potential of the form K ⊃ Z
τb

(HuHd + h.c.) [132].

For ε � 1, the decay rate of φ into both hidden and visible gauge bosons is
suppressed. On the other hand, the decay of φ into ultra-light bulk axions could give
rise to extra dark radiation which needs to be in agreement with present observational
bounds [241]. This sets a lower bound on Z of order (neglecting DR from inflaton
decay since this is diluted by the decay of φ) [135]:

∆Neff ' 3
Γφ→DR

Γφ→vis

=
3

Z2
. 0.75 for Z & 2 . (6.27)

Therefore the ratio Γφ/Γφ→vis which appears in (6.7) for the final DM abundance
looks like:

Γφ
Γφ→vis

= 1 +
1

Z2
. 1.25 , (6.28)

and the reheating temperature TR in (6.8) can be derived from the following decay
width:

Γφ =
1 + Z2

48π

m3
φ

M2
P

. (6.29)

Finally, the remaining quantities which are crucial to derive the fractional energy
density of DR using (6.10) are:

Γσ = Nhid
g

c2
hid

64π

(
1 +

Ng

Nhid
g

1

c4
hid

)
m3
σ

M2
P

' Nhid
g

c2
hid

64π

m3
σ

M2
P

, (6.30)

and:
Γσ→DR

Γσ
=

(
1 +

Ng

Nhid
g

1

c4
hid

)−1

' 1 . (6.31)

6.3.5 Consistency of the branching scenario

In this paper we are considering a branching scenario for DM production from inflaton
decay. This is generically the case for superheavy WIMP DM since the corresponding
annihilation rate would be too small to realize the so-called non-thermal annihilation
scenario. However the computation of the DM relic density relies on the assumption
that the standard thermal freeze-out mechanism cannot occur. This is true if the
visible sector reheating temperature after the inflaton decay T vis

R,inf is below Tf , where

134



Tf ' mχ/20 in the case of freeze-out (and Tf ' mχ/4 for freeze-in). We shall now
show that this is indeed the case in our model.

In standard supersymmetric scenarios, the LSP mass is expected to be of order
the soft mass. As we have already seen, the DM mass is therefore slightly below the
inflaton mass, mχ ' mσ/(ln ε)

2 < mσ. Notice that this feature is not a peculiarity of
our model but it is a generic characteristic of string compactifications since, whenever
the 4-cycle supporting the visible sector is stabilized in the geometric regime, the
visible sector is always not sequestered from the source of supersymmetry breaking
in the bulk. Thus the soft terms, and the DM mass, turn out to be of the same order
as the gravitino mass, which sets also the order of magnitude of the mass of generic
moduli (up to possible | ln ε| suppression factors).

Therefore we shall consider Tf ' mσ/[20 (ln ε)2]. On the other hand, the visible
sector reheating temperature reads:

T vis
R,inf =

(
40NgN

hid
g

π2g∗

)1/4√
cvischid

64π
mσ

√
mσ

MP

' mχ

20
(ln ε)2

√
mσ

MP

, (6.32)

where we used chid ' c−1
vis , and Nhid

g ' Ng = 12 . Hence we obtain T vis
R,inf < Tf

provided that:
T vis

R,inf

Tf

' (ln ε)2

√
mσ

MP

' κ1/4 | ln ε|5/2
√
ε < 1 . (6.33)

This is indeed the case for ε� 1 and κ� 1, which guarantees the consistency of the
branching scenario. This will be confirmed in Sec. 6.4.2 which presents a numerical
analysis of the cosmological evolution of our model.

6.4 Cosmology of the string model

In this Section we shall first determine the values of the microscopic parameters
which give the right amplitude of the density perturbations and the correct DM
abundance, finding a DM mass around 1010-1011 GeV. We shall then perform a
numerical analysis of the cosmological evolution of our string model with an epoch
of modulus domination.

6.4.1 Inflationary observables and DM abundance

Let us derive the allowed DM mass range in a single modulus cosmology. We achieve a
rather precise prediction by imposing a combination of observational and geometrical
constraints. We start with the expression for the number of e-foldings between
horizon exit and the end of inflation [211]:

Ne ' 57 +
1

4
ln r − 1

4
Nreh −

1

4
Nφ +

1

4
ln

(
ρσ,start

ρσ,end

)
. (6.34)
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Here r is the tensor-to-scalar ratio, Nreh is the duration of the reheating period due
to the inflaton σ, and Nφ is the duration of the EMD epoch due to the modulus
φ. Note that we have set the equation-of-state parameter w equal to zero during
inflationary reheating. Also ρσ,start is the energy density at horizon exit, while ρσ,end

is the energy density at the end of inflation. Let us rewrite (6.34) in terms of
fundamental parameters. The duration of the reheating period is:

Nreh '
2

3
ln

(
Hσ,end

Γσ

)
, (6.35)

where Hσ,end is the Hubble rate at the end of inflation, which is given by [211]:

Hσ,end '

√
3

2

κ

(2π)3/2W0

ε3/2| ln ε|3/4MP . (6.36)

Combining (6.36) with the inflaton decay rate (6.30) gives:

Nreh '
2

3
ln

(√
3

2

5122π4

(2π)3/2

V1/2

Nhid
g W 2

0 g
5/2
s |ln ε|9/4

)
. (6.37)

The duration of modulus domination is given by:

Nφ '
2

3
ln

(
Y 4
φ

Γσ
Γφ

)
(6.38)

' 2

3
ln

(
3

4

Nhid
g

1 + Z2
Y 4
φ g

15/4
s V5/2 |ln ε|9/2

)
.

Following again [211], the tensor-to-scalar ratio can be expressed as:

r ' 16× 3.7× 106

(
3

2

|ln ε|3/2

(2π)3/2

)
gs

16π

W 2
0

V3
. (6.39)

Noting that the amplitude of the density perturbations can be written as As =
2

3π2r

ρσ,start
M4

P
, we get:

Ne ' 60.1− 1

6
ln

(
Y 4
φ V15/2

5g
1/4
s W 5

0 |ln ε|
9/4

)
, (6.40)

where we have set Z = 2 and used ln (1010As) = 3.044 [229]. To proceed further,
we need the relation between the inflaton τinf , the volume V, and the number of
e-foldings Ne that matches the observed value of As. This reads [211]:

τinf ' 1.15× 10−11 1

2πg2
s

(
V

W0 |ln ε|3/4Ne

)4

. (6.41)
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Given that τinf describes the volume of a local 4-cycle, we have to impose the
geometrical constraint V2/3 ' τb � τinf which guarantees that the effective field
theory is under control. We can implement this constraint as V2/3 ' λ τinf , where
λ � 1 is a tunable parameter that determines the hierarchy between the overall
volume V and the volume of the blow-up mode τinf . This gives us the final expression:

V2/3 ' λ

(
α1/4V

g
1/2
s W0 |ln ε|3/4Ne

)4

, (6.42)

with α = 1.15× 10−11 1
2π

and Ne given in (6.40).
Let us briefly summarize the procedure that we shall follow to derive the DM

mass corresponding to the observed DM abundance:

� We extract from (6.42) W0 as a function of V. This step encodes in W0(V)
the information of the amplitude of the density perturbations and the geomet-
rical relation between V2/3 and τinf . We also set a natural bound on W0 by
constraining it to be in the range O(1− 103).

� We perform this step for different values of the underlying parameters gs, Yφ,
and λ, choosing the discrete parameter space to be gs ∈ [10−3, 0.1], Yφ ∈ [0.01, 1],
and λ ∈ [10, 104]. We start with 1444 initial combinations.

� We extract the value of V by matching the expressions for the observed and
predicted DM abundances. We perform this step for each of the 1444 initial
parameter combinations.

� We compute the DM mass for those parameter combinations that allow for the
correct DM abundance.

In Fig. 6.1 we present all data points in the (W0,V) plane which reproduce the
observed amplitude of the density perturbations, respect our geometrical constraints,
and yield the correct DM abundance. Approximately 72% of our initial parameter
space leads to a consistent solution. Notice that, although each point corresponds
to different values of gs, Yφ, and λ, the resulting DM mass is always in the range
1010-1011 GeV, giving a robust prediction which is almost independent of the variation
of the underlying parameters.

The accumulation around the origin and the jet-like structures in the distribution
of the data points can be understood from Fig. 6.2 where we split the points shown
in Fig. 6.1 into two sets with, respectively, gs = 0.001− 0.009 and gs = 0.01− 0.1.
Moreover black dots correspond to λ = 104, red to λ = 103, blue to λ = 102, and
green to λ = 10. The plot for smaller values of gs shows clearly that the four jet
structures correspond to different values of λ. This behavior is a direct consequence
of (6.42) which implies that λ determines the slope of the function W0(V). On the
other hand, the plot for larger values of gs features a larger density at smaller values
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Figure 6.1: Points in the (W0,V) plane which reproduce the observed amplitude of the
density perturbations and DM abundance.

of W0 and V. This behavior is a consequence of the consistency of the branching
scenario. In fact, in order for (6.26) to hold, smaller values of the volume must
lead to an increase in gs. It is worth mentioning also that around 71% of the data
points correspond to gs ∈ [0.01, 0.1], whereas 29% of the acceptable parameter space
correspond to gs ∈ [10−3, 0.01].

In Fig. 6.3 we present a similar analysis, this time splitting all data points from Fig.
6.1 into two sets, depending on the value of the misalignment Yφ. We observe again
the same jet structure depending on the value of the parameter λ. An important
observation here is the slight rotation of the data-point cone towards the W0 axis
if we increase Yφ. This behavior is mainly driven by the DM abundance constraint
formulated in (6.7). The abundance scales like ∼ Yφ

−2V−13/4. Hence, in order to
match the right abundance, a smaller volume must be compensated by a larger
misalignment Yφ.

Understanding the behavior of our data set as a function of the underlying
parameters is important in order to understand the distribution of the scalar spectral
index ns. For each point in Fig. 6.1, we calculated the resulting value of ns. All
obtained values are within the 2- and 3σ range [229], as can be seen from Fig. 6.4.

In Fig. 6.4 each black dot corresponds to a scalar spectral index within the 2σ
range, i.e. 0.9565 < ns < 0.9733, while each red dot has ns in the 3σ range, i.e.
0.9523 < ns < 0.9775, but outside 2σ. By comparing the two distributions, we see
that the data points corresponding to 2σ seem to be accumulating at the origin
and their cone is slightly rotated towards the volume axis. From this observation
we conclude that phenomenologically more acceptable values of ns drive the string
coupling gs to larger values and the misalignment Yφ to smaller ones.
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Figure 6.2: Selected data points for different values of gs and λ. Around 29% of the data
points are in the lower gs regime, while around 71% are in the upper regime. Black points
correspond to λ = 104, red to λ = 103, blue to λ = 102, and green to λ = 10.

A crucial observation is that the parameter values in our data set naturally
respect the relation between the volume and the underlying model parameters at
the minimum of the scalar potential [234]:

〈V〉 '
3
√
〈τinf〉|W0|

4ainfAinf

eainf〈τinf〉, 〈τinf〉 '
1

gs

(
ξ

2

)2/3

,

for natural O(1) values of the microscopic parameters ainf , Ainf and ξ.
In Sec. 6.4.2 we shall perform a more in-depth numerical analysis of the cosmo-

logical evolution, using the benchmark parameters listed in Tab. 6.1.
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Figure 6.3: Selected data points for different values of Yφ and λ. Around 42% of the data
points are in the lower Yφ regime, while around 58% are in the upper regime. Black points
correspond to λ = 104, red to λ = 103, blue to λ = 102, and green to λ = 10.

140



2×10
7

4×10
7

6×10
7

8×10
7

1×10
8

200

400

600

800

1000

V

W
0

Figure 6.4: Scalar spectral index coloring of the entire data set. Black dots correspond to
ns within the 2σ range, while red dots have ns within 3σ (but outside 2σ).

W0 39.1
V 8.4× 106

Ne 47.4
Nreh 3.7
Nφ 16.4
ns 0.9578
mσ 8.7× 1012GeV
mφ 3.9× 108GeV
m3/2 7.1× 1011GeV
mχ 5.8× 1010GeV
chid 514.7

Table 6.1: Microscopic parameters W0 and V, the resulting e-folding numbers, ns, mass
scales, and inflaton coupling to hidden degrees of freedom chid at a benchmark point that
gives the right amplitude of the density perturbations and the correct DM abundance. The
input parameters are gs = 0.1, Yφ = 0.01, λ = 103, Nhid

g = 12, and Z = 2.

6.4.2 Numerical analysis of cosmological evolution

We perform a numerical analysis of the cosmological evolution of our scenario
by solving the coupled set of Boltzmann equations for the various cosmological
components (see App. D.1 for a scenario with two moduli). We begin the numerical
evolution at H ' Hinf , with both σ and φ oscillating, and other components highly
subdominant. The Boltzmann equations for our single-modulus scenario are as
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follows:

dρσ
dt

+ 3Hρσ = −Γσ ρσ , (6.43)

dρφ
dt

+ 3Hρφ = −Γφ ρφ , (6.44)

dρDR

dt
+ 4HρDR = Γσ→DRρσ + Γφ→DRρφ , (6.45)

dρR

dt
+ 4HρR = Γσ→visρσ + Γφ→visρφ , (6.46)

dnχ
dt

+ 3Hnχ = BrχΓσ

(
ρσ
mσ

)
+ 〈σannv〉

(
n2
χ,eq − n2

χ

)
, (6.47)

where the Hubble rate H is given by the sum of all energy density components, and
the various decay rates are given in (6.26), (6.29) and (6.30) using the benchmark
values of Tab. 6.1. 〈σannv〉 denotes the thermally averaged rate for χ production
from/annihilation to the thermal bath with the average energy per χ particle ap-

proximated as 〈Eχ〉 ≈
√
m2
χ + 9T 2

vis [220]. Here, we take 〈σannv〉 ≈ α2
χ/m

2
χ with

αχ ∼ 0.1. This happens to be the case, for example, for Higgsino and Wino DM [242].
However, because thermal production is subdominant in our scenarios, the exact
form of 〈σannv〉, including possible temperature dependence, is not really important.
For typical DM masses in our scenarios, mχ ∼ 1010-1011 GeV, we obtain values of
〈σannv〉 in the freeze-in regime. Finally, the DM equilibrium number density, relevant
for thermal production, is given by:

nχ,eq =
gχ

(2π)3

∫
d3p

eE(p)/Tvis ± 1
. (6.48)

A sample numerical solution of (6.43)-(6.47) is shown in Fig. 6.5. As the evolution
proceeds, DM, dark radiation, and ordinary radiation are continually produced by
inflaton decay until H ' Γσ, at which point inflaton decay completes. This begins an
era of hidden-radiation domination which lasts until the light modulus φ overcomes
the energy density of hidden radiation. From here until the time when H ' Γφ, we
have a period of EMD driven by the modulus, which is then followed by the standard
period of radiation domination once the modulus decay completes.

The DM abundance is set by the inflaton decay at H ' Γσ and simply redshifts
through the remaining cosmological history. For typical values of the parameters in
our scenario, the maximum visible sector temperature established during inflationary
reheating is smaller than the DM mass, such that thermal production of DM occurs on
the Boltzmann tail of the equilibrium distribution, rendering the thermal contribution
irrelevant.5 Fig. 6.6 shows the visible sector temperature as a function of the scale

5Freeze-in production of DM from the visible sector thermal bath is quite sensitive to the DM
mass, and can dominate over the branching contribution from inflaton decay if the DM mass is
lowered below the range in our scenario.
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Figure 6.5: Numerical evolution of the system in (6.43)-(6.47). Curves depict the energy
densities as functions of scale factor in our scenario. Numerical values of the underlying
parameters correspond to the benchmark values given in Tab. 6.1. DM is primarily
produced from inflaton decay, with a negligible thermal contribution, establishing the
observed relic abundance.

factor for the cosmological history shown in Fig. 6.5, where we have assumed a
smooth function for the temperature dependence of the relativistic degrees of freedom
in the visible sector.

One comment is in order at this point. Our calculation of freeze-in production
of DM in (6.47) assumes instantaneous thermalization of inflaton decay products
in the visible sector. In fact, it holds as long as the visible sector reaches thermal
equilibrium at a temperature T > Tf . However, due to the small number density
of inflaton decay products in the visible sector, thermalization may be significantly
delayed (for example, see [243, 244]). If T < Tf at the time of thermalization, then
thermal production of DM will be completely negligible. Before thermal equilibrium
is established, DM production from inflaton decay products is kinematically possible
due to their typical mass hierarchy mσ � mχ [245, 246, 247, 248]. However, by
conservation of energy, the number density of these particles is much smaller than
what it would be in thermal equilibrium. We have checked that DM production
during thermalization is a few orders of magnitude smaller than that from direct
inflaton decay, for the parameters shown in Tab. 6.1, even if the visible sector is not
thermalized until H ' Γσ.
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Figure 6.6: Evolution of the visible sector temperature as a function of scale factor in the
cosmological history of Fig. 6.5.

6.5 Conclusions

In this chapter we have argued that two generic features of string compactifications,
a high supersymmetry breaking scale (which is favored by both statistical arguments
[50, 1] and by the requirement of a viable inflationary model building [184]) and the
presence of light moduli which drive epochs of EMD [209, 210, 211], lead typically
to superheavy WIMP DM with mass around the intermediate scale. This scenario
has not received significant attention so far because DM with a mass in the 1010-1011

GeV range is inevitably overproduced in a standard thermal history. However, if
DM is produced non-thermally from the decay of the inflaton and it is subsequently
diluted by the decay of long-lived string moduli which are so light that their decay
does not reproduce DM, one can obtain the observed abundance in this so-called
branching scenario even for very large DM masses. This does not just account for the
non-observation of supersymmetry and WIMPs at colliders, but it may also provide
a natural explanation of the origin of ultra-high-energy cosmic rays recently observed
by IceCube and ANITA, if DM is unstable and has the right coupling to neutrinos
[218].

We illustrated this general picture by presenting two explicit 4D string models
which lead to superheavy WIMP DM. The first model is described in Sec. 6.3 and
features a single epoch of modulus domination, while App. D.1 gives all the details
of a different model with two epochs of EMD driven by two different light moduli. It
turns out that in both cases the observed DM abundance can be obtained for a mass
around 1010-1011 GeV. The main virtue of both models is the possibility to follow
their entire cosmological evolution from inflation to the final reheating (due to the
decay of the lightest modulus) that establishes a RD universe before the onset of
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BBN. This can be achieved by focusing on type IIB LVS string models where the
exponentially large volume of the extra dimensions allows to keep control over the
4D low-energy effective field theory. Hence all moduli masses and couplings to both
visible and hidden sector degrees of freedom can be computed in detail. Moreover
one can build 4D models which can realize inflation, supersymmetry breaking and
a chiral MSSM-like visible sector on D-branes (see [104, 105, 106, 75, 144, 107] for
explicit Calabi-Yau models with all these features).

We followed the entire cosmological evolution in both models using analytical and
numerical tools. This allowed us to combine various constraints coming from both
theoretical and phenomenological considerations. Interestingly, we derived the ranges
of the microscopic parameters in a regime where geometrical constraints on the
underlying extra-dimensional construction are respected, which yield the observed
DM abundance as well as the correct value of inflationary observables, namely the
amplitude of the density perturbations and the scalar spectral index.

Future investigations could include more formal aspects as well as more phe-
nomenological implications of our findings. From the formal point of view, it would
be very interesting to investigate how generic superheavy WIMP DM is from the
string landscape point of view, for example comparing this scenario to the case of
fuzzy DM [131] which has also been claimed to be a natural outcome of string models
due to the ubiquitous presence of ultra-light axions [124, 249, 126, 127]. On the other
hand, from the phenomenological side, it is crucial to understand how a superheavy
DM could be detected in actual observations, for example establishing in more detail
the possible connection of our results with the production of very energetic cosmic
rays from DM decay. We leave all these intriguing possibilities for future work.
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Part IV

CONCLUSION
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Let us conclude by summarizing what we have done in this thesis and highlighting
the main results.

� In Sec. 1 of this work we gave a brief introduction to the standard model of
particle physics and the standard model of cosmology. We highlighted the ten-
sions of these models such as the cosmological constant problem, the hierarchy
problem, the matter/anti-matter asymmetry and the nature of dark matter
and dark energy. We finished with a short introduction to concepts beyond
the standard models such as string theory, compactification, supersymmetry
and inflation in Sec. 2.

� In Sec. 3 we studied the statistical distribution of the supersymmetry breaking
scale in the type IIB flux landscape. First, we reviewed the seminal work of [50]
in Sec. 3.1.1 and highlighted the importance of Kähler moduli stabilisation in
this context. Since Kähler moduli are not stabilised by fluxes at tree-level but
rather via higher order corrections, it was believed that their stabilization would
only contribute small corrections to the leading order solution coming from the
S and U -moduli. However, it turns out that the tree-level superpotential does
not dependent on the Kähler moduli. The resulting vacuum is unstable due
to a run-away behavior of the volume mode V . A stable solution requires the
F-terms of the S and U -moduli to vanish, making the F-terms of the Kähler
moduli the object that determines the supersymmetry breaking scale.
We continued by briefly summarizing 3 different approaches to Kähler moduli
stabilisation: KKLT which uses only non-perturbative effects, LVS which
combines perturbative and non-perturbative corrections and a stabilisation
procedure that uses only perturbative effects.
In Sec. 3.2 we present the different scaling behaviors of the gravitino mass for
the 3 different stabilisation mechanisms. In the case of LVS we find that the
distribution of the gravitino mass is given by

ρLVS(m3/2) ∼ 1

nm2
3/2

[
ln

(
Mp

m3/2

)]−2

. (6.49)

Whereas for KKLT we find

ρKKLT(m3/2) ∼ 1

M2
p

(
n3| lnW0|3

gs

)
∼ const., (6.50)

and for the puerly perturbative case we obtain

ρpert(m3/2) ∼ 1

M2
p

(
m3/2

Mp

) k−7
3

. (6.51)

We see that in LVS the gravitino mass scales logarithmically, whereas in KKLT
and in the puerly perturbative case we obtain a power-law scaling. The reason
for the different scalings is due to the fact that different no-scale breaking
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effects used to fix the Kähler moduli lead to a different dependence of m3/2

on the flux-dependent microscopic parameters, whose distribution ultimately
governs the statistics of the soft terms.

� In Sec. 4 we continued our investigation of the statistical properties of the
flux landscape and focused on axion physics. Here, we focused on the model-
independent case of closed string axions originating from the dimensional
reduction of C4. First, we introduced an appropriate model where we chose
h1,1 = 4 and a fibered underlying geometry. We distinguished between two
geometric limiting cases, the istoropic limit with the SM located on a local
cycle and the anisotropic limit with the SM located on a bulk cycle. Then, we
presented a detailed discussion of moduli stabilisation in the LVS setting and
derived the axion mass spectrum, decay constants and axion-photon couplings
for both limiting cases. In Sec. 4.1.6 we presented an analysis for models with
arbitrary values of h1,1. In Sec. 4.2 we built upon the results from Sec. 3 and
studied the distribution of various axion physics related quantities in the type
IIB flux landscape. To this end we expressed the relevant quantities in terms of
the underlying flux-dependent parameters and used our knowledge about their
distribution. In the isotropic case we found for the decay constants feature a
logarithmic scaling of the form

N(fa) ∼ ln

(
fa
Mp

)
, (6.52)

N(fθi) ∼ ln

(
fθi
Mp

)
, i = 1, 2. (6.53)

In the anisotropic limit the QCD axion decay constant is fixed around the
GUT scale due to the requirement of matching the correct SM gauge coupling.
For the ALP θ2 we found instead

N(fθ2) ∼

√
ffθ2
MGUT

. (6.54)

Interestingly, for the ALP decay constant we obtain a power-law distribution
which, however, prefers higher scales only mildly, similar to a logarithmic
distribution.
In the next section we presented the scaling properties of models with arbitrary
h1,1. In this case we expect a logarithmic distribution as in the isotropic
scenario. However, these distributions hold only at fixed h1,1 when moving in
the Kähler moduli space by varying microscopic parameters after the decay
constants are written in terms of them due to moduli stabilisation.
Finally, we investigated the distribution of the axion mass spectrum in both
geometric regimes. Again, we find a logarithmic scaling for the mass spectrum
(except for the QCD axion in the anisotropic limit).
We continued our discussion by analysing the distribution of the dark matter
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abundance which is assumed to be produced via the standard misalignment
mechanism. For natural values of the misalignment angle π we can identify the
decay constants which reproduce the observed dark matter abundance. The
QCD axion can reproduce the DM abundance for fa ' 1011 GeV, while an
ALP would require mθi ' 5 · 10−21 eV for fθi ' 1016 GeV.
We finisehd this section with a discussion of the axion-photon coupling and the
distribution of dark radiation. In the isotropic case the axion-photon couplings
featured again a logarithmic distribution. However, when the coupling was
volume suppressed or enhanced, the resulting distribution had a positive or
negative prefactor, respectively. Therefore, the landscape showed a mild
logarithmic preference for smaller couplings when they were volume enhanced
and a mild logarithmic preference for larger couplings when they were volume
suppressed. In the anisotropic case the coupling of the QCD axion to the visible
sector did not exhibit a distribution since it is fixed at 1/Mp. The ultra-light
ALP a2 turned out to be similar to one of the 2 ALPs in the isotropic case
since a2 couples just to hidden degrees of freedom. The only couplings in the
anisotropic case that showed a different behavior were the couplings of the
QCD axion to the gauge bosons of the hidden sectors on D2 and D3. In this
case we found a mild square root scaling.
Finally, we analyzed the distribution of the amount of dark radiation, which
we found to be power-law distributed.

� In Sec. 5 we shifted our focus from LVS to KKLT and investigated the
distribution of the Gukov-Vafa-Witten superpotential. First, we gave a brief
review of perturbatively flat vacua in Sec. 5.1 and discussed the results of [76].
Then, we compared the results with the expectation from standard statistical
studies of the landscape in 5.2 and discussed the question how this newly found
class of vacua fit in the overall set of solutions. We found that perturbatively
flat vacua are statistically sparse when compared to the expectation from the
distribution of low values of |W0| from [50].
Finally, in Sec. 5.3 we present our algorithm for finding perturbatively flat
vacua in Calabi-Yau 3-folds with 2 complex structure moduli and compute
an upper bound for the number of perturbatively flat vacua for the model
CP[1,1,2,2,2] for different values of QD3. For the case of CP[1,1,1,6,9] we find only
one solution which is in agreement with our discussion in Sec. 5.2.
In Sec. 5.4 we present a general search algorithm. The idea is to isolate the
region in the flux vector space which contains all perturbatively flat vacua.
Once such a region is obtained, one can carry out numerical searches in this
region in order to obtain all solutions.

� In Sec. 6 we presented an application of the considerations from the previous
sections. Motivated by the logarithmic preference for higher scale supersym-
metry breaking, we discussed the application of a specific type IIB model to
inflation and early universe physics.
In Sec. 6.1 we gave a brief review of the branching scenario for dark matter
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production. Then, in Sec. 6.2, we presented a non-standard scenario for the
early universe evolution combined with the branching scenario, which together
can accommodate superheavy dark matter. In Sec. 6.3 we introduced a specific
type IIB model that can realize the previously discussed ideas. Finally, in
Sec. 6.4 we studied the introduced model in detail and discussed the resulting
cosmological picture. In particular, we computed the number of e-foldings
between horizon exit and the end of inflation and combined the result with
observational constraints. We combined the resulting expressions with a grid of
values for the underlying model parameters and computed for each combination
the resulting dark matter mass. Interestingly, the predicted mass range is rather
narrow and is for all parameter combinations mχ ' 1010 − 1011 GeV. Finally,
we performed a numerical evolution of the full set of Boltzmann equations and
compared our result with the semi-analytical result.

In this work we discussed the importance of Kähler moduli stabilisation and its
importance for a consistent and successful understanding of the statistical properties
of the type IIB flux landscape. We observed a predominant preference for logarithmic
probability distributions if the stabilisation mechanism is based on the Large Volume
Scenario and a power-law distribution in the case of KKLT.
Which behavior is more descriptive of the true nature of the landscape remains an
open question since it depends on the ratio of LVS and KKLT vacua. However, since
the LVS approach requires less fine-tuning, it enjoys a larger parameter space. One
might argue, that the large parameter space is an indication that LVS solutions
are more abundant and the majority of phenomenological observables feature a
logarithmic distribution in the flux landscape.
This observation implies that the possibility to observe new physics at lower energies
is larger than what was believed, since higher energy scales are only mildly prefered.
However, given the results we have seen in this thesis, one could also argue that
string theory does not make any sharp predictions in the low-energy theory. This is
due to the appearance of the logarithmic distribution which is almost flat. However,
consistency of the UV theory and the mechanism of moduli stabilisation impose
strong correlations among the observables of the effective 4-dimensional theory.
Therefore, in order to obtain more definitive predictions from our analysis one should
investigate these correlations and identify phenomenologicaly allowed and possibly
prohibited ranges in parameter space. For instance, we have seen that a gravitino
mass at the TeV-scale correlates with an axion decay constant at the intermediate
scale, whereas a gravitino mass at the intermediate scale corresponds to a decay
constant at the GUT scale. For a future line of research it would be important to
study these correlations in more detail and find correlations related to different ares of
physics such as inflation, reheating or the cosmological moduli problem. Combining
these correlations with observational constraints would narrow down the range of the
allowed parameter space and be a step towards a clear prediction from string theory.
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Appendix A

Supersymmetry Statistics

A.1 Distribution of the string coupling

In this appendix we discuss the distribution of gs in type IIB flux compactifications.
This has been studied in [46, 50], and we follow here their analysis to obtain an
understanding of the distribution in the region of our interest, i.e. low values of
gs. As in [46, 50], we will carry out a detailed numerical analysis for the simple
tractable case of rigid Calabi-Yaus, and use these results to develop intuition for
general Calabi-Yaus.

For rigid Calabi-Yaus, the τ modulus (τ = a+ i
gs

, where gs is the dilaton and a

its axionic partner), has a linear superpotential:

W = Aτ +B , (A.1)

the ‘fluxes’ A = a1 + ia2 and B = b1 + ib2 take values in Z + iZ. The tadpole
cancellation condition is:

Im(A∗B) = L ≡ Det(X) = L , (A.2)

where X is the matrix:

X =

(
a1 a2

b1 b2

)
. (A.3)

The form of the tadpole condition in (A.2) makes it manifest that the tadpole
cancellation condition has an SL(2,Z) symmetry, i.e. transformations of the form:

X → X ′ = MX , (A.4)

map solutions to solutions, with M ∈ SL(2,Z). Taking the matrix M to be:

M =

(
p q
r s

)
,

the explicit form of the the transformation is given by:(
a′1 a′2
b′1 b′2

)
=

(
p q
r s

)
.

(
a1 a2

b1 b2

)
=

(
pa1 + qb1 pa2 + qb2

ra1 + sb1 ra2 + sb2

)
. (A.5)
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Now, let us come to the vacua. They are supersymmetric:

DW = 0↔ τ̄ = −B
A

=⇒ τ =
−b1 + ib2

a1 − ia2

. (A.6)

Note that under the above described SL(2,Z) transformation:

τ → τ ′ =
−b′1 + ib′2
a′1 − ia′2

=
sτ − r
−qτ + p

. (A.7)

This is an SL(2,Z) action on τ associated with the matrix Y given by:1

Y =

(
s −r
−q p

)
(A.8)

Therefore, given the SL(2,Z) symmetry of type IIB, the action does not generate
physically distinct solutions.2 In fact, solutions related by this symmetry should be
considered as equivalent.

The above described gauge symmetry is crucial to understand the solution space.
Firstly, we can use the SL(2,Z) symmetry to set a2 = 0. This implies:

τ = − b1

a1

+ i
b2

a1

. (A.9)

Also, the tadpole condition reduces to:

a1b2 = L . (A.10)

Requiring Im(τ) > 0, yields:

b2

a1

> 0 =⇒ b2
2

a1b2

=⇒ b2
2

L
=⇒ L > 0 . (A.11)

Thus, we have the condition L = a1b2 with L > 0. Hence, a1 and b2 have to be
integers which divide L with L > 0. To see what values b1 can take, we need to
examine the residual SL(2,Z) invariance. The residual SL(2,Z) transformations
correspond to transformations which maintain the condition a2 = 0, from (A.5) we
see that this implies that q = 0. Thus the SL(2,Z) matrix must take the form:(

1 0
r 1

)
(A.12)

1The fact that Y is an element of SL(2,Z) follows from the fact that its determinant is the
same as the one of M .

2There is another SL(2,Z) symmetry of the equation (A.2). This involves taking X → X.N ,
where N is an SL(2,Z) matrix. It is easy to see that such transformations do not correspond
to SL(2,Z) transformations of τ . In this case, ai → alNlk and bj → blNlj . Thus we can start
with a point with a1, b1 6= 0 and a2, b2 = 0 (i.e. τ on the real axis) and map it to a point where
a1, a2, b1, b2 6= 0. Thus a point on the real line can get mapped to a point in the interior of the
upper half plane. Thus, this does not correspond to an SL(2,Z) transformation of τ . Hence, this
cannot be thought of as a ‘gauge’ transformation.
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where r is an integer.3 Now the action of an SL(2,Z) matrix of the form (A.12)
takes b1 to:

b1 → ra1 + b1 . (A.13)

This implies that b1 takes the values 0, 1, ....|a1 − 1|. In summary, the analysis of
[46, 50] implies that vacua are characterised by:

1. An integer a1 which divides L.

2. For every such integer b1 takes the values 0, 1, ....|a1 − 1|.

3. b2 = L
a1

4. The value of τ is given by:

τ = − b1

a1

+ i
b2

a1

(A.14)

To get the distribution in the fundamental domain one takes the value of τ
obtained from (A.14) and maps it to the fundamental domain of SL(2,Z). This
involves the repeated action of the generators:

T : τ → τ + 1, S : τ → −1

τ
. (A.15)

The algorithm to bring a general point which is outside the fundamental domain to
inside the fundamental domain is as follows: First, by repeated action of T (or T−1)
the point is brought to the region −1

2
≤ Re(τ) < 1

2
. If this process also brings the

point to inside the fundamental domain, then the algorithm terminates. Otherwise,
one acts with the generator S. If this does not bring the point inside the fundamental
domain one iterates the process of repeated action of T (or T−1) and a single action
of S (if needed) until the point is mapped to the fundamental domain.

Now, let us come to our discussion of the distribution of gs. Note that the
characterisation of inequivalent solutions implies that the values of imaginary part
of τ as obtained in (A.14) are bounded by:

1

L
≤ Im(τ) ≤ L . (A.16)

It is easy to check that this condition is preserved by the algorithm to bring the
points inside the fundamental domain. Thus the lowest value of gs is 1

L
. We have

carried out detailed numerical studies to probe the distribution for small values of
gs (in the region of phenomenological interest). First, we present the results of our
numerics for L = 100. The distribution of τ in the fundamental domain is shown in
Fig. A.1 and the distribution of gs is shown in Fig. A.2. The results are consistent
with that of [50].

3Note that

(
1 0
r 1

)
≡
(
−1 0
−r −1

)
Hence we do not have to mod out by matrices of the form in

the RHS of the equivalence.
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Figure A.1: Values of τ for L = 100.
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Figure A.2: Distribution of gs for L = 100.

The plot in Fig. A.2 shows that the distribution is roughly uniform for gs > 0.01.
Next we present our results for L = 500. The distribution of the number of vacua as
a function of gs is shown in Fig. A.3 and A.4. Again for gs > 0.002, the distribution
is uniform. We studied the cases with L = 150, 400 and obtained similar results.
Our results clearly indicate that for rigid Calabi-Yaus, ρ(gs) is uniform in the region
of interest in Sec. 3.2.
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From our numerics, we observe that the basic reason for the uniform distribution
is the following: As L is increased, generically the number of its divisors increases
and as a result the number of points given by (A.14) increases. The first step in the
algorithm to bring the points given by (A.14) to the fundamental domain is to act
on them repeatedly by T (or T−1) so as to bring them to the strip 1

2
≤ τ < 1

2
. For

large L, we find that even just after this first step the region of phenomenological
interest is uniformly populated with the number of points of the same order as the
final answer (i.e the number of points after all points are brought to the fundamental
domain). Note that in (A.14):

Im(τ) =
L

a2
1

,

where a1 divides L. Thus, for the points given by (A.14), the number of points with
Im(τ) > 1 is equal to the number of points with Im(τ) < 1. This is essentially the
reason why after the first step in the algorithm the number of points is of the same
order as in the final answer. For large L, with the increase in the number of divisors,
there are more and more points in the region of interest and the spacing between
them becomes uniform.

Now, let us turn to the case of general Calabi-Yaus. The exact characterisation
of the vacua (the analogue of equation (A.14)) is not available, and a complete
numerical analysis remains challenging4 and is beyond the scope of the present work.
Here, we will use our results for the case of rigid Calabi-Yaus to develop intuition for
the distribution of gs in case of general Calabi-Yaus (the basic philosophy shall be
the same as that advocated in [44]). As described in the previous paragraph, the
basic reason for the uniform distribution in the case of rigid Calabi-Yaus is that with
increase in L, generically the number of vacua increases and the solutions are more
and more uniformly spaced. This leads to the uniform distribution of gs. For general
Calabi-Yaus, the value of the dilaton is set by the ratio of flux quanta associated with
the 3-form fluxes H3 and F3. As the number of 3-cycles increases, one can expect
the same phenomenon – the number of vacua increases and the spacing between
the values of the dilaton in these solutions decreases and the distribution function
for the dilaton becomes uniform. Note that we found a uniform distribution in the
case of rigid Calabi-Yaus, where the number of fluxes is only four. For a general
Calabi-Yau with large number of cycles, the solutions are certainly expected to be
more uniformly spaced, corresponding to a uniform distribution of the dilaton.

4For recent progress in this direction see e.g [77, 78]
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Figure A.3: Distribution of gs for L = 500.
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Figure A.4: Distribution for small gs with L=500.

A.2 Soft terms in LVS and KKLT

In this section we briefly summarise the structure of the soft masses in KKLT and
LVS with matter fields located on D3/D7 branes. The general expressions for the
soft masses are given by:

Ma =
1

2

F i∂ifa
Re(fa)

(A.17)

m2
α = m2

3/2 + V0 − F īF j∂ī∂j ln(K̃α) (A.18)

Aαβγ = F i
(
Ki + ∂i ln(Yαβγ)− ∂i ln(K̃αK̃βK̃γ)

)
, (A.19)

where Yαβγ are the Yukawa couplings, K̃α is the Kähler matter metric and the
F-terms are given by F i = eK/2Kij̄Dj̄W̄ . In the following table we summarise the
soft supersymmetry breaking terms in both KKLT and LVS for matter living on D3
and D7 branes [87].

In the last table we collect the soft masses that come from anomaly mediation.
Note that anomaly mediation plays no rôle in LVS but is important in KKLT. Let
us compute the variation of the soft masses. In the case of KKLT the variation of
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D3 KKLT LVS

M1/2
3
2

1
aV2/3m3/2

3
4

ξ

g
3/2
s V

m3/2

m2
0 (1− 3ω)m2

3/2
5
8

ξ

g
3/2
s V

m2
3/2

Aαβγ − (1− s∂s log (Yαβγ))
3
2

1
aV2/3m3/2 − (1− s∂s log (Yαβγ))

3
4

ξ

g
3/2
s V

m3/2

D7 KKLT LVS

M1/2
1

aV2/3m3/2 m3/2

m2
α (1− 3ω)m2

3/2
1
3
m2

3/2

Aαβγ −3
2
s∂s log (Yαβγ)

1
aV2/3m3/2 −m3/2

Anomaly KKLT LVS

Ma − g2aba
16π2m3/2 − g2aba

16π2M1/2

m2
i

∑
a
g4aCa(i)ba
(16π2)2

m2
3/2

∑
a
g4aCa(i)ba
(16π2)2

m2
0

Aαβγ Yαβγ
∑

m=α,β,γ

∑
a
Ca(m)
ba

Ma Yαβγ
∑

m=α,β,γ

∑
a
g2aCa(m)

16π2 Aαβγ

Table A.1: Soft masses for KKLT/LVS with standard model fields realized on D3/D7
branes. Here ga is the gauge coupling, the parameter ba is defined as ba = 3TG − TR,
with the Casimir invariant TG in the adjoint representation, the Dynkin index TR and the
quadratic Casimir invariants in the fundamental representation Ca(i). The parameter ω is
a function of the coefficients of the Kähler matter metrics.

the gaugino mass scales as:

dM1/2 ∼
(
g2
aba

16π2

)2
gs

n3| lnW0|3
M2

p

M1/2

dN , (A.20)

which implies a scaling for the number of states:

NKKLT (M1/2) ∼
(
M1/2

Mp

)2

. (A.21)

This functional dependence holds for all soft masses for D3 and D7 branes. In LVS
the gaugino mass at the minimum of the potential scales as:

M1/2 =
3

4

√
8π

c2
1

|W0|n2
e−

2c2
gsn . (A.22)

Performing the variation gives us:

dM1/2 ∼ nM1/2 ln

(
Mp

M1/2

)2

dN . (A.23)

Ignoring subleading logarithmic corrections, this implies a scaling:

NLV S(M1/2) ∼ ln

(
M1/2

Mp

)
, (A.24)
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which is again true for all soft masses for D3 and D7 branes. In summary our
conclusion for the distribution of the soft terms in KKLT and LVS vacua is:

NKKLT ∼
(
Msoft

Mp

)2

(A.25)

and:

NLV S ∼ ln

(
Msoft

Mp

)
. (A.26)
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Appendix B

Axion Statistics

B.1 Canonical normalisation

In this appendix we shall perform the canonical normalisation of the axion fields.

B.1.1 A single axion

Let us start with the simple case with a single closed string modulus T = τ + iθ
where it is easy to identify the correct definition of the axion decay constant and
periodicity. We start with the following Lagrangian:

L = KT T̄∂µθ∂
µθ − 1

4
Re(f)F µν

b F b
µν −

1

4
Im(f)F µν

b F̃ b
µν + Λ4 cos

(
2π

n
θ

)
, (B.1)

where b is a non-Abelian index and the gauge kinetic function is given by f = T/(2π).
Expressing L in terms of the canonically normalised axion a =

√
2KT T̄ θ and Yang-

Mills field strength Gb
µν =

√
Re(f)F µν

b , we end up with:

L =
1

2
∂µa∂

µa− 1

4
Gµν
b G

b
µν −

αb
4

a√
2KT T̄

Gµν
b G̃

b
µν + Λ4 cos

(
2π

n

a√
2KT T̄

)
, (B.2)

where we used the fact that τ = α−1
b . This expression suggests the definition of the

axion decay constant fa as (inserting the appropriate power of Mp):

fa ≡
( n

2π

)√
2KT T̄ Mp , (B.3)

since L would simplify to the standard expression:

L =
1

2
∂µa∂

µa− 1

4
Gµν
b G

b
µν −

a

fa

nαb
8π

Gµν
b G̃

b
µν + Λ4 cos

(
a

fa

)
. (B.4)

B.1.2 A more general case with 3 axions

Without loss of generality we shall consider the volume form (4.3) with τ4 = 0. The
Kähler metric and its inverse take the following form at leading order in a large-V
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expansion:

K =


1

4τ21

γ3
4

τ
3/2
3

τ
3/2
1 τ22

−3γ3
8

√
τ3

τ
3/2
1 τ2

γ3
4

τ
3/2
3

τ
3/2
1 τ22

1
2τ22

−3γ3
4

√
τ3√
τ1τ22

−3γ3
8

√
τ3

τ
3/2
1 τ2

−3γ3
4

√
τ3√
τ1τ22

3γ3
8

1√
τ3τ1τ2

 , (B.5)

and:

K−1 =

 4τ 2
1 4γ3

√
τ1τ

3/2
3 4τ1τ3

4γ3
√
τ1τ

3/2
3 2τ 2

2 4τ2τ3

4τ1τ3 4τ2τ3
8

3γ3

√
τ3τ1τ2

 . (B.6)

Let us now consider the isotropic and anisotropic limits separately.

Isotropic limit

In the isotropic limit θ1 and θ2 are essentially massless while θ3 develops a potential
via QCD instantons of the form V (θ3) = −Λ4

QCD cos(2πθ3). Hence the only non-zero
entry of the axionic Hessian is V33 = (2π)2Λ4

QCD. Multiplying the inverse Kähler
metric (B.6) by the axionic Hessian we find the mass-squared matrixM2 = 1

2
K−1Vij

which becomes:

M2 =

0 0 2τ1τ3

0 0 2τ2τ3

0 0 4
3γ3

√
τ3τ1τ2

 (2π)2Λ4
QCD . (B.7)

The eigenvalues of M2 are (reinstating appropriate powers of Mp):

m2
1 = 0 , m2

2 = 0 , m2
3 =

4

3γ3

√
τ3τ1τ2(2π)2 Λ4

QCD

M2
p

, (B.8)

and the corresponding eigenvectors read:

~v1 =

1
0
0

 n1

2π

Mp

f1

, ~v2 =

0
1
0

 n2

2π

Mp

f2

, ~v3 =


3γ3
2

√
τ3τ1
τ2

3γ3
2

√
τ3
τ1

1

 Mp

2πf3

, (B.9)

where f1, f2 and f3 are the axion decay constants which can be obtained by requiring
~vTi K~vj = 1

2
δij. We find (at leading order in a large-V approximation):

f1 =
n1

2π

Mp√
2τ1

, f2 =
n2

2π

Mp

τ2

, f3 =

√
3αγ3

4π

Mp

τ
1/4
3

√
V
. (B.10)

Therefore the QCD axion mass in (B.8) can correctly be written also as m3 = Λ2
QCD/f3.

Moreover the original axions θi’s can be expressed in terms of the canonically
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normalised axions ai’s as:

θ1 =
n1

2π

a1

f1

+
3γ3

4π

√
τ3τ1

τ2

a3

f3

,

θ2 =
n2

2π

a2

f2

+
3γ3

4π

√
τ3

τ1

a3

f3

, (B.11)

θ3 =
1

2π

a3

f3

.

Anisotropic limit

In the anisotropic limit θ3 develops a potential via non-perturbative corrections to
W , θ2 is essentially massless while θ1 becomes massive via QCD instantons. Hence
the axionic Hessian at the minimum takes the form:

Vij =

(2π)2Λ4
QCD 0 0

0 0 0

0 0 3αa2
3τ

3/2
3

W 2
0

V3

 . (B.12)

Thus the mass-squared matrix M2 = 1
2
K−1Vij now becomes:

M2 =

 8π2τ 2
1 Λ4

QCD 0 6αa2
3τ1τ

5/2
3

W 2
0

V3

8γ3π
2√τ1τ

3/2
3 Λ4

QCD 0 6a2
3τ

5/2
3 τ

−1/2
1

W 2
0

V2

8π2τ1τ3Λ4
QCD 0 4a2

3γ
−1
3 τ 2

3
W 2

0

V2

 . (B.13)

The leading order expressions of the eigenvalues ofM2 are (inserting suitable powers
of Mp):

m2
1 = 8π2τ 2

1

Λ4
QCD

M2
p

, m2
2 = 0 , m2

3 =
4a2

3τ
2
3

γ3

(
W0

V

)2

M2
p , (B.14)

and the corresponding eigenvectors read:

~v1 =


1

−γ3
2

(
τ3
τ1

)3/2

−γ3n23
2

τ1
τ3
V2

W 2
0

Λ4
QCD

 n1

2π

Mp

f1

, ~v2 =

0
1
0

 n2

2π

Mp

f2

, ~v3 =


3αγ3

2

√
τ3τ1
V

3γ3
2

√
τ3
τ1

1

 n3

2π

Mp

f3

,

(B.15)
where f1, f2 and f3 are the axion decay constants which can be obtained by requiring
~vTi K~vj = 1

2
δij. We obtain (at leading order in a large-V approximation):

f1 =
1

2
√

2π

Mp

τ1

, f2 =
n2

2π

Mp

τ2

, f3 =
n3

√
3αγ3

4π

Mp

τ
1/4
3

√
V
. (B.16)

Therefore the QCD axion mass in (B.14) can correctly be written also as m1 =
Λ2
QCD/f1. Moreover the original axions θi’s can be expressed in terms of the canonically
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normalised axions ai’s as:

θ1 =
1

2π

a1

f1

+
3αn3γ3

4π

√
τ3τ1

V
a3

f3

,

θ2 = − γ3

4π

(
τ3

τ1

)3/2
a1

f1

+
n2

2π

a2

f2

+
3n3γ3

4π

√
τ3

τ1

a3

f3

, (B.17)

θ3 = − 1

2π

τ3

τ1

(
m1

m3

)2
a1

f1

+
n3

2π

a3

f3

.

B.2 Benchmark points for ALP dark matter

In this appendix we present some benchmark points for ALP DM generated by the
misalignment mechanism. In this case the DM relic abundance is given by (4.73).
We focus on the bulk axion θ2 which behaves as an ultra-light ALP for both the
isotropic and the anisotropic case. Its mass and decay constant can be written in
terms of the underlying parameters as:

mθ2 =

√
1

2
K−1

22 Vθ2θ2 =
4π

αn
3/2
2

√
gsA2W0

√
τ2

τ1

e
− π

n2
τ2 Mp , fθ2 =

n2

2π

Mp

τ2

. (B.18)

In the isotropic case τ1 = τ2, while in the anisotropic limit τ1 = g2
s τ2 = α−1

SM . After
writing τ1 in terms of τ2, τ2 can in turn be expressed as a function of the microscopic
parameters using (4.8) with V ' α

√
τ1τ2. The expression (4.73) for the ALP DM

abundance becomes then just a function of 9 UV parameters: gs, W0, n2, n4, A2, A4,
α, ξ and θ2,in. In what follows we shall restrict our numerical search for benchmark
examples to a 4D subregion of this parameter space by focusing on natural values
A2 = A4 = 1 and θ2,in = π. Moreover we shall set the topological quantities α = 1/6
and ξ = 0.46 as in the explicit toric constructions of [143]. In Tables B.1 and B.2
we present some benchmark points which reproduce the observed DM abundance
for different values of W0, gs, n2 and n4, for the isotropic and anisotropic cases
respectively.
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n2 n4 gs W0 τ2 mθ2 (eV) fθ2 (GeV)
1 1 0.250 2.05 ·10−11 32.39 2.62 · 10−21 1.18 · 1016

1 1 0.100 4.46 ·10−32 24.97 1.02 · 10−21 1.53 · 1016

1 1 0.075 1.58 ·10−43 20.97 4.79 · 10−22 1.82 · 1016

1 10 0.250 3.66 36.36 4.29 · 10−21 1.05 · 1016

1 10 0.100 2.08 · 10−2 35.42 3.87 · 10−21 1.08 · 1016

1 10 0.075 1.32 · 10−3 34.96 3.61 · 10−21 1.09 · 1016

10 1 0.250 6.32 ·10−10 318.47 2.54 · 10−21 1.20 · 1016

10 1 0.100 1.37 ·10−30 244.35 9.70 · 10−22 1.56 · 1016

10 1 0.075 4.81 ·10−42 204.47 4.35 · 10−22 1.87 · 1016

10 10 0.250 113.2 358.27 4.00 · 10−21 1.07 · 1016

10 10 0.100 0.643 348.90 3.62 · 10−21 1.09 · 1016

10 10 0.075 4.07 · 10−2 344.27 3.37 · 10−21 1.11 · 1016

Table B.1: Benchmark points which match the observed ALP DM abundance for the
isotropic case setting A2 = A4 = 1, θin,2 = π, α = 1/6 and ξ = 0.46.

n2 n4 gs W0 τ2 mθ2 (eV) fθ2 (GeV)
1 1 0.833 0.108 36.03 4.53 · 10−21 1.06 · 1016

1 10 0.822 48.93 37.00 4.61 · 10−21 1.03 · 1016

6 1 0.352 1.11 · 10−6 201.66 3.06 · 10−21 1.14 · 1016

6 10 0.339 47.88 217.80 4.36 · 10−21 1.05 · 1016

10 1 0.277 4.05 · 10−9 325.35 2.82 · 10−21 1.17 · 1016

10 10 0.263 36.15 360.61 4.22 · 10−21 1.06 · 1016

30 1 0.168 1.06 ·10−16 883.67 1.79 · 10−21 1.30 · 1016

30 10 0.153 9.75 1063.23 3.88 · 10−21 1.08 · 1016

Table B.2: Benchmark points which match the observed ALP DM abundance for the
anisotropic case setting A2 = A4 = 1, θin,2 = π, α = 1/6 and ξ = 0.46. All benchmark
points satisfy the phenomenological constraint τ1 = α−1

SM = 25.

Notice that in both cases the typical values of the mass and the decay constant
are respectively mθ2 ' 5 · 10−21 eV and fθ2 ' 1016 GeV. In the isotropic case we have
chosen n2, n4 and gs freely (focusing on values of gs which keep perturbation theory
under control) and we have derived the value of W0 which matches the observed
DM abundance. Notice that natural O(1-10) values of W0 require n4 & 10 since

from (4.8) τ2 ∼ W
2/3
0 ek/n4 for an appropriate k, and so n4 ∼ O(1) would give a

value of τ2 which is too large to match ΩALPh
2 ' 0.112 due to the exponential

suppression mθ2 ∼ e
− π

n2
τ2 Mp in (B.18). This relation explains also why larger values

of τ2 correspond to larger values of n2. Let us finally stress that in the anisotropic
case we have chosen freely only n2 and n4 since gs is fixed by the phenomenological
constraint τ1 = g2

s τ2 = α−1
SM = 25. As can be seen from Table B.2, this condition

tends to push the string coupling close to 1 unless n2 & 10 since g2
sτ2 = 25 can be

satisfied for gs ' 0.1 only for large values of τ2 which, as we have already pointed
out, need large values of n2.
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B.3 Other distributions relevant for phenomenol-

ogy

In this appendix we shall show that other phenomenologically interesting quantities
feature also a logarithmic distribution in the type IIB flux landscape.

B.3.1 Moduli masses

Let us investigate the distribution of moduli masses in the flux landscape. For all
cases, the isotropic and anisotropic cases with h1,1 = 4 and the model with arbitrarily
large h1,1, the mass of each Kähler modulus scales with the CY volume as:

mτi '
W0

Vpi
Mp with pi > 0 ∀i = 1, ..., h1,1. (B.19)

Following the same logic as in Sec. 4.2, we find again a logarithmic distribution for
each mτi since these masses are controlled by the exponentially large volume V :

N(mτi) ∼ ln

(
mτi

Mp

)
, ∀i = 1, ..., h1,1. (B.20)

For the anisotropic case one has just to make sure that the bound gs & 0.01 (coming
from the ability to tune W0 to satisfy (4.41)) does not set a lower bound on mτi for
the regime of validity of the distribution (B.20). However this bound is negligible
since combining (4.8) with (4.41) one would find m3/2 & 10−45Mp ' 10−16 eV for
gs & 0.01.

B.3.2 Reheating temperature

Using the moduli masses we can study the distribution of the reheating tempera-
ture coming from moduli decay [158, 236]. The reheating temperature due to the
perturbative decay of the i-th Kähler modulus is given by [158]:

Trh,i =

(
40cvisctot

π2g∗(Trh)

)1/4√
ΓτiMp , (B.21)

where cvis and cvis control the strength the interaction of the modulus τi with the
visible and the hidden sector respectively, ctot = cvis + chid, and the decay rate Γτi
looks like:

Γτi =
1

48π

m3
τi

M2
p

. (B.22)

Thus using (B.20) we obtain again a logarithmic distribution for all cases:

Trh,i ∼ mτi

√
mτi

Mp

⇒ dTrh,i

Trh,i

∼ dmτi

mτi

⇒ N(Trh) ∼ ln

(
Trh

Mp

)
. (B.23)
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Appendix C

Superpotential Statistics

C.1 2-moduli examples data

As discussed in Sec. 5.4, our numerical analysis has shown that in 22 of the 39
2-moduli examples in the Kreuzer-Skarke list, |ε|inf does not take values close to zero.
This by itself gives a strong bound on the region where all possible solutions to the
Lemma are contained (without the need of imposing requirements such as validity of
the effective field theory or phenomenological viability). We list these models in Tab.

C.1 together with the associated values of |ε|inf and the values of ~m and ~k at which
the infimum is attained.
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Model ~mT ~kT |ε|inf

M2,2 (−0.186, 0.982) (−0.399, 0.917) 0.9751
M2,3 (−0.966, 0.257) (−0.746, 0.666) 0.8919
M2,4 (−0.966, 0.257) (−0.746, 0.666) 0.8919
M2,5 (−0.966, 0.257) (−0.746, 0.666) 0.8919
M2,7 (−0.967., 0.253) (−0.778, 0.628) 0.9114
M2,13 (−0.143, 0.989) (−0.297, 0.955) 0.9870
M2,18 (−0.132, 0.991) (−0.272, 0.962) 0.9897
M2,19 (−0.186, 0.982) (−0.399, 0.917) 0.9750
M2,21 (0.966,−0.257) (0.746,−0.666) 0.8919
M2,22 (−0.896, 0.438) (−0.695, 0.709) 0.9336
M2,23 (−0.896, 0.438) (−0.695, 0.709) 0.9336
M2,24 (−0.896, 0.438) (−0.695, 0.709) 0.9336
M2,25 (−0.186, 0.982) (−0.399, 0.917) 0.9752
M2,26 (−0.969, 0.243) (−0.816, 0.577) 0.9321
M2,27 (−0.969, 0.247) (−0.599, 0.801) 0.7784
M2,28 (−0.969, 0.247) (−0.599, 0.801) 0.7784
M2,29 (−0.969, 0.247) (−0.599, 0.801) 0.7784
M2,35 (−0.993, 0.114) (−0.972, 0.233) 0.9927
M2,36 (−0.186, 0.982) (−0.399, 0.917) 0.9752
M2,37 (−0.186, 0.982) (−0.399, 0.917) 0.9752
M2,38 (−0.186, 0.982) (−0.399, 0.917) 0.9752
M2,39 (−0.970, 0.243) (−0.577, 0.817) 0.7581

Table C.1: 22 2-moduli examples from the Kreuzer-Skarke list in which |ε|inf does not take
values close to zero. For each model, we show the associated values of |ε|inf and the values
of ~m and ~k at which the infimum is attained.
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Appendix D

Superheavy Dark Matter

D.1 Superheavy DM in a scenario with two mod-

uli

String compactifications are in general characterized by a large number of moduli
and by a leading order no-scale structure that makes some of them (in general more
than one) lighter than expected, i.e. mφ � m3/2 [61]. Hence one might expect to
have several epochs of modulus domination in the post-inflationary history. One
could have either multiple eras of EMD separated by intermediate phases of RD
(if there is a hierarchy among the initial displacements of the moduli), or a single
extended EMD epoch (if the initial displacements of all moduli are of the same
order). In what follows we shall investigate the features of this general scenario by
focusing on the illustrative example with two light moduli.

D.2 Branching scenario with two epochs of EMD

Let us present a branching scenario that involves two moduli φ1 and φ2. The two
moduli have masses mφ1 and mφ2 with mφ2 . mφ1 . They mainly decay to the
visible sector with respective couplings c1/MP and c2/MP, leading to decay widths
Γφ1→vis ' c2

1m
3
φ1
/M2

P and Γφ2→vis ' c2
2m

3
φ2
/M2

P (we assume that their decays to hidden
sector particles are suppressed and produce just a small amount of DR). Assuming
that mφ1 < mχ, the decay of φ1 and φ2 to DM will be kinematically forbidden.
Therefore their decay only dilutes the abundance of DM and DR produced from the
inflaton decay. The initial displacements of φ1 and φ2 from the minimum of their
potential are φ1,0 and φ2,0 respectively. We assume φ1,0 & φ2,0 so that each modulus
can dominate the energy density of the universe for a period of time.

The important stages of the post-inflationary history in this scenario (in chrono-
logical order) are as follows:

1- Γσ . H < Hinf : The universe is in an EMD phase driven by inflaton oscillations
about the minimum of its potential. Both moduli also start oscillating at this stage
with respective energy densities ρφ1 = (φ1,0/MP)2ρσ and ρφ2 = (φ2,0/MP)2ρσ. The
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inflaton decay completes at H ' Γσ mainly populating the hidden sector.

2- HD,1 . H < Γσ: The universe is in a RD phase at this stage. Moduli oscillations
behave like matter, and hence ρφ1,2 redshifted more slowly than ρR. Since ρφ1 > ρφ2 ,
φ1 starts to dominate at HD,1 ' (φ1,0/MP)4Γσ, which is the onset of a second phase
of EMD.

3- Γφ1 . H < HD,1: The universe is in an EMD epoch that is driven by φ1 during
this stage. Decay of φ1 completes when the Hubble expansion rate is H ' Γφ1 (Γφ1
denotes the total decay rate of φ1) and reheats the visible sector. This leads to the
formation of a RD universe.

4- HD,2 . H < Γφ1 : The universe is in an intermediate RD phase during this stage.
Since ρφ2 is redshifted more slowly than ρR, φ2 starts to dominate when the Hubble
expansion rate is HD,2 ' (φ2,0/φ1,0)

4Γφ1 , which is the onset of another epoch of
EMD.

5- Γφ2 . H < HD,2: The universe is in a third phase of EMD that is driven by φ2.
The decay of φ2 completes when the Hubble expansion rate is H ' Γφ2 (Γφ2 is the
total decay rate of φ2), at which time the universe enters the final RD phase prior to
the onset of BBN.

One point to note is that HD,2 ' Γφ1 if φ2,0 ' φ1,0. In this case, φ2 dominates
the energy density of the universe as soon as the decay of φ1 completes. Stage 4
above thus effectively disappears and there is a direct transition from the first EMD
era (stage 3) to the second one (stage 5), implying a single extended epoch of EMD
driven by the two moduli φ1 and φ2.1

Let us now estimate the relic abundance of DM in this scenario. The number
density of DM particles at H ' Γφ2 is given by:

nχ ' nσ Brχ

(
aσ
aD,1

)3(
aD,1

aφ1

)3(
aφ1
aD,2

)3(
aD,2

aφ2

)3

. (D.1)

This is similar to (6.5) for the case with a single epoch of modulus domination. The
last two terms on the RHS, which are new, account for the dilution of the number
density in stages 4 and 5 above respectively. After using the scaling of a with time
in stages 4 and 5 above, and normalizing nχ by the entropy density s at H ' Γφ2 ,
we find:

nχ
s
' 3

4
× 10−3 1

Y 2
φ2

Γσ→vis

Γσ

Γφ2
Γφ2→vis

TR,2

mσ

, (D.2)

where:

TR,2 =

(
90

π2g∗,R,2

Γφ2→vis

Γφ2

)1/4√
Γφ2MP , (D.3)

with g∗,R,2 denoting the number of relativistic degrees of freedom in the visible sector
at T = TR,2, and Yφ2 ≡ φ2,0/MP. The energy density of DR at H ' Γφ2 is given by

1This is an example of the two-field EMD scenario studied in [250].
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(assuming that no DR is produced from φ1 decay):

ρDR ' ρσ
Γσ→DR

Γσ

(
aσ
aD,1

)4(
aD,1

aφ1

)4(
aφ1
aD,2

)4(
aD,2

aφ2

)4

+ ρφ2
Γφ2→DR

Γφ2
. (D.4)

This is similar to (6.9) with two additional terms on the RHS that account for the
energy density redshift in stages 4 and 5 respectively. Thus the fractional energy
density of DR is given by:

ρDR

ρR

' 1

Y
8/3
φ2

(
Γφ2
Γσ

)2/3
Γσ→DR

Γσ

Γφ2
Γφ2→vis

+
Γφ2→DR

Γφ2→vis

. (D.5)

Some comments are in order at this point. It is seen from (D.2) and (D.5) that final
abundance of DM and DR in the two modulus scenario depends only on the initial
amplitude and decay width of the second modulus φ2. This can be understood as
follows. For fixed Yφ2 , varying Yφ1 ≡ φ1,0/MP (as long as Yφ1 & Yφ2) affects the two
epochs of modulus domination in opposite ways. Increasing (decreasing) Yφ1 makes
stage 4 longer (shorter) and stage 3 shorter (longer) by the same factor. A similar
thing happens by decreasing (increasing) Γφ1 with Γφ2 fixed (as long as Γφ1 & Γφ2).
As a result, the combined dilution factor from two epochs of modulus domination
does not depend on the parameters of φ1.

That said, it is helpful to compare the DM and DR abundance with the previous
scenario when there is one epoch of modulus domination. We can rewrite (D.2) in
terms of (6.7) as follows (in the limit where the production of DR from the decay of
the lightest modulus is completely negligible):

nχ
s

∣∣∣
2

=
nχ
s

∣∣∣
1

(
Yφ1
Yφ2

)2 (
TR,2

TR,1

)
. (D.6)

Similarly, (D.5) can be written in terms of (6.10):

ρDR

ρR

∣∣∣∣
2

=
ρDR

ρR

∣∣∣∣
1

(
Yφ1
Yφ2

)4/3(
Γφ2
Γφ1

)2/3

. (D.7)

It is seen from (D.6) and (D.7) that the maximum dilution in the scenario with two
moduli is achieved for Yφ2 ' Yφ1 and mφ2 � mφ1 .

2 As pointed out earlier, in this
case there is a single extended epoch of EMD consisting of stages 3 and 5 that are
not separated by an intermediate RD phase.

2Note that TR,2/TR,1 ∝ (Γφ2
/Γφ1

)1/2 ∝ (mφ2
/mφ1

)3/2.
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D.3 A string model with two epochs of modulus

domination

D.3.1 The setup

We now focus on a type IIB model which can allow for two epochs of modulus
domination. This model shares the same features with the model discussed in Sec.
6.3 but it also gives rise to novel phenomenological properties. The Calabi-Yau
volume now takes the form:

V =
√
τvisτbig − τ 3/2

np − τ
3/2
inf , (D.8)

where again τinf drives inflation and it is wrapped by a hidden sector D7 stack as
in the model presented in Sec. 6.3. However now the second blow-up mode, here
denoted as τnp, is just responsible for generating non-perturbative effects needed for
moduli stabilization but it does not support the visible sector stack of D7 branes.3

In fact, in this model the requirement to avoid dark radiation overproduction from
the decay of the lightest modulus forces the visible D7 stack to be wrapped around
the 4-cycle whose volume is controlled by τvis [158].

In this case the 4D low-energy supergravity theory is determined by the following
Kähler potential:

K = −2 ln

(
V +

ξ

2g
3/2
s

)
+Kgs , (D.9)

where Kgs denotes string loop corrections [99, 36, 37] which have been shown to be
V-suppressed with respect to the leading α′ correction proportional to ξ [232]. The
superpotential instead looks like:

W = W0 + Anp e
−anpTnp + Ainf e

−ainfTinf . (D.10)

As in Sec. 6.3, at leading order in 1/V � 1, non-perturbative corrections to W
combined with α′ corrections to K produce an LVS minimum with 5 stabilized
moduli: V ' √τvisτbig ∼ e1/gs , τnp ∼ τinf ∼ 1/gs ∼ O(10) together with the 2
corresponding axions cnp and cinf . However at this level of approximation there are
still 3 flat directions which can be parameterized by τvis, cvis, and cbig. The visible
sector modulus τvis is fixed at subleading order by the string loop contribution to
the Kähler potential Kgs at [142]:

τvis ' g4/3
s λloop V2/3 , (D.11)

where λloop is a tunable combination of the coefficients of gs corrections to K. Notice
that the requirement of reproducing the observed value of the visible sector gauge
coupling, α−1

vis = 4πg−2
vis = τvis ∼ O(10 − 100), leads necessarily to an anisotropic

3τnp instead supports a pure SYM hidden sector which generates gaugino condensation at a scale
larger than the inflaton mass, so that the decay of σ into heavy condensates on τnp is kinematically
forbidden.
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shape of the extra dimensions since the exponentially large Calabi-Yau volume
V ' √τvisτbig is now controlled by 2 cycles but with τbig ∼ e1/gs � τvis ∼ 1/gs.
Finally, the two axions cvis and cbig receive tiny masses due to additional Tvis- and
Tbig-dependent non-perturbative corrections to W . Thus both cvis and cbig are in
general ultra-light and play the role of hidden sector dark radiation.

D.3.2 Moduli mass spectrum

The mass spectrum of the relevant moduli around the minimum becomes:

m2
σ ' κ ε2 (ln ε)2 M2

P

m2
φ1
' εm2

σ

g
3/2
s W0 | (ln ε)3 |

� m2
σ for ε� 1

m2
φ2
'

ε1/3 g
5/6
s | ln ε|m2

φ1

W
1/3
0

√
λloop

< m2
φ1

for ε, gs � 1

m2
aDR1

∼ m2
aDR2
∼ 0 , (D.12)

where σ, φ1, φ2, aDR1 , and aDR1 are the canonically normalized fields corresponding
respectively to τinf , τbig, τvis, cbig, and cvis.

As in Sec. 6.3, σ plays the role of the inflaton. This field, when displaced from its
minimum, becomes exponentially lighter than the Hubble constant during inflation
which is set by the mass of φ1: H ' mφ1 . The 3 fields τnp, cinf , and cnp are instead
heavy spectator fields, while φ1 and φ2 get displaced from their minimum during
inflation, and so give rise to 2 epochs of EMD. On the other hand, the 2 ultra-light
axions aDR1 and aDR2 yield extra contributions to Neff . Moreover the gravitino mass
and the soft terms are still given by (6.22). Hence for mχ ' m0 'M1/2, we conclude
that DM cannot be reproduced from the decay of any of the 2 light moduli since:

m2
φ2
< m2

φ1
' ε | ln ε|
g

3/2
s W0

m2
χ � m2

χ for ε� 1 . (D.13)

Requiring mφ2 & O(50) TeV in order to avoid any cosmological moduli problem
together with τvis ∼ O(100) in order to reproduce the observed value of the visible
sector gauge coupling, corresponds to 1 � V . 5 × 107 − 109 for gs ' 0.1 and
1 . W0 . 100. Therefore DM is necessarily superheavy since mχ & 1011 GeV. Notice
that values of the overall volume below 5 × 107 − 109 are also required to match
inflationary observables like the amplitude of primordial fluctuations [231].

D.3.3 Moduli couplings and decay rates

The configuration of the hidden sector D7-stack wrapped around τinf is the same as
the one described in Sec. 6.3.3. Moreover, also the couplings of the inflaton σ to
hidden and visible gauge bosons are still given by (6.25). Hence the ratio Γσ→vis/Γσ
is also still given by (6.26) and the inflaton decay width Γσ takes the same form as
(6.30).
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On the other hand the light modulus φ1 decays mainly into visible sector gauge
bosons with decay rate [236, 158]:

Γφ1 ' Γφ1→vis = γ2 Ng

96π

m3
φ1

M2
P

=
γ2

8π

m3
φ1

M2
P

for Ng = 12 , (D.14)

where γ ≥ 1 is a microscopic parameter which depends on the gauge flux on the
visible sector D7-stack (in particular γ = 1 for a fluxless D7-stack while γ > 1 for
non-zero gauge fluxes) [158]. The decay of φ1 produces also axionic dark radiation
which is however suppressed for γ > 1 and gets diluted by the decay of φ2. In what
follows we shall therefore neglect Γφ1→DR.

The final modulus to decay is φ2 whose main decay channels are [158]:

� Dark radiation bulk axions:

Γφ2→DR =
5

96π

m3
φ2

M2
P

, (D.15)

� Visible sector gauge bosons:

Γφ2→vis = γ2 Ng

48π

m3
φ2

M2
P

=
γ2

4π

m3
φ2

M2
P

, (D.16)

where we have set again Ng = 12.

The amount of axionic dark radiation produced from φ2 decay is controlled by
the underlying parameter γ:

∆Neff ' 3
Γφ2→DR

Γφ2→vis

' 0.6

γ2
, (D.17)

showing how for γ ≥ 1 this model naturally satisfies present observational bounds
since it yields ∆Neff . 0.6.

The relevant quantities to compute the final DM abundance using (D.2) and
(D.3) can be derived from the decay widths (D.15) and (D.16) and read:

Γφ2
Γφ2→vis

= 1 +
5

24γ2
, (D.18)

and:

TR,2 ' 0.16γ

(
1 +

5

24γ2

)1/4

mφ2

√
mφ2

MP

. (D.19)

Notice that the decay rates (D.15) and (D.16), together with the inflaton decay
width (6.30), also determine, via (D.5), the fractional energy density of DR.
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D.4 Inflationary observables and DM abundance

As in Sec. 6.4, we start analyzing the cosmology of the model with two moduli by
presenting the expression for the total number of e-foldings:

Ne ' 57 +
1

4

[
ln r −Nreh −Nφ1 −Nφ2 + ln

(
ρσ,start

ρσ,end

)]
,

where Nreh is the duration of the reheating epoch after the end of inflation, while Nφ1

and Nφ2 denote respectively the number of e-foldings of the two EMD eras driven by
the light moduli φ1 and φ2, which look like:

Nφ1 '
2

3
ln

(
Y 4
φ1

Γσ
Γφ1

)
, Nφ2 '

2

3
ln

((
Yφ2
Yφ1

)4
Γφ1
Γφ2

)
.

By rewriting Ne in terms of fundamental parameters, we obtain:

Ne ' 58.88− 1

6
ln

(
Y 4
φ2
V8

W 5
0 g

3/2
s |ln ε|3/2

)
, (D.20)

where we have set γ = 1. Notice that the total number of e-foldings does not depend
on the initial misalignment value of the first modulus.

As in the single modulus scenario, we obtain W0 as a function of V by combining
two constraints coming from the amplitude of the primordial scalar fluctuations and
the geometrical requirement to have the volume of blow-up modes hierarchically
smaller than the overall internal volume. Following the same procedure as in Sec.
6.4, we then extract the value of V from matching the observed DM abundance.
Finally, this value of the volume fixes the DM mass for every combination of the
underlying parameters. Interestingly, all data points correspond to a DM mass in the
same range as in the single modulus case, mχ ' 1010-1011GeV, with a bias towards
smaller values (65% of the data points result in mχ ' 1010GeV).
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Figure D.1: Points in the (W0,V) plane which match the observed amplitude of the density
perturbations and DM abundance.

In Fig. D.1 we present the points in the (W0, V) plane which satisfy all our
theoretical and phenomenological conditions. Note that 65% of the initial parameter
set reproduces the correct DM abundance. Moreover we were not able to obtain
values of ns within the 2σ range, as each point in Fig. D.1 corresponds to ns at the
lower end of the 3σ range. The qualitative behavior of the underlying parameters gs,
Yφ2 , and λ is the same as in the single modulus case. Tab. D.1 shows a representative
choice of the parameters used to perform a numerical study of the full cosmological
evolution in this scenario.

174



W0 20.4
V 3× 106

Ne 44.4
Nreh 4.4
Nφ1 14.8
Nφ2 3.9
ns 0.9550
mσ 1.1× 1013GeV
mφ1 7.7× 108GeV
mφ2 8.3× 107GeV
m3/2 8.9× 1011GeV
mχ 7.3× 1010GeV
chid 332.0

Table D.1: Microscopic parameters W0 and V, the resulting e-folding numbers, ns, mass
scales, and inflaton coupling to hidden degrees of freedom chid at a benchmark point that
gives the right amplitude of the density perturbations and the correct DM abundance. The
input parameters are gs = 0.1, Yφ1 = Yφ2 = 0.01, λ = 103, Nhid

g = 12, and γ = 1.

D.5 Numerical analysis of cosmological evolution

We obtain the numerical evolution of energy densities for the scenario with two
moduli. As in Sec. 6.4.2, we begin the evolution at H ' Hinf with both σ and φ1

oscillating. Though φ2 begins oscillating shortly after this time, its energy density is
subdominant and its initial evolution can be approximated as a matter component
without altering the overall evolution. The other energy density components are
again highly suppressed initially. The Boltzmann equations for this scenario are
(neglecting the tiny production of DR from the decay of φ1):

dρσ
dt

+ 3Hρσ = −Γσ ρσ , (D.21)

dρφ1
dt

+ 3Hρφ1 = −Γφ1 ρφ1 , (D.22)

dρφ2
dt

+ 3Hρφ2 = −Γφ2 ρφ2 , (D.23)

dρDR

dt
+ 4HρDR = Γσ→DRρσ + Γφ2→DRρφ2 , (D.24)

dρR

dt
+ 4HρR = Γσ→visρσ + Γφ1→visρφ1 + Γφ2→visρφ2 , (D.25)

dnχ
dt

+ 3Hnχ = BrχΓσ

(
ρσ
mσ

)
+ 〈σannv〉

(
n2
χ,eq − n2

χ

)
. (D.26)

A sample numerical solution is shown in Fig. D.2 for the becnhmark point in Tab.
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Figure D.2: Energy density evolution of the various components as functions of scale factor
in the two-moduli scenario for the benchmark point in Tab. D.1.

D.1. The cosmological evolution is very similar to the one-modulus case. The effect
of the second, lighter, modulus is to extend the EMD period to lower temperatures.
Because the two moduli start with equal misalignments, we have a single extended
period of EMD with a brief period of substantial radiation while the lighter modulus
dominates, instead of two EMD periods separated by a RD phase. Fig. D.3 shows
the visible sector temperature as a function of the scale factor, where we have taken
the temperature dependence of the relativistic degrees of freedom into account.

Figure D.3: Visible sector temperature as a function of scale factor in the scenario with
two moduli.
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