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Abstract

In this work the Constructal Theory is initially exposed in its generality, trying
to approach it through examples mostly of a physical-engineering nature. Constructal
Theory proposes to see living bodies as elements subject to constraints, which are built
with a goal, an objective, which is to obtain maximum efficiency. Constructal Theory
Is characterized by Constructal Law, which states that if a system has the freedom to
morph it develops over time a flow architecture that provides easier access to the
currents that pass through it. In this context the term “flow” means everything that
invades a territory, such that in a living territory such as the human body it includes
flows of heat, electricity and biological fluids, and also flows of mechanical stress.

The Constructal Law is as general as the First and Second Laws of
Thermodynamics, but it has a very different purpose which makes it unique and
complementary to those laws. While the First Law points to the conservation of energy,
both the Constructal Law and the Second Law point to change, that is, to a direction in
time. Although the latter two laws share this common feature, they diverge as to
purpose. Contrary to the Second Law, the Constructal Law applies to systems that are
out of balance, that is, to systems that evolve over time. While the second law deals
with state variables, the Constructal Law combines flows and design (size, shape,
structure).

The thesis continues with the application of the Constructal Theory for a cardiac
bypass shape optimization. Through the Constructal Theory the constraints under
which the system is free to morph are defined and, through the classical engineering
optimization processes (numerical simulations and optimization algorithms) the
optimum conditions are defined, i.e., those conditions that guarantee the minimum
resistance to the passage of the fluid. The characterization of the blood flow was an

important step in the study of this system, as the heartbeat induces a pulsed regime



inside the veins. Therefore, the simulations conducted in transient regime consider the
deformed velocity profile according to the conditions dictated by the pressure gradient
established by the heartbeat.

Another no less important aspect is the modelling of the fluid of interest. In
literature there are many authors who consider blood to have the characteristics of
water; therefore, an accepted and well-established approximation is to consider blood
with Newtonian characteristics. However, this approximation is not always accepted,
since, under certain stress conditions, the fluid changes its viscosity characteristics.
Then it is necessary to identify the parameters and the model suitable for the

rheological description of the blood and consider them in the application of the bypass.
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1. Constructal Theory Analysis

Several research areas have used the Constructal Theory as a method for the
problem solving. Some of the main areas of application are: (a) Structures exhibited in
nature (also recognized wit “flow system on earth”), (b) Economics, (c¢) Medical
engineering and technology and (d) Thermodynamics (known in the research
community as “Constructal thermodynamics™).

This chapter first introduces the Constructive Theory proposed by Adrian Bejan
with the aim of exposing in a general way the basic knowledge of this theory in order
to specify in detail the expression proposed by Bejan and Lorente [1] which contains

all the essence of this theory: “Constructal Theory is the view that (i) the generation of images

of design (pattern, rhythm) in nature is a phenomenon of physics and (ii) this phenomenon is covered
by a principle (the Constructal Law). Constructal Design, on the other hand, is the method by which
Constructal Law is applied .

That is, the Constructal Theory passes through a principle (Constructal Law) applicable
through a tool (Constructal Design).

In the second part of this chapter, some of the works present in the literature for
the different application areas are examined in order to understand the potential of this
approach in an applicative sense.

Before starting the treatment of the Constructal Theory it is important to
characterize some objects that are persistent: (i) Constructal Law, (ii) vascularization
and (iii) svelteness.

A flow represents the movement of one entity relative to another (the
background). To describe a flow, we talk about what the flow carries (fluid, heat or
mass), how much it carries (mass flow, heat current, etc.), and where the flow is. A

flow system has configuration, design, that is, design.



The Constructal Theory looks at systems with a different eye from the usual one,
that is, it wants to consider the configuration (the design) not as something attributed
to chance, but as something that follows certain laws.

Different considerations can be made if we consider a macro system made up of
many particles each of which is in communication with the system through certain
current flows. Every component of the system is placed in the right place, such as
neurons in the brain or alveoli in the lung. It is the configuration of these extremely
numerous components that makes the system perform at extraordinarily high levels.

Since natural flow systems have a configuration, in theory it is about the
emergence of the flow configuration as a physical phenomenon based on a scientific
principle. The constructive theory is the mental vision that the generation of the flow
structures that we see everywhere in nature (river basins, lungs, atmosphere,
circulation, vascularized tissues, etc.) can be reasoned on the basis of an evolutionary
approach principle of increasing the access flow over time, that is, the temporal arrow
of the animated video of subsequent configurations. That principle is the law of
construction [2].

The configuration in space (geometry or drawing) is not a figure that has always
existed and is now available to look at and take for granted. The figure is the
mechanism by which the flow system achieves the global goal under global constraints.
When the flow stops, the figure becomes the fossil of the flow (e.g., dry river bed,
snowflake, animal skeleton, abandoned technology, and pyramids of Egypt).

The question that must be asked at the beginning of any architectural research
Is: “What is the flow system and what flows through it?”. In the discussion of examples
in later sections of the paper, this way of thinking is presented as a design method,
mainly with engineering examples. The method, however, is universally applicable and
has been used predictively to predict and explain many design features in nature.

There are many researchers from different campuses (Duke; Toulouse;
Lausanne; Evora, Portugal; Istanbul; St. John's, Terranova; Pretoria; Shanghai) and



who use the Constructal Theory for better engineering and for better organization of
movement and connection of people, goods and information.

With "animal design” as an icon of ideality in nature, the best name for the
miniaturization trends we see emerging is vascularization. Any multiscale solid
structure that is to be cooled, heated or maintained by our fluid streams must be and
will be vascularized. This means trees and wheelbases and solid walls, with every
geometric detail sized and positioned in the right place in the available space. These
will be solid-fluid structures with multiple scales that are distributed nonuniformly
through the volume—so nonuniformly that the “design” may be mistaken as random
(chance) by those who do not quite grasp the generating principle, just like in the
prevailing view of animal design, where diversity is mistaken for randomness, when in
fact it is the fingerprint of the constructal law.

Bejan [2] points out several reasons why the future of engineering belongs to the
vascularized. The first is geometric. Our "hands™ (streams, entrances, exits) are few,
but they must reach the infinity of points of the volume of material we need (the
devices, the artifacts, that is, the engineered extensions of the human body). Point-
volume and point-to-area flows require the use of tree-shaped configurations. The
second reason is that the time to do this work is now. To design highly complex
architectures requires strategy (theory) and computational power, which we now
POSSESS.

A flow system has new properties that are complementary to those recognized
in thermodynamics until now. A flow system has configuration (layout, drawing,
architecture), which is characterized by external size (e.g., external length scale L), and
internal size (e.g., total volume of ducts V, or internal length scale V). This means
that a flow system has svelteness, S, which is the global geometric property defined
as

_ external flow length scale

4

= 1.1
internal flow length scale (1)



This concept is important because it is a property of the global flow architecture. In
duct flow, this property describes the relative importance of friction pressure losses
distributed along the ducts and local pressure losses concentrated at junctions, bends,
contractions, and expansions. It describes the “thinness” of all the lines of the drawing
of the flow architecture.

1

Aplucul |
AP

distributed

0.5 b

0.0

Figure 1. The effect of svelteness (Sy) on the importance of local pressure losses relative to distributed friction
losses in a pipe with sudden enlargement in cross-section.

Bejan [2] to illustrate the use of the concept of slenderness, illustrates the
following example: consider the flow through two co-linear tubes of different diameter,
D,<D; (Figure 1). The length of the tube is L; and L. The abrupt widening of the flow
section leads to recirculation and dissipation (imperfection) immediately downstream
of the expansion. This effect is measured as a local pressure drop, which is derived by
invoking the momentum theorem:

212
APioeqr = [1 - (%) ] %PVE (1.2)
Equation (1.2) is known as the Borda formula. In the calculation of total pressure losses
in a complex flow network, it is often convenient to neglect the local pressure losses.

But is it correct to neglect the local losses?



The calculation of the svelteness of the network helps answer this question. The

svelteness of the flow geometry of Figure 1 is

_ L+ L,
Sy = V1/3

where V is the total flow volume, namely V = (r/4)(DZL, + DZL,). The distributed

(1.3)

friction losses (AP ;striputeq) are associated with fully developed (laminar or turbulent)
flow along L; and L, and have the form for which the friction factors are furnished by
the Moody chart.

The derivation of the curves plotted in Figure 1 is derived from Bejan [2]. The
distributed ratio APy cq1/APgistriputea d€Creases sharply as S, increases. When S,
exceeds the order of 10, the local losses become negligible compared to the distributed
losses. It is assumed from this example that S, is a global property of the "inventory™
flow space. This property guides the engineer in evaluating the performance of the flow
design.

A flow system is also characterized by performance (function, objective,
direction of morphing). Unlike in the black boxes of classical thermodynamics, a flow

system has a drawing.



1.1 Constructal Theory and Constructal Law
Constructal Theory is the view that flow configuration (geometry, design) can

be reasoned on the basis of a principle of configuration generation and evolution in
time toward greater global flow access in systems that are free to morph. That principle
Is the Constructal law [3].

The phenomena that occur in nature are mostly described by laws of physics.
The Constructal Law arise from the consideration that the “Design” is a universal
physical phenomenon. In this context, it is possible to define the "Design” of animated
and inanimate objects for different scales [3].

The concept of "Evolution™ is explained by Bejan [4] in the physics of the

Constructal Law:

“For a finite-size flow system to persist in time (to live), its configuration must evolve freely in such

a way that provides easier access to the currents that flow through it.”

According to the Constructal Law, a system to be defined alive must have two
characteristics: it flows (it is not in thermodynamic equilibrium) and it is freely to
morph towards configurations that facilitate the flow of all its currents over time.

Life and evolution are seen as a physical phenomenon and therefore belong to
physics [5]. To define in a physical sense the position of "Design™ in nature it is
necessary to consider the fact that thermodynamics is based on two fundamental laws:
the first law concerns the conservation of energy in any system, while the second law
refers to the concept of irreversibility through the increase of entropy of any system.
Both laws are defined for a generic system, i.e. a black box. The two laws of
thermodynamics give global information on the equilibrium or imbalance of the flows
(mass, heat, work, entropy) that cross the black box, but nature is not composed of

black boxes, but the configuration must be taken into account.



Bejan [4] pointed out that thermodynamics does not consider the "Design"
aspects of the system, but is studied independently of the configuration. To remedy this
lack and complete the laws of thermodynamics, the Constructal Law was formulated.

The Constructal Law is not a statement of optimization, maximization,
minimization or anything else that refers to a "final project”. Constructal Law concern
about evolution over time and the fact that the phenomenon of "Design™ is a dynamic
concept. Evolution never ends. The direction of time is the natural phenomenon, while

the Constructal Law is the law that governs this phenomenon.

1.2 Constructal Design Method
Constructal Law is applied through Constructal Design, also named Design with

Constructal Theory (DCT) [2]. Bejan, from an interview with Kosner [6] and reported
by Rocha et al. [3], exposes a Constractal Design as the sequence of rules:

1. Define Your System: ldentify clearly and unambiguously what constitutes your
“system”, that is, the region in space, or the amount of mass that is the subject
of your thinking, analysis, and design.

2. ldentify the Flows: Make sure your system has the freedom to change, and that
you understand “what flows” within it, that is, why your system is a “flow
system”.

3. Start Simple: Allow only one feature of your system to change at first. This
endows your system with one degree of freedom. Study if and how changes to
this feature increase the flow access of the currents that inhabit your system.
Incorporate the first feature with which you found that your system performs
best into your design (be alert, this is not the end!)

4. Add a Degree of Freedom: Allow a second feature to change freely. As you
investigate this second degree of freedom, you will find another best feature and
adopt it. With this second feature in place, go back to step 3 and refine that first

feature to work with the second.



5. And Another: Allow a third feature to vary freely, find the best variant of this
feature, and then go back and repeat steps 3 and 4, that is, refine the preceding
two features.

6. And So On: This is a construction process with no end, except the finite time of

the investigator.

Points 1 to 6 are dictated by practice. That is, this is an example of rules to be
respected, but nothing prevents other ways to apply the Constructal Law. As Rocha et
al. [3] specify, there is no “best” in evolutionary design. There is “better” today, which
turns out to be not as good tomorrow. DCT is not a mathematical optimization method.
When the system has many degrees of freedom, the Constructal design method can be
used in association with some optimization methods, for example, exhaustive search
or genetic algorithm [7]. This approach makes possible to study complex systems, that

IS, systems with a larger number of degrees of freedom.

1.3 Examples of Application
In the work of Rocha et al. [3] a very important review was made of the main

articles concerning the application of Constructal Theory to approach problems of
vascular flow architectures, tree-shaped cavities, conductive inserts for cooling and
networks for distributed heating on the inhabited landscape. For the sake of clarity, the
fundamental concepts and results of some of the works proposed in the Constructal

Theory literature will be reported in this section.

1.3.1 Constructal Design Approach for Open Cavities Shape optimization
Biserni et al. [8] have conducted a thermal optimization study of the C-shaped

cavity. Figure 2 shows the system configuration.
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Figure 2. Isothermal lateral intrusion into a two-dimensional conducting body with uniform heat generation.

For the study of the system the following hypotheses were formulated:

e The body has an internal heat source per unit of volume ¢’’’ (W/m?3).

e The body is considered isotropic and its thermal conductivity k (W/mK) is
constant.

e The external surfaces of the solid body are insulated.

e The thermal current generated by the body (g A) is removed by the cavity whose
walls are kept at a constant temperature Tpin.

e The dimensionless performance indicator is defined as Tz = (Trmax —
Tmin )/(qu/k)'

The system’s constrains are defined starting from the definition of the total area
A=HL (1.3.1.1)
and the area of the cavity
Ay = Hy Ly (1.3.1.2)
where A and A, are fixed. The shape of the body (L, H) and the shape of the cavity (Ho,
Lo) are free to move and this change is allowed by the two degrees of freedom. H/L,
the ratio between the height and the length of the solid body, and the Ho/Lo, the ratio

between the height and the length of the cavity.
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Eqg.(1.3.1.2) can be replaced by considering the fixed area fraction occupied by
the cavity
_ Ay _HoLg
P =7 =HI
The search for best shapes starts by calculating the maximum temperature that

(1.3.1.3)

occurs in the solid body and the location where it occurs. Changing the value of the
degrees of freedom allows calculating the value of the global thermal resistance and
discovers what shape has its minimum value. The non-dimensional problem of

conduction was solved in a solid region

°T 0°T
R T = 1.3.1.4
72 + 3572 +1=0 ( )

where the non-dimensional quantities were defined as
F— (T — Tnin )
- q"A (1.3.1.5)
k
~ e~ - x,y,H,L,Hy, L

%5, H1L,Hy,Ly) = 24 >0 (1.3.1.6)

Al/2
The boundary conditions are given by the outer surfaces of the external body

= = 1.3.1.7
Y- 0 or 35 0 ( )

while the surfaces of the cavity are isothermal
T=0 (1.3.1.8)

Biserni et al. [8] solved this problem numerically for several configurations (H/L,
Ho/Lo, @). Figure 3 shows that there is an optimal ratio Ho/Lo which minimizes the
global thermal resistance for several values of the area fraction for a fixed external
aspect ratio (H/L = 1). The optimal cavity aspect ratio (Ho/Lo)op: increases and the
minimal T,,,, decreases as the area fraction increases. The authors performed this
procedure for several values of the ratio H/L and the results are shown in Figure 4. The
results indicate that the minimal global thermal resistance decreases as H/L decreases
and the area fraction also decreases. The same behavior of the optimal ratio (Ho/Lo)opt

Is also seen for the minimum global thermal resistance in Figure 5. The authors point
11



attentions to notice the important that Figure 4 and Figure 5 shows that there is no

optimal aspect ratio H/L.
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Figure 3. The minimization of the global thermal
resistance when the external shape of the heat

generating body is fixed.
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Figure 4. The effect of the external shape H/L on the
global thermal resistance minimized in Figure 3.
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Figure 5. The optimal shape of the cavity as function of H/L and ¢.
The results presented in Figure 5 suggest that the results can be correlated as

(=0

The isothermal assumption considers that the heat transfer coefficient in the
cavity surfaces is large enough

(1.3.1.9)

Following the philosophy of Constructal Design, one way to find the best
configuration of the system is to vary its degrees of freedom. Biserni et al. [8] have

considered the modification of the system of Figure 2 with that of Figure 6.
12



I L |
Figure 6. T-cavity configuration: the first construct.
The added bifurcation (also called first construct principle) results in an increase

in the degrees of freedom of the system. In fact, this configuration has the addition of

two parameters:

DO
o = 2LoDo + (L = ) (1.3.1.10)
HIL
DO
W= 2Lo + (L1 + 7)) (1.3.1.12)
HL

that is, the total degrees of freedom of the system are three: H/L, Lo/L and Do/D.
Figure 7 shows that the results calculated for the optimal configurations with
respect to Lo/L; are practically insensitive to changes in D¢/D;. The effect of ¢ and v
are shown in Figure 8 and Figure 9, respectively. The minimized global thermal
resistance decreases as the ¢ and v increases, that is, the cavity becomes larger. The

best geometries can be correlated when H/L < 1 by

(H—;/ ;;)L ot _ (13.1.12)
And
(LL)Z 1 (13.1.13)
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When the performance of the elemental cavity shown in Figure 2 is compared
with the performance of the first construct drawn in Figure 6, it is noted that the T-
shaped cavity performs approximately 29% better under the same thermal conditions,
uniform heat generation, and the same volume fraction ¢ = 0.1.

Following the construction principle, one can continue to add degrees of freedom
to the system by adding further bifurcations. Biserni et al. [8] and Rocha et al. [9] has
also solved the same range of problems by considering the cavity lapped by a fluid.

With a Constructal Design method they have achieved an improvement of the results.

0.1 T — T — T 0.1 T
0.01 , 3 0.01
0.05 0.05
0.1 ] I 0.1
(ﬁuax)min (Tmax)min
# =03 1 - 6y =0.3
=05 =05
H/L=1 H/‘L:l
0.03 ! ! 0.03 . e . — e
0.01 0.1 Dy 1 2 0.01 0.1 Dy 1 2
Dy Dy

Figure 7. The effect of the ratio Do/D; on the Figure 8. The effect of the ratio Do/D1 and ¢o on the
minimized (Tmax)min and the corresponding minimized global thermal resistance.

optimal ratio (Lo/L1)opt.

0.1 ———r ——

0.4

(Tmax)min
0.5
—//M_
(2)0:0.1
H{L=1
0.06 e L
0.01 0.1 Do 1 2

Dy

Figure 9. The effect of y and Do/D; on the minimized global thermal resistance.
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Several work was performed in this area as Lorenzini et al [10] concerns the
optimization of the heat exchange in a Y-shaped cavity, meanwhile Biserni et al [11]
studied a H-shape cavity. In all cases, the approach proposed by the authors leads to an

improvement in performance.

1.3.2 Flow System in Earth
In the context of Constructal Theory, even spatial and temporal structures

exhibited in nature are the result of a global process of search for better shapes subject
to global and local constraints (Bejan et al. [12]-[13]). The most basic features of tree
and forest architecture can be put on a unifying theoretical basis given by the
Constructal Law. Trees and forests are viewed as integral components of the much
greater global architecture that facilitates the cyclical flow of water and the flow of
stresses between wind and ground.

An important example about the plant root design was investigated by Bejan et
al. [13];

Ground

Figure 10. (a) Root shape with power-law diameter; (b) Constructal root design: conical shape and longitudinal
tubes with constant (z-independent) diameters, density, u and v.

The plant root is a conduit shaped in such a way that it provides maximum access

for the ground water to escape above ground, into the trunk of the plant. The ground

15



water enters the root through all the points of its surface. In the simplest possible
description, the root is a porous solid structure shaped as a body of revolution (Figure
10). The shape of the body (L, D(z)) is not known, but the volume is fixed:

Lm
/4 =f0 ZDZ dz (1.3.2.1)
The flow of water through the root body is in the Darcy regime. The permeability of
the porous structure in the longitudinal direction (K,) is greater than the permeability
in the transversal direction (K;). Anisotropy is due to the fact that the woody vascular
tissue (the xylem) is characterized by vessels and fibres that are oriented longitudinally.

The assumption that the (L, D) body is sufficiently slender means that the
pressure inside the body depends mainly on longitudinal position, P(r,z) = P(z). This
slenderness assumption is analogous to the slender boundary layer assumption in
boundary layer theory. For Darcy flow, the z volume averaged longitudinal velocity is
given by

_ _K.ap 1.3.2.2
u= o dz (1.3.2.2)

where u is the fluid viscosity. Because of the P(r,z) = P(z) assumption, for the
transversal volume averaged velocity v (oriented toward negative r) is it possible to
approximate:

v~m%—P@)
~w Dj2
The ground-water pressure (Pgy) outside the body is assumed constant. This

(1.3.2.3)

means that in this model the hydrostatic pressure variation with depth Pgy(z) is assumed
to be negligible, and that the root sketched in Figure 10 can have any orientation
relative to gravity. Ground level is indicated by z=L: here the pressure is P, and is
lower than Py. Throughout the body, P(z) is lower than Py, and the radial velocity v is
oriented toward the body centreline.
The conservation of water flow in the body requires
dim=pnDvdz (1.3.2.4)
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where m is the longitudinal mass flow rate at level z:

. T[ 2
m = pZD u (1.3.2.5)

and p is the density of water. Egs.(1.3.2.4)-(1.3.2.5) yield
d
— (D?u) = 4vD (1.3.2.5)
dz

Summing up, the three EQs.(1.3.2.2)-(1.3.2.3) and Eq.(1.3.2.6) should be
sufficient for determining u(z), v(z) and D(z) when the length L is specified. Here, the
challenge is of a different sort (much greater). It is necessary to determine the shape
(L, D(2)) that allows the global pressure difference (Py - P.) to pump the largest flow

rate of water to the ground level:
VA
m, = pZDZ(L)u(L) (1.3.2.7)

Subject the volume constraint Eqg.(1.3.2.1). The assumption is now made that the
unknown function D(z) belongs to the family of power-law functions:
D = bz™ (1.3.2.8)
Where b and m are two constants. Another assumption is that the function P(z) belongs
to the family represented by
P, — P(2)

wik,

where a and n are two additional constants. Substituting Egs.(1.3.2.8)-(1.3.2.9) into

az™ (1.3.2.9)

Egs. (1.3.2.2)- (1.3.2.3) and then substitute the resulting u and v expressions into Eq.
(1.3.2.6), it is obtained two compatibility conditions for the assumptions made in Eq.
(1.3.2.8) and Eq. (1.3.2.9):

m=1 (1.3.2.10)
Ky
b’n(n+1) =8— (1.3.2.11)
K,
The volume constraint (Eq. (1.3.2.1)) yields a third condition:
b?L? = EV (1.3.2.12)
T
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A fourth condition follows from the statement that the overall pressure difference is

fixed, which in view of Eq. (1.3.2.9) means that

= al”, constant (1.3.2.13)

Finally, the mass flow rate through the z=L end of the body is, cf. Eq.(1.3.2.7):

K (d(Pg — P))

_ T T
m, = pZ(bL)Z 72 Ix = p—b?anl"*?! (1.3.2.14)

4

for which b(n) and L(n) are furnished by Eq.(1.3.2.11) and Eq.(1.3.2.12). The resulting
ground-level flow rate is

(12 )1/3 e (1.3.2.15)

: n K,
mszz(aL")<8FZ) (nV m
with the observation that (aL") is a constant, cf. Eq.(1.3.2.13).
In conclusion ni; depends on root shape (n) according to the function
n'/3 /(n + 1)?/3. This function is maximum when
n=1 (1.3.2.16)
The Constructal root design, subject to volume constraint has the following length and

aspect ratio

1/3
L= (3‘/}52) (1.3.2.17)
TRy
1/2
Di _ %(%) (1.3.2.18)
L T

The Constructal root shape is conical. The slenderness of this cone is dictated by the
anisotropy of the porous structure (K./K;)2. The root is more slender when the vascular
structure is more permeable longitudinally.

Another important feature of the discovered root geometry is that the
longitudinal volume averaged fluid velocity (u) is independent of longitudinal position
(2), because n=1 means that dP/dz =constant, and

K,P,— P,

u=7 I

(0<z<L) (1.3.2.19)
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_ T K, K\2?/3
my = p (b =~ (B, = P,)(3V)3 (n?) (1.3.2.20)
The morphological implications of this theoretical feature are important. If the porous
structure is a bundle of tiny capillary channels, then the fluid velocity through each
tube must be constant, and must not depend on the size of the root cross-section that

the channel pierces.

Bejan et al. [13] through the same mental scheme describes the natural tendency
of objects of nature to assume certain forms. Trunk and canopy (and forest) architecture
(Figure 11 and Figure 12) is driven by the same “mental viewing”, i.e. the tendency to
generate flow access for water from ground to air. The optimal trunk shape is near-
conical in all cases, in the hypothesis that the canopy has a shape that belongs in the

family of power law functions.

Figure 12. Three canopy shapes showing that the optimal trunk shape is near-conical in all cases.
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The largest flow system on earth from the point of view of the Constructal
Theory of organization in nature has been examined theoretically. Thermodynamically,
the earth as a whole is a non-equilibrium closed system-flow system with heat input

and heat rejection, and with internal flows [14].

1.3.3 Other Fields
Bejan’s theory has also been stretched to economics using the same principle of

cost minimization in the transport of goods [15]: the fundamental contribution of this
extension is that the “‘law of parsimony*’ emerges as the economics analogue of the
resistance minimization principle, already recognized in physics and engineering.
Bejan’s theory has also been applied to hyperthermia cancer treatments
(medicine) [16]: the crucial problem is to keep the temperature of the normal tissue
surrounding the tumor below a certain threshold so as not to cause damage to the tissue.
Constructal theory is also named “Constructal Thermodynamics” [17] since it
has been considered as a sort of evolution and spreading of the laws of
thermodynamics. Thermal sciences expanded in new directions, most vigorously now
because of the Constructal Law, which unifies science (physics, biology, engineering,
social sciences). Constructal thermodynamics [5] places the concepts of life, design,
and evolution in physics. It constitutes a wide open door to new advances, especially
in areas where design evolution is key to performance, for example, in logistics [18],

biological evolution [19], art [20], and business and economics [21].
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1.4 Tree Network for Fluid Flow
Bejan [2] explain how for a fluid flows, the tree-shaped layouts are an optimum

configuration for the overall benefit of the system. The purpose is to generate the design
intended as (i) configuration, (ii) geometry and (iii) geography of the flow system. The
simplest class of tree-shaped streams are the T- and Y-shaped ones. More space is
devoted to shafts that connect a circle with its center, because these near-radial
structures will be used in heating and cooling applications. The methods to reduce the
cost and time required to generate tree architectures consist, for example, of
minimizing path lengths everywhere and optimizing the confluence angles between the
different branches.

The purpose of a tree network is to create a flow connection between a point
(source, sink) and a continuum, an infinity of points (line, area, volume). In civil
engineering is it possible to see the water distribution system consisting of a region of
space (area) in which there are a certain number of points (consumers). The branches
of the sewer system are the way in which water is brought to the user. The tree-shaped
streams on continuums are the rule in nature, not the exception. They define the design
of animate and inanimate flow systems: lungs, vascularized tissues, nervous systems,
river basins and deltas, lightning, snowflakes, vegetation, and so on.

Dendritic flow configurations are widely reflected in physiology and geophysics.
From the point of view of natural sciences, tree-shaped flows are examples of a
spontaneous organization and optimization of the system. In contrast to this, the
constructive view is theory: flow architectures such as the tree are the result of a process
of evolution towards greater access to the global flow. Tree flows are deductible from
the construction law.

Tree-shaped flows persist in time (in nature, as well as in engineering) because
they are efficient and use the available space to the maximum. These structures are
important for technological progress, because the relationship between efficiency and

compactness is fundamental for the design and integration of an increasing number of
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ever smaller functioning components. Tree-shaped architectures are therefore the new

weapon in the revolution of miniaturization and vascularization.

1.4.1 T-and Y-Shaped Constructs
Starting with a simple case of tree flow shown in Figure 13. The maximum-

access geometry for fluid flow between two points is the straight duct with round cross-
section. The round shape holds for both laminar and turbulent flow. It is a very robust

design feature: nearly round shapes are almost as effective as the perfectly round shape.
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Figure 13. T-shaped construct of round tubes

The simple tree is the T-shaped construct of round tubes shown if Figure 13. The
flow connects one point (source or skin) with two points. There are two global

constraints: (a) the total duct volume
A
V= Z(D12L1 + 2D2L,), constant (1.4.1.1)

and (b) the total space (area) occupied by the construct

A= 2L,L;,constant A=H L (1.4.1.2)
Regardless of the size of the system, the image Figure 13 is decided by selecting the
values of two dimensionless ratios, D1/D, and Li/L,. The latter represent the shape of
the area A. Both are free to vary; therefore, they represent the 2 degrees of freedom of

the drawing (flow architecture). In the following analysis, Bejan [2] has determine the
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two aspect ratios by minimizing the total flow resistance posed by the T-shaped
construct on area A.

The optimal ratio D,/D, turns out to be independent of the shape of A, and is
determined as follows. Assume that the flow through every tube is in the Poiseuille
regime. This means that the svelteness of the construct is large, S,=AY?/V2, The

longitudinal pressure drops for the two tube sizes are

L
AP, = Cmiy —¢ (1.4.1.3)
D,
L
AP, = Crmi, D—i (1.4.1.4)

2
where C=128 v/zn, and v is the kinematic viscosity of the fluid. The two mass flow rates
are related by
% =2 (1.4.15)

Because the assumed T configuration is symmetric: symmetric rules out a flow
imbalance between the streams that flow through the two L, tubes. Without symmetry,
there is no equipartitioning of ni, streams into two i, streams.

The overall pressure drop is AP = AP; + AP,. After using Eq.(1.4.1.3) trough

Eqg.(1.4.1.5), we find the global flow resistance:

AP = Cmy Ry (1.4.1.6)
where Riam is a factor that depends solely on the geometry of the T:
Riam = b + L2 (1.4.1.7)
D} 2D;

To minimize Rjam, our thoughts guide us to increasing both D, and D». This idea is not
workable because the diameters D; and D, are related through the volume constraint
(1.4.1.1): D, and D, cannot be increased indefinitely and independently.

The correct path to the optimal D; and D, values is to minimize Rjan Subject to
keeping V constant. Using the Lagrange multipliers method is it possible to minimize
the expression shown in Eq.(1.4.1.7) subject to the constant expressed in Eq.(1.4.1.1).

Defining the following function:
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¢_L1+ L,
- D¥ 2Dk

+ A(DZL, + 2D3?L,) (1.4.1.8)
which was obtained by combining linearly the two expressions. The factor A is a
constant (the Lagrange multiplier), which can be determined from the constraint
(1.4.1.1) later, after optimization. The extremum of ¢ is found by solving the system

of equations:

06 _ 1 2p,1, =0 1.4.1.9
oD, DS 1m (14.1.9)
0 _ 2 ap,1, =0 1.4.1.10
oD,  2DS 22 (14.1.10)

From which L; and L, will drop out. This is how we discover that the layout (L;, L>)
does not influence the diameter ratio D1/D,. Solving Egs.(1.4.1.9) and (1.4.1.10) for
D1(A) and D2(A), and eliminating A we find

g—z = 21/3 (1.4.1.11)
This ratio was first reported in physiology by Hess [22] and 12 years later by Murray
[23]; therefore, we shall refer to it as the Hess-Murray rule. This result is remarkable
for its robustness: the optimal D1/D; ratio is independent of the assumed tube lengths.
Itis also independent of the relative positions of the three tubes; hence, it is independent
of geometry.

Another remarkable consequence of Eq.(1.4.1.11) is that the wall shear stress
along the D; tube is the same as along the D, tube. The design distributes stresses
uniformly through the solid that houses the bifurcating flow structure.

The Hess-Murray rule holds for perfectly symmetric bifurcations. When the
mother channel (D3, L) splits into two dissimilar daughter channels, (D, L;) and (Ds,
L3), the optimal size ratios D;/D, and D,/D3 depend on the ratio L,/L3, which accounts
for the lack of symmetry.

It is important to capitalize on an optimization result right after it is obtained.
According to Ref. [24], if we substitute Eq. (1.4.1.11) into Egs. (1.4.1.1) and (1.4.1.7),

we obtain
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2V

D2 =218, + 1L, (1.4.1.12)

2D5Rgm = 27Y3L, + L, (1.4.1.13)
Eliminating D, between these two equations we find
8 1 3

VPR = (273, + L, (14.1.14)

in which V is constant. The global resistance R, decreases when both L; and L,
decrease, but the two tube lengths cannot be varied independently because of the area
constraint (1.4.1.2). The best that we can do is to minimize the expression (2°Y3L;+L,)
subject to constraint (1.4.1.2), which is the same as finding the extremum of another
aggregate function:

Y =2"8L, + L, + ul,L, (1.4.1.15)
where [ is a new Lagrange multiplier. The y extremum is located where its two first

derivatives are zero:

9
W s, =0 (1.4.1.16)
oL,
9
N 4L =0 (1.4.1.17)
oL,

Eliminating p between Eqs.(1.4.1.16) and (1.4.1.17), we discover that the optimal

shape of the A rectangle that houses the T construct is
— =21/3 (1.4.1.18)

Combining this ratio with the A construct (1.4.1.2), we find the optimal lengths L;
=2"1BAY2 and L, = 2722AY2 in which A2 plays the role of length scale.

Combining Egs. (1.4.1.11) and (1.4.1.18), we find that the pressure drop along
the D; tube is the same as along the D, tube. The uniform distributing of pressure drop
from tube to branches is the merit of coupling the Hess-Murray diameter ratio with the
lengths ratio determined from the search for the best layout of tubes [24] in a

constrained space.
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We capitalize on this latest result (Eq. (1.4.1.18)), and by substituting the optimal

L; and L, expressions into Eq.(1.4.1.14), we arrive at the smallest of all possible
resistances, which is

T2 A3/2

Riam = y7-

This corresponds to the best T-shaped architecture, which is represented by Egs.

(1.4.1.11) and (1.4.1.18). The Ram expression (1.4.1.19) makes sense: this is the best

(the smallest) that can be achieved by morphing the flow configuration subject to the

(1.4.1.19)

V and A constraints. Further reductions in Riam can be achieved only by changing the
constraints, namely, by increasing V and/or decreasing A.

The integer 2 in the diameter ratio 2* (Eq.(1.4.1.11)) comes from the assumption
of dichotomy (pairing, bifurcation) in the T configuration of Figure 13. If the L, tube
splits into n identical tubes (L, D), then 2% is replaced by n*3. The global resistance
of a junction with fixed total tube volume and one mother tube and n identical daughter
tubes increases monotonically with n. This means that dichotomy (n = 2) is the best
way to configure a junction with Poiseuille flow

The exponent 1/3 in Eq.(1.4.1.11) is a reflection of the assumption of fully
developed laminar flow. If in Figure 13 the Poiseuille regime is replaced by fully
developed turbulent flow in the fully rough regime, then the exponent 1/3 is replaced
by 3/7 and Eq.(1.4.1.11) becomes [24]

D

—L = 23/7 (1.4.1.20)
D,

The corresponding forms of Eqgs. (1.4.1.18) and (1.4.1.19) are

L

L =17 (1.4.1.21)
L,

7'[5/2147/4

Reuwrs = 57257572 (1.4.1.22)

These results are obtained by performing the analysis of Egs. (1.4.1.1) trough (1.4.1.19)
after substituting in place of Egs.(1.4.1.3) and (1.4.1.4) the corresponding relations for
fully developed, fully rough duct flow, namely,
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T2 Ly
AP, = C'm7 — (1.4.1.23)
Dy

— o2 L,
AP, = C'mj — (1.4.1.24)
DZ

where C’ is a constant factor. In place of Eq.(1.4.1.7), we find that the global flow

resistance AP /rrif is proportional to the geometric expression
Rewrp = L—ls + L—ZS (1.4.1.25)
D} ' 4DS
The smallest of all the values of Ry is given in Eq.(1.4.1.13) and it corresponds to the
aspect ratios optimized in Egs. (1.4.1.11) and (1.4.1.12).

The smallest Rjam and Ryp are surprisingly close to each other, even though their
respective flow regimes are drastically different. The roles played by the global
constraints (A, V) are clear. Flow resistances are smaller when the bathed territories
are smaller and when the tube volumes are larger. Egs. (1.4.1.19) and (1.4.1.22) can

also be written as

w2 Sp3
R L (1.4.1.27)

turb = MW
where , again, the svelteness of the T construct is defined as Sv=(external length
scale)/(internal length scale)=AY?/\13,

The construct of three tubes (Figure 13) can be optimized further by giving the
morphing geometry more degrees of freedom. One option is to allow the angle of
confluence to vary. This alternative is outlined in Figure 14, where the total space
constraint is a disc-shaped area with specified radius (r). in Ref.[24] was founded that
when the flow is fully developed and laminar, the optimized flow architecture is
represented by D1/D,=2%3, 0=0.654 rad, and L;=L,=r. In this configuration the tubes
are connected in the center of the disc, and the angle between the two L, tubes is very

close to 75 degrees.
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Figure 14. Y-shaped construct of round tubes

More recent work has shown that the 75 degrees angle appears as an optimized
feature in much more complex tree-shaped flow architectures [25], and that it is nearly
Insensitive to the change from symmetric Y to asymmetric Y [26],[27]. This angle, like
the Hess-Murray rule (1.4.1.11), provides a useful shortcut in the development of
effective strategies to design equilibrium or near-equilibrium tree flow architectures
[28].
1.4.1.1 Example

In this example Bejan [2] tech how to use the above principle for the purpose of
sizing the terminal (smallest scales) ramifications of a bifurcated assembly of three
flow channels (Figure 13) such that the flow volume occupied by the assembly packs
maximum heat-transfer rate or mass-transfer rate. We are interested in the ratios D1/D,
and Li/L,. The first ratio follows from the minimization of pressure drop across the

entire Y-shaped construct, subject to fixed total flow volume:

21 _ 913 (1.4.1.1.1)

The ratio Li/L is determined from the observation that in all the tubes the boundary

layers meet at the exit,
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D D
S~ 5,2 (1.4.1.1.2)

where §, and §, are the boundary layer thicknesses for laminar flow

8, =CLRe;"* &, =C L,Re;"? (1.4.1.1.3)
with
U,L U,L
Re, = 1/ ! Re, =22 (1.4.1.1.4)

The average velocities trough the mother tube (U;) and daughter tube (U,) are defined

as
m m
Uy = — - U= n—zz (1.4.1.15)
pz Di pz D;
Dividing Eq.(1.4.1.1.3) and using Eq.(1.4.1.1.2), we obtain
Dy _ (ﬁﬂ)m (1.4.1.1.6)
D, \L,U;

Next, we eliminate U,/U; by using Eq.(1.4.1.1.5) and the assumption of symmetric

bifurcations such that

. 1
e = 31y (1.4.1.1.7)

And Eq.(1.4.1.1.6) becomes independent of the ratio D1/Dy;

Li_, (1.4.1.1.8)
L,

In conclusion, for packing a maximum rate of transport (heat, mass) inside the flow

volume, one must use rules (1.4.1.1.1) and (1.4.1.1.8), which, combined, read

L;/D;

Another conclusion, then, is that the slenderness ratio L/D decreases in going toward

smaller channels. These conclusion change somewhat if one accounts for the volume
of the tissue that surrounds each tube and is penetrated by diffusion diffusion during

the time L1/U; and L,/U,, whether the Y configuration is asymmetric, and for whether
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each channel has a flat (parallel-plate) cross-section instead of the round cross-section

assumed here.
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1.5 Vascularization of the Systems: the Key of Constructal Theory
The Constructal Theory aims to improve the performance of a system by seeking

its vascularization. Zhihao et al. [29] studied the improvement in performance dictated
by the different types of branches of a cooling circuit for microchips. In particular was

studied the performance of the Y-shaped liquid cooling heat sink (YLCHS).

(21) (b) ~ Inlet
Out]vtl”" . \‘_IJ I : l
84 mm ‘
97 mm
(c) (d) 1
,",/_- i \\\
Y
/ -\ 2 1L)o
/ p L, Dy
/ ’ \
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| S 1
‘ /
\,\ L, D, /
\ /
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\\\4 -4 o

(e) ()

Figure 15. Sketch of proposed YLCHSs for different branching levels: (a) three-dimension view (n=1); (b)
side view (n=1); (c) top view (n=1); (d) top view (n=2); (e) top view (n=3); (f) top view (n=4)

The maximum branching level has been determined as 4 accounted for the

limited size of the heat sink because it is hard to fabricate the Y-shaped channels once

31



the branching level is higher than 4. The sketches of the proposed Y LCHSs for different
branching levels (i.e., 1 to 4) are shown in Figure 15.

As shown in Figure 15, the height and diameter of these heat sinks are set to 7
mm and 97 mm. The diameter of the outlet and inlet pipes is configured as 3.6 mm,
and the lengths of the outlet and inlet pipes are 11.5 mm and 60 mm respectively. The
height and width of the return flow ring are 5 mm and 5.5 mm. The thickness of the
walls for heat sink (i.e., upper, lower, and surrounding) and pipes (i.e., inlet and outlet)
are all 1 mm. The parameters for the channel deployment inside the proposed YLCHS

can be calculated by:

Divi _ 13 (1.5.1)
D;
L =Lr (152)

where D;jis the diameter of the i-th flow channel (i=0,1,2,3,4), L; is the length of the i-
th flow channel, L, is the dimensionless length of the i-th flow channel, and r is the
radius of the circular area in which the Y-shaped network is located.

Then the dimensions of the channel deployment inside the YLCHS for different
branching levels.

For the numerical simulation, three assumption was given: (1) the cooling water
was considered as incompressible fluid; (2) the radiant heat transfer is ignored; and (3)
the electronic chip and YLCHS was completely tightly fitted. The continuity,

momentum, and energy balance equation were solved numerically.

1.5.1 Influence of the Branching level on the Temperature Distribution
The temperature distribution for the proposed YLCHSs can be seen in Figure 16.

To clearly indicate the effect of branching level on the cooling performance, the peak
surface temperatures for these heat sinks are presented in Figure 17. The heat exchange
area of the YLCHSs is increased with the increasing branching level, resulting in a
more uniform temperature distribution as well as a lower surface peak temperature of
the Y-shaped network.
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Figure 16. Comparison of temperature distribution for the heat sink. (a) n=1; (b) n=2; (¢) n=3; (d) n=4.
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Figure 17. Peak temperatures for YLCHSs with different branching levels.

Although the peak temperature was decreased with the increasing of branching
level, the reduction rate is decreased. As an example, the relationship between the
branching level and the peak temperature can be regressed from Figure 17, which is
given as:

T, = 48.75+91.42-0.26" (R? =0.99) (1.5.1.1)

where T, is the peak temperature of the YLCHS, and n is the branching level.
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It can be seen from Eq.(1.5.1.1) that the peak temperature cannot be lower than
48.75 °C regardless of the branching level. From above, the peak temperature is 49.6
°C when branching level is 4. Thus, it can be predicted that the effect of branching
level on the peak temperature is very small once the branching level is greater than 4
(e.g., The peak temperature is only reduced by about 0.12 °C when n is increased from
4 to 5.), which means that the branching level of 4 is preferable to improving the
cooling performance of the YLCHSs.

1.5.2 Influence of the Branching level on the Pressure Loss
The pressure loss of the YLCHS also impacts on the performance of YLCHS

because the flow resistance and associate pump power demand can be increased with
the increasing of branching level. However, the pressure distribution under the four
structures is almost identical, and their pressure losses are all about 4.4 kPa (Figure
18). Furthermore, the increase of pressure loss is lower than 0.04 kPa while the number
of branching level is increased by one level. It is because the structures employed in
this study are all developed based on the minimum flow resistance. Thus, the variation

of pressure loss is very small, which is hardly influenced by the branching level.

Figure 18. Pressure distribution in the channel of the heat sinks: (@) n=1; (b)n=2; (c)n=3; (d) n=4.

According to the calculated pressure loss in Figure 18, the pump power demands
for these YLCHSs can be obtained by
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10007

where N is the pump power, p is the density of the medium, g is the gravitational

(1.5.2.1)

acceleration, H is the head loss, Q is the volume flow rate, and n is the pump efficiency
which is selected as 0.85 (the common value).

Accordingly, the branching level had little effect on the flow resistance and
pump power demand for the proposed YLCHS. And only about 0.08 W of pump power
demand is required to achieve the circulating of the cooling liquid from the inlet to the
outlet for all kinds of branching level configuration. The smaller difference in the
energy consumption of the pump can be ignored comparing with the significant

improvement of the cooling performance.

35



1.6 Digression on Constructal Theory from the World of Science
Currently, not many academic people have considered the Constructal Theory

as a valid approach to find the systems optimization. This is due to several factors
including the relative youth of this theory.

Over the years, an increasing number of authors have published work in whose
title the term “Constructal Theory” or “Constructal Design’ appears.

Kuddusi et al. [30], and Ghodoossi [31], carried out studies to validate the
Constructal Theory and concluded that increasing the complexity of the branching
system does not necessarily improve its performance.

Ghodoossi [31] reviewed three basic constructal applications of Constructal
Theory and showed that the expectation above is baseless. Thus, Ghodoossi [31]
questioned the generality of constructal theory. However, later, a critique arose that the
three unsuccessful applications are not sufficient means of evidence to question the
generality of constructal theory. That is, constructal theory may fairly work well in
applications other than the three reviewed by Ghodoossi [31].

The Kuddusi et al. [30] work is an attempt to clarify whether construction theory
Is successful in other applications or not. The work involves reviewing 14 different
applications of construction theory involving tree-shaped flow networks. A
constructive application could be successful if a decrease in flow resistance or,
equivalently, an increase in flow performance with increasing branching is achieved.
The review supported the conclusion of Ghodoossi [31]: “constructal theory will not
necessarily improve the flow performance if the internal complexity of the flow area is
increased ... In contrast, the performance will mostly be lowered if the internal
complexity of the flow area is increased.”

Yenigun et al. [32] had conducted an experimental and numerical study in which
a platelet suitable for cooling a microchip was considered. The system set-up is shown

in Figure 19.
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Figure 19. Geometry and boundary conditions of the vascularized plate with parallel cooling channels.
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Figure 20. (Left) Tree-shaped design configuration; (Right) Hybrid design configuration.

The system of Figure 19 was compared with the two different systems obtained
according to the rules of the Constructal Theory.

By solving the equations of thermo-fluid dynamics in stationary conditions, the
results of Figure 21, Figure 22 and Figure 23 are obtained. The numerical results are

compared to the experiments.
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Figure 21. Temperature distributions of parallel channels design for experimental and numerical studies with
(@) 50 W (b) 150 W of heat loads.
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Figure 22. Temperature distribution of tree-shaped design for experimental and numerical studies with (a) 50
W (b) 150 W of heat loads.
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Figure 23. Temperature distribution of hybrid design for experimental and numerical studies with (a) 50 W
(b) 150 W of heat loads.

The results show that the temperature distributions on the surface of the plate are
not uniform in the case of the application of the tree shape. The best result remains that
of parallel channels. Furthermore, in addition to the non-uniformity of the temperature,
higher temperature peaks are reached with the Constructal Theory.

A further aspect concerns the pressure drops. Branches add local pressure drops
and, consequently, the pressure drop is greater all other things being equal.

Attempting to optimize heat exchange through paths with lower flow resistance
may be a good idea were it not for the fact that a smaller heat exchange surface is
covered than in parallel channel geometry. Therefore, in this case, the application of

the Constructal Theory has worsened the performance of the system.
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2. Pulsatile Blood Flow

This chapter presents the problem of the motion of a fluid in pulsed regime inside
a circular section duct, also called the “Womersley problem” or more general “Pulsatile
Flow Problem” [33]. This result is important for modelling the velocity profile of the
fluid inside a vein due to the pulsed motion regime induced by the pulsation of the
heart. The mathematical nature of the Womersley function is somewhat complicated,
furthermore its implementation in a fluid dynamics simulation code is not very easy.
Therefore, in the second part of this chapter, a simplified method for the numerical

implementation of the Womersley velocity profile was sought.

2.1 Pulsatile Flow Problem in a Circular Section Duct

Pulsatile flow implies that the pressure gradient varies periodically in time. This
can mimic the blood flow in arteries. It is possible to idealize the problem and restrict
the study to Newtonian fluid inside a tube with a rigid wall.

The Poiseuille profile is obtained by solving the Navier-Stokes equations and
considering a constant pressure gradient. Therefore, considering an oscillation around

this profile, the following pressure gradient can be defined:

_6_P = Gy(1 + esin(wt)) (2.1.1)
0z

where G is the average time value of pressure drop, ¢ is the amplitude of the pressure
wave, o is the frequency of the pressure signal and t is the time.

Using cylindrical coordinates it is possible to consider better the symmetry of
the problem:

w, = u,(r, ) (2.1.2)

where u, is the velocity along the tube axis z, r is the radius coordinate and t is the time.
The focus is placed in case to the limit t — co. In this case it is expected that the velocity
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become periodic. Then, any periodic function can be expressed by a Fourier series.

This justifies the use of sin(wt).
The starting point to analyse the problem is the equation of motion in cylindrical

coordinates with the pressure gradient defined from Eq.(2.1.1):

6uZ . U 0 auz (2.1.3)
Pop = Go(1 + esin(wt)) + ;EG pw )
Considering the characteristic dimensions:
G, R?
Uy = Ou (2.1.4)
L. =R (2.15)
. B (2.1.6)
ch v
the dimensionless variables can be written as
g=_ (2.1.7)
Uch
o (2.1.8)
lch
L (2.1.9)
tch

Substituting Egs.(2.1.4)-(2.1.6) into Eq.(2.1.3) and using Egs.(2.1.7)-(2.1.9) the non-

dimensional motion equation arise (for sake of clarity the tilde symbol was ignored)

1-6( 6u> (2.1.10)

9 _ (1 +esin(R.0) +
= e sin(R,, e U

or

ot
where R, = R?w/v is the ratio of the time scale and ¢ is the amplitude of periodic
component.
The boundary conditions for this problem are
r=1  u=0 (2.1.11)
r=0, u = fixed (2.1.12)
t =0, u=0 (2.1.13)



Therefore, the non-dimensional problem of pulsatile flow in a circular section duct is
formulated from Eq.(2.1.10) to Eq.(2.1.13).
It is important to note that the problem just formulated is linear and the pressure

gradient comes into play as two-part source therm. This means that defining the

velocity as
U=uy+ ey (2.1.14)
the problem is split in two
d 10/ 0
(Zho =1 +——(rﬁ)
ot ror\ Oor
r=1, Uy =0 (2.1.15)
r =0, u, = fixed
t = 0, Uy = 0
and
ou, (Rt+1a(au1)
ot = SRt + 2525,
r=1, u; =0 (2.1.16)

r=20, u, = fixed
t=0, u1=0

Uo IS independent of t, then the solution of system (2.1.15) is a parabolic profile.
For the system (2.1.16) arise an important question: is velocity in phase with

pressure drop? If the answer is positive, it is possible to define

u; = sin(Ryt) f(r) (2.1.17)
Substituting Eq.(2.1.17) in Eq.(2.1.16) we get
R, cos((Ryt) (1)) = sin(R,t) + %% (r %) sin(R,,t ) (2.1.18)

In general, there is going to be a phase difference between velocity and pressure
drop. Since sin(wt) does not occur in all time (Eq.(2.1.17)). If R, «< 1 the velocity

unlikely to be in phase. Remembering then
e'Rot = cos(R,,t) + isin(R,t) (2.1.19)

Eqg.(2.1.18) can be rewritten in form
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0 _ iRyt +1£( 5uI> (2.1.20)

dt ror r ar
where
u, = I(u{) (2121)
want to search for the function
u; = el Rowl H(T) (2.1.22)
Substituting Eqg.(2.1.22) into Eq.(2.1.20) the new problem is obtained
1d < dH) R OH =1
rar\ dr)” tlen T (2.1.23)
H(r =0) = fixed
Hr=1)=0

The solution of the problem (2.1.23) is composed of a particular solution and a

homogeneous solution:

H=H,+H, (2.1.24)
o=t __t (2.1.25)

For finding Hy, we have to sole

1d/ dHy\ . _ (2.1.26)
rar(m )~ Rt =0
Definie
Tz(—i Ra)) — 7"*2 (2127)
N (L)”Z (2.1.28)
R
Eq.(2.1.26) becomes
1 d ( dHy _ (2.1.29)
r*dr* (r dr*) Hp =0
The solution of Eq.(2.1.29) is
Hy = AJo(r") + B Y, (r") (2.1.30)

But Y,(r* = 0) is unbounded, then B=0. However
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Hy, = A (")

Then Eq.(2.1.23) becomes

i R,
H=—E+AJO — T

For

However

- )
)

u, =1 (eith H(r))
Recall Eq.(2.1.14) the solution is

U=Uy+ U = U +I(eith H(r))
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2.2 Approximation of Womersley Velocity Profile
The complexity of the numerical language required for the implementation of

the Womersley profile has paved the way for finding an easier scheme to write such
function.

The work [34] entitled “A Simple Transient Poiseuille-Based Approach to Mimic
the Womersley Function and to Model Pulsatile Blood Flow” was the result of the
search for an approximation of the Womersley function through the Poiseuille
parabolic profile.

Several authors (i.e., [35]) adapt the Womersley function to the measured pulsed
flow by writing the following function:

Jo(Wo Vi3 %) ~Jo(WoVi®) | (2.2.1)
2 Jo(WoVi3) —Wo i3 Jo(Wo Vi3)| Qo

D

vy (z—r,t> = 2R{Wo\/i_3

where R{ - } denotes the real part of the function defined in the complex plane, i = (-
1)°® is the imaginary unit, Jo(.) is the zero order modified Bessel function, (2r/D) is the
dimensionless variable in which D is the tube diameter, r is the distance from the tube
centreline, Wo=0.5D(wp/m)®° represents the Womersley number in which @ =27t/T is
the angular frequency determined from characteristic period T, p is the fluid density, n
is the dynamic viscosity, Q(t) is the flow rate variable in time, and Qo is the average
flow rate.

If the inlet pressure difference is kept constant, the result is the Poiseuille

velocity profile, illustrated in [36]:

vp (%) —y [1 _ (%)2] (2.2.2)

where vy denotes the non-dimensional amplitude.

Finally, it is worth mentioning that both velocity profiles refer to laminar and
steady-state flow conditions.

The Womersley velocity profile (Eq.(2.2.1)) is a function of r and t, while the
Poiseuille velocity profile (Eq.(2.2.2)) is a function of r. In order to compare the

mentioned two curves, the Womersley profile was considered in the following version:
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o (5) =1 (5) o0 29
where the function f(2r/D) is composed from the real part of Eq.(2.2.1) and g(t) is equal
to R(Q(t)/Q0) (the remaining term of Eqg.(2.2.1)). In this modality, it is now possible to
compare Eq.(2.2.2) with the function f(2r/D) defined in Eq.(2.2.3).

Therefore, the problem is now represented by the equivalence:

[ Jo(Wo VB ) —(wov®) ) [ oy (2.2.4)
i“{W”‘_z]o(wm—z)_Wow—zjo(wm—z) - 1_<F)l

v denotes the unknown variable, which will be a function of (2R/D). From Eq.(2.2.4),

the following calculation is obtained:

Jo(Wo iz %—r) —Jo(Wo Vi)
o 2 Jo(Woi3) —Wo Vi3 Jo(Wo Vi3) (2.2.5)
V(F) - [1 i (z_r)z]
D

In order to validate the approach pointed out here, typical values of the blood

R{Wo Vi3

flow inside an artery were considered (data are taken from Vimmr et al. [33]): D =
0.003 m, blood density p = 1060 kg/m3 , blood dynamic viscosity n=3.45 x 10 Pas
and cardiac cycle period T = 1.68 s.

The plot of Eq.(2.2.5) is represented in Figure 24 together with the average value

of this calculated according to the formula:

(&)t =52 [ v(Z) o)

where [a, b] = [0, 1] is the integral range. The average value M of Eq.(2.2.6) is equal
to 1.99923.
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Figure 24. y function (continuous line) and its average value 1.99923 (dashed line). Plot considering the
example values: p = 1060 kg/m3, n=3.45 x 103 Pa's, D = 0.003 m, T=1.68 s and Wo=1.61. [Ref. 7.3]

The calculated y average value can be used as an approximate amplitude value
in the Poiseuille Eq.(2.2.2). Therefore, the function R{.} has been approximated in a
transient Poiseuille velocity profile. For the sake of clarity, the “transient” Poiseuille
velocity profile has been referred to as the Poiseuille velocity profile multiplied by the
function that adjusts the amplitude over time; that is, the following equation is

intended:

2r 2r 2 (2 2 7)
v (5t) ”[“(3) ]M
where g(t) is defined in Eq.(2.2.3).
What varies during the transient flow is, therefore, the function g(t), which has

an influence on the width of the profile.

The relative percentage error is evaluated according to the relation:

o r(5) w (3) 100 (2.2.8)
£(7)

Figure 25 shows the comparison between function f(2r/D) and vp(2r/D) and the

corresponding percentage error along the dimensionless axis. In addition, all the
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corresponding numerical values have been reported in Table 1. The maximum
approximation error is slightly greater than 0.60% in the boundary points. This
discrepancy validates the calculation approach developed here.

The Womersley number Wo, defined in Eq.(2.2.1), is a very important parameter
that affects the validity of the approximation explained above. As shown in Figure 26,
as the Womersley number increases, the behavior of the Womersley function moves
further and further away from the parabolic profile.

Due to this, the approximation of the Womersley profile with the Poiseuille

profile is valid for little values of the Womersley number Wo (Wo < 2).
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Figure 25. Comparison between the Womersley profile (line) and the transient Poiseuille profile (dot). Non-
dimensional velocity comparison (left); percentage error (right). Plot considering the example value: p = 1060
kg/m3,n=3.45x 102 Pas, D =0.003 m, T=1.68 s and Wo=1.61. [Ref. 7.3]

Table 1. Numerical value of the Womersley f(2r/D) profile and Poiseuille profile considering the example
values: p = 1060 kg/m3,n=3.45x 102 Pas, D =0.003m, T=1.68 s, and Wo = 1.61. [Ref. 7.3]

2r/D f(2e/D) vp(2r/D) £% 2r/D f2r/iD) vp(2r/D) £%
0.00 1.95845 1.99923 0.542061 (.55 1.39521 1.39446 0.053681
0.05 1.95360 1.99423 (0.536241 (.60 1.28133 1.27951 (0.142441
0.10 1.96902 1.97924 (0.518870 0.65 1.15722 1.15456 0.230149
0.15 1.94472 1.95425 (0.490221 0.70 1.02283 1.01961 0.314656
0.20 1.91065 1.91926 (0.450745 0.75 0.87812 0.57466 0.393649
0.25 1.86679 1.87428 (0.401073 0.80 0.72308 0.71972 0.464652
(.30 1.81310 1.81930 (0.342012 0.85 0.55772 0.55479 0.525025
0.35 1.74952 1.75433 (0.274547 0.90 0.38204 0.37985 0.571956
0.40 1.67601 1.67936 (0.199834 0.95 0.19611 0.19493 0.602458
0.45 1.59249 1.59439 (0.119200 1.00 0.00000 0.00000 -
0.50 1.49891 1.49942 0.034141
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Figure 26. Different shape of thre Womersley function due to the different Womersley number varies. [Ref.
7.3]

It is worth mentioning that the limit of this approximation mainly relays on the
neglection of possible flow inversions. More specifically, the above-mentioned
approximation is valid for code implementation, when an input flow value is imposed

or a fully developed parabolic velocity profile is considered, provided that Wo < 2.

In the work of Impiombato et al. [34], in addition to the treatment of the problem
exposed, it was a numerical case found for the verification of the approximation just
discovered.

Appendix A shows how the time-dependent inlet flow rate Q(t) was
approximated through the Fourier series function.

Figure 27 shows the velocity comparison between the Womersley velocity
profile (shown in solid line) and the Poiseuille function profile (indicated with dots) in
different sections (denoted with A, B, C, D and E) for different times relating to the
cardiac cycle. Based on pure observation, the results clearly show that there is no

evident difference between the two studied velocity profiles.
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Figure 27. Comparison between the original Womersley profile (line) and the transient Poiseuille function
profile (dot) using several times in different sections. The velocity was considerend in m/s. [Ref. 7.3]
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3. Optimization of a Cardiac
Bypass Graft by Constructal
Design

Bypass grafts are used to promote blood flow impaired by partial obstruction
(stenosis) of arteries by fat accumulation. The computational modelling of this type of
system is used to understand the flow characteristics and to look for reasons and
solutions for postoperative failures. The present work deals with the effects of changes
in geometry in the performance of a system consisting of an idealized partially
obstructed artery and a bypass graft. The Constructal Design Method has been
employed in previous works in the analysis of such system assuming steady-state flow.
In the present work, blood flow is modelled as transient and pulsatile. The Constructal
Design Method is used to determine the performance indicator (dimensionless pressure
drop), constraints (system volume and stenosis degrees — 50% and 75%) and degrees
of freedom: junction angle (30° < a < 70°) and diameter ratio (0.5 < D1/D < 1). The
Response Surface Methodology was used to evaluate the conditions of minimum
pressure drop in transient conditions. As the junction angle decreased to 30°, and the
diameter ratio increased to 1, the pressure drop decreased, and there was a considerable
dependence of pressure drop on the stenosis degree. The effects of the diameter ratio
were more pronounced than those of the junction angle. A resistance model based on
an analogy with an electronic circuit was introduced, resulting in a correlation for the
pressure drop due to the bypass. This correlation confirmed that the point (o,
D1/D)=(30°,1) is a point of minimization of flow resistance. The application of the

Constructal Design method in hemodynamic might be an excellent alternative to
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configuring enhanced performance and providing valuable results to the understanding

of biological flows

3.1 Introduction
According to T.J. Pedley et al [37], atherosclerosis and diseases of the blood

circulatory system cause more than half of the deaths in today's western society.
Atherosclerosis is the phenomenon characterized by the deposit of material in the artery
wall, which in turn leads to inflammation. When the lumen of the blood vessels
narrows, health is in serious danger: being the narrowest passage, the quantity of blood
that can flow inside them is less; consequently, the supply of oxygen and nutrients to
tissues and organs (including the heart) can be severely compromised. The
consequences can be just as serious and include heart attacks and strokes, sometimes
fatal. The accumulation of fat in the arteries walls can block the flow of blood partly
or entirely and causes atherosclerosis, which consists of stiffening the walls of these
vessels (KU et al. [38]). As explained by Tian et al. [39], and Liu et al. [40], this
abnormal accumulation is commonly designated as stenosis. Patients under these
conditions can lose the quality of life due to the loss of oxygenation of organs, tissues,
or the brain and are at risk for heart attacks or strokes. According to Guerciotti et al.
[41], effective therapy for high-risk patients is coronary artery bypass graft (CABG)
surgery, which consists of bypassing a stenotic region to restore the proper blood flow
to the heart. Bassiouny et al. [42] points that the main cause for the CABG surgery
failure is intimal hyperplasia (IH) — an abnormal proliferation of smooth muscle cells
that is mainly observed between the graft and the coronary artery, resulting in the
reduction of the lumen of the graft and leading to restenosis and graft occlusion
(BASSIOUNY et al. [42]). As reviewed by Dutra et al. [43], several authors have
investigated the correlation between the blood flow dynamics in CABGs and the
developing of IH. Some authors have used a three-dimensional numerical model to
investigate the effects on blood flow caused by different locations of the stenosis
(Bertolotti and Deplano [44]; Ko et al. [45]), Reynolds number (Lee et al. [46]; Chua
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et al. [47]), graft diameter (Fan et al. [48]), junction angles (Lee et al. [46]; Ko et al.
[49]), fluid deflector (Roos et al. [50]) and compliance mismatch (Post et al. [51]).
Other studies applied optimization methods to predict the best geometry of the graft
according to the diameter of the artery and graft (Chua et al. [47]; Xiong and Chong,
[52]; Do et al. [53]; Vimmr et al. [35]), junction angle and stenosis degree (Vimmr et
al. [47]). Tiwari et al. [54], using an analytical two-fluid model, investigated the role
of rheology on blood flow through constricted vessels. They addressed the importance
of the accurate modeling for blood flow, stressing the impact of blood and flow
modeling in parameters such as flow rate and flow resistance, which are crucial in the
treatment of many diseases.

Recently, Dutra et al. [43] investigated the design of bypass grafts circumventing
idealized stenosed coronary arteries using the Constructal Design Method (Rocha et al.
[3]) and a Computational Fluid Dynamics (CFD) model. Their model assumed the
steady-state flow of blood, modeled as a Newtonian fluid. The response surfaces for
pressure drop as a function of geometric parameters showed that the highest diameter
ratios between graft and artery, and the lowest junction angles promoted the lowest
resistance to flow, consisting in the optimal geometry in the context of the Constructal
Design Method.

The Constructal Design Method is a method of geometry design and analysis
conceived in the framework of the Constructal Theory, established by Adrian Bejan
from 1996 and summarized by the Constructal Law: “for a finite-size flow system to
persist in time (to live) it must evolve with freedom in such a way that it provides easier
access to imposed currents that that flow through it” (Bejan [55]). The Constructal
Theory literature has shown in the past few years, that evolution in nature follows this
principle (Bejan and Zane [56]; Bejan [5]). Constructal Design is the philosophy of
evolutionary design in engineering applications (Rocha et al. [5]). It may be employed
to assess the effect of geometric parameters on the performance of flowing systems by
identifying the purpose of these systems and the flowing currents (Rocha et al. [3]).

The first applications of Constructal Theory in medicine were within the field of cancer
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treatments, as studied by Wang et al. [16], and Lucia and Grisolia [57], and vision, in
two papers by Lucia et al. [58] and [57].

This work goes more in-depth in the investigation of the steady-state bypass graft
explored by Dutra et al. [3]. The present study investigates numerically, using CFD,
the Constructal Design of the bypass graft circumventing a stenosed artery subjected
to pulsatile blood flow. The system of analysis consists of the set artery-graft. The
geometry performance parameter is the time average pressure drop. The constraint is
the system volume and the degrees of freedom for the system to morph and improve
its performance are the diameter ratio and the junction angle between graft and artery.
The Constructal Design Method, with the aid of Response Surfaces, allows to explore
the effects of the degrees of freedom on flow performance. As the bypass geometry is
known to significantly affect the blood flow field and play an essential role in potential
graft failure due to intimal hyperplasia, this work intends to bring valuable results to

the understanding of biological problems.

3.2 Methodology
3.2.1 Constructal Design
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Figure 28. Problem domain. [Ref. 7.4]

The computational geometry of an idealized bypass with obstruction is shown in

Figure 28. The main artery is represented with a diameter equal to D and length equal
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to Li. The main tube undergoes stenosis that reduces it to diameter Do. The geometry
Is symmetric over the center of the stenosis in the axial direction. The graft is placed at
a distance L, from the center of the stenosis, and its diameter is denoted D;. The
junction angle is o. L3 is the distance from the center where the stenosis begins.

The problem consists of a pulse of blood flow, which enters the domain at the
tube inlet, as described in Appendix A. Depending on flow conditions and geometry
configuration, the flow is partially deviated through the bypass. It is assumed that the
tube walls are rigid, impermeable, and non-slip. The flow is also assumed to be three-
dimensional, incompressible, and laminar.

To obtain a fully developed flow, it is built the computational model for the
geometry depicted in Figure 28 with main tube extensions of 25 diameters upstream
and downstream (Ls=25.D). At the inlet patch, it was imposed a pulsatile velocity
profile. At the outlet patch, it was imposed pressure outlet as boundary conditions. The
host artery diameter, D, was fixed to 3 mm for all simulations. This diameter was
corresponding to an average value of the right coronary artery (Bertolotti et al. [44]).

Since the stenosis is usually formed by material deposition, it is considered the

main tube volume as its external volume is not narrowed:
2

D
where V is the total artery volume, D is the artery diameter, and (L1+Ls) is the total

artery length. The graft volume is

2

D
V= ”Tl L, (3.2.1.2)

where V is the total graft volume, D; is the graft diameter, and L, is the total graft
length. The process of finding the optimal condition aims to find the value of V1, that
is, the product between D} and L, keeping constant V.

The stenosis degree is calculated as

D
where S is the stenosis degree, and Dy is the diameter at the center of the stenosis.
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It is defined as constants the ratios Li/D, L,/D, and Ls/D and employed the
geometric parameters as detailed in Table 2. A baseline case from the literature (Vimmr

et al. [44]) was used to define these values.
Table 2 Geometric parameters for artery and graft build up. [Ref. 7.4]

Parameters Values
L./D 16.67
L,/D 2.5
Ls/D 1

Two values of stenosis degree have been evaluated: S =50% and S = 75%. Blood
Is modeled as an incompressible Newtonian fluid with mass density, p=1000 kg/m3,
and dynamic viscosity, u=0.0035 Pa.s (Ko et al. [45]). The assumption of blood as
Newtonian fluid is a consent already used by other studies in the hemodynamic area)
Vimmr et al. [45].

Constructal Theory assumes that living systems evolve limited by space (Rocha
et al. [45]. According to Constructal Theory systems must evolve to provide easier
access to its flows (Bejan and Lorente [13]), it was considered that the dimensionless
pressure drop along the length L, p, should be as low as possible. Thus, the effects of
the degrees of freedom diameter ratio, Di/D, and junction angle, a., on the
dimensionless pressure drop were investigated in this Constructal Design application.
The ranges investigated comprised of D; <D and 30° < o < 70°. It was searched for the
diameter ratio, D1/D, and junction angle, a, that minimize the value of the pressure

drop. Figure 29 details all the steps required by the Constructal Design methodology.
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Constructal Design Method

Step 1: Define precisely the flow system to be studied.
Bypass graft circumventing a partially stenosed idealized coronary artery.

v

Step 2: Identify the flow (what is flowing and its magnitude).
Transient flow of a Newtonian fluid.

v

Step 3: Identify the meaning of provide easier access (facilitate the flow)
for the physical problem.
Pressure drop along the length, Z, should be as low as possible.

v

|
|
!
1
!
|
|
!
|
|
!
1
!
!
|
!
|
|
Step 4: Identify the constraints of the problem. :
Artery and bypass lengths. 1
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Step 5: Identify the degrees of freedom for changing of system geometry
and flow parameters to be evaluated.
Stenosis degree, S; junction angle, o, diameter ratio, D /D.

v

Step 4: Solution of the physical problem to calculate performance
indicator.
Numerical solution of balance equations for incompressible fluids.

2

Step 7: Calculate the maximum or minimum performance indicator and
geometries which allow the achievement of the best performance.
Response surfaces: dimensionless pressure drop as a function of D,/D and a.

Figure 29. Flowchart showing the application of Constructal Design. [Ref. 7.4]

3.2.2 Problem Formulation
Several simplification hypotheses enter the study: 1) The blood flow is

considered as a laminar isothermal pulsatile flow of an incompressible Newtonian fluid
with density p=1000 kg m™ and dynamic viscosity p=0.0035 Pa s. The consideration
of blood as a Newtonian fluid is used in literature to simplify the numerical model. 2)
The pulsed blood flow is considered to simulate the blood flow triggered by the
heartbeat. The inlet flow rate Q(t) it is considered, which is taken from Vimmir et al.
[35] and should correspond to flow rate values measured in the right coronary artery
during rest. In Appendix A the model for the description of the pulsed regime is

presented through the use of the Fourier series.
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3.2.3 Mathematical Modelling of Unsteady Blood Flow
The non-dimensional continuity and momentum balance equations for

incompressible fluids are the equations solved to characterize the flow through the

bypass model:

o1

7, = O (3.2.3.1)
om; _ 0w,  0p 1 9%y
o5+ 1l %~ + 7 (3.2.3.2)

where 1i; is the dimensionless velocity field, %; is the dimensionless position vector, p
is the dimensionless pressure drop, 7;; is the dimensionless extra stress tensor field and

Re the Reynolds number such that:

ﬁ_ui_ g—x- ﬁ_PRM.S‘_
i = i =7 =
Um

. T _ pUnD
Py f= W/ Re = 0 (3.2.3.3)

The reference velocity is obtained from the average inlet flow rate as U, =

4 Qo/mD? = 0.153 m s™1. Py, is the root mean square pressure drop along with L.

The constitutive equation for the stress tensor is that of a generalized Newtonian
liquid:

7y = 2n(y)Dyj (3.2.3.4)
where n(y) is the viscosity function and Dj; is the strain rate tensor, given as the
symmetric part of the velocity gradient tensor (Slattery [59]). For a Newtonian fluid,
n(y) is a constant and equal to u.

According to Berger [60], blood presents Newtonian behavior when subjected
to high shear rates (above 100 s?). In large vessels, such as the aorta, some authors
have assumed Newtonian behavior for blood (Perktold et al. [61], Vimmr et al. [35]).
Some authors have mentioned the importance of modeling blood as non-Newtonian in
transient flows (Gisen et al. [62]), while others have concluded that blood could be
modeled as a Newtonian fluid without significant changes in results when considering
large arteries (Perktold et al. [63]).

Tiwari et al. [64] used analytical two-fluid models to investigate the roles of

rheology and vessel wall porosity on the blood flow to constricted and unconstricted
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vessels. They concluded that the modeling of blood rheology has a great effect in
predicting flow behavior, having an important influence even in the deposition of fat
over the vessel walls and in the hematocrit decay. In a further work, Tiwari et al. [64]
also extended their modeling to investigate the flow of blood through microvessels and
concluded that the modeling of blood as three-layered brings important features to the
modeling that may have significant impact in the treatment of various diseases.
Although Vinoth et al. [65] point out that there may be a significant increase in
wall shear stress patterns when using a non-Newtonian model, in comparison with
Newtonian results, in the present paper the Newtonian model was employed, in view
that the performance indicator for the Constructal Design Method was the time average

pressure drop.

3.2.4 Boundary Conditions and Initial Conditions
The part of tube Ls has been added in the inlet and outlet to measure the pressure

drop in the length L. Ls is 25D long to allow the flow to reach fully stabilized speed. In

this way, the velocity in the input patch can be set according to the formula
t
v(t) = % (3.2.4.1)

where Q(t) is the flow rate taken from the Appendix A (Eq.(A.1)) and A = #D?/4 is
the area of the inlet section.

At the outlet boundary, the pressure outlet condition was employed, with an
additional pipe length equal to Ls to guarantee the complete flow development. Thanks
to these choices, it is possible to measure the pressure over time t in the measurement
sections, respectively, at + L/2 from the stenosis, as shown in the drawing of Fig. 1.
As an initial condition, the velocity field was set as equal to 0.05 m/s in the axis along

with the whole flow domain.
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3.2.5 Numerical Method and Computational Grid

Figure 30. Isometric view of the computational mesh for the model with a detailed view of the cross-section
in the bypass and native stenotic artery. [Ref. 7.4]

In order to solve the mathematical model given by Egs. (81)-(85), the Finite
Volume Method was employed (FVM). The FVM is known to be a robust method in
the approximation of flow equations, for it is a conservative method at the level of the
mesh control volume (Patankar [66]). The commercial code ANSYS Fluent 2019 R2
[67] was employed for its robustness and ease to use. The computational model was
implemented using a pressure-based solver with a SIMPLE scheme (Patankar [66]) and
second-order interpolation functions for pressure and momentum. All calculations used
double-precision representation of real numbers. A time step of 0.01 s was used for all
simulations for tree cycle. The mesh was constructed to have a proper resolution in the
narrowing area (stenosis position) and the bypass. Figure 30 presents a sample of the
model's computational mesh with detailed views at the cross-section in the bypass and
native stenotic artery. Grid quality tests were conducted for the cases shown in Table

3, where N; is the number of mesh elements and p! is the root mean square value of

the pressure drop measured in the third cardiac cycle. As explained by Celik et al. [68],

this method is useful for calculating and reporting discretization error estimates in CFD

simulations where experimental data may not be available for comparison. It is
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Important to observe that the method considers, based on experience rather than formal
derivation, a GCI value until 5% as acceptable (Celik et al. [68]). In this case the
maximum GCI value is 3%. This ensures an acceptable mesh quality for all simulations

as this value is less than 5%.

Table 3. Grid Convergence Index (GCI) for different bypass configurations [Ref. 7.4]
Casel Case2 Case3 Cased4 Case5 Case6 Case7 CaseS8

S 50% 50% 50% 50% 75% 75% 75% 75%

D,/D 1 1 0.5 0.5 1 1 0.5 0.5

a 30° 70° 30° 70° 30° 70° 30° 70°
N, 338492 356831 287447 356831 335188 353121 284653 290682
N, 187946 194353 163843 166519 185864 192902 162218 165150
N3 111398 114525 100512 102949 110599 114406 100431 102878
ﬁg‘,{ 3.879 4931 8462 9325 4356 6.237 29.091 35.198

ﬁi’,ﬁ 3.858 4906 8454 9313 4.298 6.185 29.846 36.351
ﬁi’,ﬁ 3.862 4925 8481 9327 4306 6.255 31.576 38.781

GCI 0.16% 2.00% 0.050% 0.97% 0.27% 3.0% 2.5% 3.7%

In Table 4 it is represented the error of the measure of the Root Mean Square
from the relative cycle. The relative error is computed from the Eq.(3.2.5.1) and
Eq.(3.2.5.2).

£21 = Por = Purl (3.25.1)
Par

ey, = Par = Prl 44, (3.2.5.2)
b3t

The pressure errors evaluated in the third cycle are of the order of 0.40 %, which

Is acceptable as an approximation.
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Table 4. Relative error g; ;_; from the cardiac cycle i to the cycle (i — 1) [Ref. 7.4]
Casel Case2 Case3 Cased4 Case5 Caseb Case7 Case8

S 50% 50% 50% 50% 75% 75% 75% 75%
D,/D 1 1 0.5 0.5 1 1 0.5 0.5
a 30° 70° 30° 70° 30° 70° 30° 70°

Pir 3.897 4949 8497 9357 4364 6.257 29.170 35.264
Dar 3.8789 4935 8479 9324 4350 6.2368 28.990 35.183
D3t 3.879 4931 8.462 9325 4.356 6.237 29.091 35.198
&1 0.46% 0.27% 0.22% 0.36% 0.33% 0.33% 0.62% 0.23%
g3, 0.0048% 0.089% 0.21% 0.011% 0.14% 0.0038% 0.35% 0.042%

The same procedure was used to characterize the mesh of the arteria narrowing
without the bypass. The results are shown in Table 5 and Table 6. Also in this case, the

maximum error is less than 0.3% so the calculation is an acceptable approximation.

Table 5. Grid Convergence Index (GCI) for arterial narrowing [Ref. 7.4]
Casel Case2

) 50% 75%
N; 254011 251175
N, 144907 143707
N3 90391 89762
Py, 12741 226.589
Py, 12.576 227.592
py. 12401 254.838
GCI 0.27% 0.021%

Table 6. Relative error ¢_(i,i-1) for arterial narrowing from the cardiac cycle i to the cycle (i-1) [Ref. 7.4]

Casel Case 2

S 50% 75%
Pir 12.783 227.711
Dar 12.742 227.116
Psr 12.741 226.589
€21 0.32% 0.26%

€3,  0.0038%  0.23%
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The numerical method and mesh to approximate the flow through the system
comprised by the partially obstructed artery and the bypass graft has been verified
through comparison with the results by Ko et al. [45]. This verification study may be
found in detail in Dutra et al. [45].

3.2.6 Response Surface Methodology
To investigate the effects of the junction angle, a, and the artery diameter ratio,

D,/D, on the pressure drop along the length L, a Response Surface methodology was
employed. Response surfaces provide a way to analyze the effect of two parameters on
a result. The interaction between parameters is easily observed and quantified. It is
common to find applications of the Constructal Design Method with two or more
degrees of freedom where each degree of freedom is varied at a time (Razera et al.
[69]). More recent works (Klein et al. [70]) have been using the Response Surface
Method to investigate simultaneous effects of degrees of freedom as this is a basic
premise of the Constructal Design Method: not only to get to the best geometry, but to
investigate the effects of the degrees of freedom on system performance.

The Matlab Curve Fitting tool was used to create this surface. The application
supports a variety of adaptation methods. The response surfaces were obtained with a
second-order polynomial interpolation in the two variables. In the Measure inlet and
outlet section (Figure 28), it was monitored the pressure’s trend, obtaining the pressure
values in the inlet and outlet for each time step. The difference between p;,(t) and

Pout (t) gives the pressure drop along with L:

AP
- = j (3.2.6.1)
this pressure drop can be dimensionless with the equation
AP
5= C/0) (3.2.6.2)
p U?

Each geometry was computed using the Root Mean Square of the non-

dimensional pressure drop (). For the seek of clarity the Root Mean Square formula is
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Nmax n2
22y Ok (3.2.6.3)

Orms =
nmax

where n,, . 1S the number of the time step.

3.3 Results and Discussion
Figure 31 shows that when the aspect ratio D;/D increases to 1 and the junction

angle, a, decreases to 30° p decreases. However, as the stenosis degree becomes
larger, i.e., the flow is highly deviated through the bypass, the influence of « in the p
has become almost unnoticeable. The results show that the diameter ratio D;/D has
more significant effects on the pressure drop than a.

The prominent influence of the D,/D ratio compared to the a angle has been
confirmed experimentally (Tsukui et al. [71]) and numerically (Xiong et al. [52]; Do
et al. [52]; Vimmr et al. [52]) in idealized steady and pulsatile stenotic flows. Tsukui
et al. [52], also confirmed that a smaller junction angle («) yielded lower energy loss
at the bypass graft. The present work confirms that the Constructal Design Method
predicts the same trends found elsewhere using different frameworks for evaluating
performance.

The surfaces of Figure 31 have been obtained by using polynomial interpolation.

So, the surface equations are given by

ﬁ(a' Dl/D'S)

_ {ﬁ(a, D,/D) = 12.15 + 0.02363 « — 8.942 (D,/D),  for S =50%
~ p(a, D,;/D) = 53.81 + 0.09958 @ — 53.52 (D,;/D),  for S=75%

(3.3.0)

with a value of R? = 0.9997 for S = 50% and R? = 0.9961 for S = 75%.
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Figure 31. Dimensionless pressure drop # (a) S=50%, (b) S=75% [Ref. 7.4]

The optimum point for both cases is D;/D equal to 1 and a equal to 30°. This
result leads us to believe that by increasing the aspect ratio D;/D and decreasing the
angle «, a better result would be obtained. However, this situation would be
impracticable from the surgical standpoint because a graft of difficult suture would be
produced (Vimmr et al. [35]). As a possible solution to this problem, Chua et al. [52],
proposed sleeve models that could be used as mechanical connectors between the
bypass graft and host artery, eliminating the need for quality suturing.

Chua et al [52], speculated that graft with a diameter of about 1 to 1.5 times
larger than that of the host artery, and a junction angle in the range of 30-45° would
Improve hemodynamics.

Figure 32, on the other hand, shows the pressure drop p compared to the pressure
drop p, about the geometry without bypass. For stenosis degree S=50%, the pressure
drop for the geometry without a bypass is p, = 12.401, and for S = 75% p, =
254.838. As can be seen, the introduction of the bypass ensures a decrease in the

pressure drop value.
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Figure 32. The ratio between pressure drop with bypass and pressure drop without bypass, (a) S=50%, p, =
12.401 (b) S=75%, po = 254.838. [Ref. 7.4]

3.4 Results Extension

In literature, there are several numerical studies on the bypass graft (eg. Vimmr
et al. [52] and references therein), but few of these consider the set of parameters to
derive a correlation function. In this section the results are extended in order to access
the effect of the bypass on the pressure drop of the system. The approach is based on
the Constructal Theory, for it assumes the resistance to flow as the performance
parameter to be calculated. The treatment of fluid dynamics through electrical
equivalence is discussed in the literature (Bejan and Lorente [1]). So, the resistance R,
measured in [Pa s / kg], that the fluid encounters to pass through a certain type of

conduit from an inlet to an outlet section is defined as:

p AP (3.4.1)
mh

where AP is the pressure drop measured in [Pa] and m is the mass flux measured in
[ka/s].

The tube without bypass can be considered as a resistance R, that creates a
pressure drop that, at this point, is known. However, the overall effect of the pressure
drop (the total resistance R) is known, but the pressure drop R;, due to the bypass is not

known.
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The system can be considered as the composition of two resistances in parallel,

obtaining
i_1t. 1 (34.2)
R R, R,
where the unknown is R,. From Eq.(3.4.1) it possible to write
Ry = (343)
R, —R
Thanks to Eq.(3.3.1), the Eq.(3.4.2) become
_ AP AR (3.4.4)
APy = AP, — AP

Thanks to the response surface, obtained with simulations, the results for Eq.(3.3.1) are
known in the range of this work. In other words, the pressure drop AP, is a function of
the type AP, = f(a, D,/D,S). This means that Eq.(3.4.3) becomes

AP.(S) — AP(a, Dy /D, S)

where AP, = AP,(S) is only a function of S as it has been determined not considering

APy(a,D,/D,S) =

the bypass.

Therefore, considering Eq.(3.3.1) in the Eq.(3.4.5) the surfaces of Figure 33 are
obtained, representing the pressure drop solely due to the bypass as a function of
junction angle and diameter ratio for two stenosis degrees, 50%, and 75%. The pressure
drop due to the bypass, AP, decreases as the values of the parameters of which this is
a function decrease. This result is in good agreement with the results in the previous

section.
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Figure 33. Plot of Eq.(21) with (a) S = 50%, ps = 12.401 and (b) S = 75%, ps = 254.838 [Ref. 7.4]

3.5 Concluding Remarks

This manuscript examined the effects of geometric parameters in different flow
conditions of a bypass graft in a partially stenosed idealized coronary artery. By
determining the constraints across the Constructal Design and using the Response
Surface methodologies, two principal response surfaces were generated (Figure 31
with Eq.(3.3.1)), each representing the stenosis degree, S, equal to 50% and 75%. It
was found in which values of D:/D and a, the dimensionless pressure drop, p, is
minimum. In all situations, as the junction angle decreases to 30°, and the diameter
ratio increases to 1, the pressure drop p decreases. Furthermore, the impact on pressure
drop p due to the degree of stenosis S was of considerable importance. The optimum
point for all cases is D1/D,qp €qual to 1 and a,qp: equal to 30°, which is confirmed by
previous studies. The results showed that D;/D has more significant effects than a.

The results obtained from the entire geometry were compared with the pressure
variation due to the stenosis presence without the bypass (Figure 32). As a result,
bypass's presence is all the more beneficial, the higher the shrinkage. The overpressure
caused by the shrinkage is significantly reduced thanks to the deviation that the flow
undergoes in the bypass region.

From this analysis, it is possible to derive the system pressure drop, but this data

can be manipulated to understand the influence of the single bypass on the pressure
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drop. Thanks to the analogy between fluid dynamics and electronics, it is possible to
see the system consisting of two parallel resistors. Therefore, the correlation that
determines the pressure drop due to the bypass as a function of parameters a and D1/D
was established. The results of Eq.(3.19) in Figure 33 confirm that the point
(a,D;/D) = (30°,1) is a point of minimization of the resistance, i.e., it is the optimum
point. It is possible to conclude that the Constructal Design Method predicts lower flow
resistance for smaller angles (o) and greater diameter ratio (D1/D), as found in previous
works.

This study presents limitations as using an idealized geometry for the coronary
artery and neglecting vessel walls elasticity. Nonetheless, it brings insights on the
performance of artery-bypass systems in the framework of the Constructal Theory. As
the Constructal Design Method has been increasingly used in engineering projects, it
Is expected that the present work will provide motivation for its use in the area of

bioengineering and health.
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4. Effect of the Bypass
Attachment Point on
Resistance to Flow by
Constructal Design

This chapter aims to investigate, through the 3D numerical analysis of an
idealized arterial bypass graft, the dependence of the resistance to flow on the bypass
insertion point. The computational model assumes a laminar steady-state Newtonian
fluid flow and three different Reynolds numbers: 150, 250, and 400. In this study
constructal theory has been employed, a self-standing law in physics which covers the
statement of minimum flow resistance to optimize morphing architectures, i.e. the
coronary artery bypass grafting. According to the Constructal Design method, the
constraints were stenosis degree, junction angle, and diameter ratio, while the
attachment point was defined as a design parameter. The results demonstrated that the
distance between the bypass attachment point and the stenosis influences the pressure
drop; more specifically, the pressure drop decreases with the augmentation of the
distance. On this regard, a different distribution of the mass flows between the bypass,
and the artery was observed and seemed to be the main reason for that behavior. The
application of the Constructal Design method in hemodynamics is a tool to describe
the biological system to search for better flow performance since it is based on the

natural evolution of living systems.

4.1 Introduction
Arteriosclerosis is a tissue hardening, or sclerosis, of the arterial wall that

appears with age as a consequence of the accumulation of fibrous connective tissue at
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the expense of the elastic component [72]. Tian at al. [39] and Liu et al. [40] explain
that the main manifestations of atherosclerosis are stenoses, or the formation of
atherosclerotic plaques on the internal wall of the arteries with consequent narrowing
of the lumen, and aneurysms, or the loss of elasticity of the wall of a vessel that involves
distension. According to Guerciotti et al. [40], one type of surgery, for people with high
risk, is the coronary artery bypass graft (CABG) innest. The surgical procedure consists
of bypassing a stenotic region to restore the heart's blood flow. Intimal hyperplasia (IH)
Is the principal factor that affects graft patency. An anomalous production of smooth
muscle cells arises between the graft and the coronary artery instigating a reduction of
the lumen of the graft and the consequent restenosis and obstruction of the graft [42].
The science of computational fluid dynamics (CFD) has been applied extensively to
explore the connection between hemodynamics in CABGs and IH development and
assist in the improvement of a top graft design. Bertolotti and Deplano [73] used a
three-dimensional numerical model with different stenosis positions relative to the
downstream junction. They concluded that the risks of intimal hyperplasia at the
anastomosis might be reduced by increasing the distance between the stenosis and the
junction. Lee et al. [46] studied the flow behavior of a complete bypass graft and a
100% occluded artery with different Reynolds number and junction angles. Vimmr et
al. [46] implemented several numerical simulations of a complete three-dimensional
coronary bypass model as a function of three geometrical parameters (stenosis degree,
junction angle, and diameter ratio). They revealed that the diameter ratio was the most
crucial parameter for coronary artery bypass grafting (CABG).

In Ref. [74], the stenosed coronary artery bypass graft including an analysis of
the blood flow phenomena and wall shear stress, based on a three-dimensional
computer model, was analyzed and developed to approach a realistic situation, inlet
pulse and non-Newtonian behavior. The results demonstrated that the anastomosis of
45° was the most appropriate for resolving the coronary heart disease problem.
Moreover, Ref. [75] is focused on the study of several configurations of patient-specific

coronary artery bypass grafts while a specific design for coronary arterial bypass
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surgical grafting, consisting of coupled sequential side-to-side and end-to-side
anastomoses, is treated in Ref. [76]. On the same topic, O’Callaghan et. Al. in Ref.
[77] demonstrated that the choice of blood constitutive equation (among Newtonian,
Carreau, Power law, Carreau—Yasuda, Bi-exponential, Cross, Modified Cross,
Herschel-Bulkley, etc.) has to be based on the particular situation under study e.g. flow
rate, steady/unsteady flow, and geometry. Additional interesting computations
regarding coronary artery bypass grafting have been treated in Refs. [78]-[79].

Dutra et al. [43] applied the Constructal Design to investigate the effect of
geometric parameters on the flow through a bypass graft circumventing an idealized,
partially-stenosed coronary artery. They have discovered that at fixed flow conditions,
the pressure drop is mitigated if the parameters assume a specifics values. The
introduction of the Constructal Design method into the field of hemodynamics brings
a valuable tool to the understanding of biological problems since the bypass geometry
Is known to affect the blood flow field significantly and to play an essential role in
potential graft failure due to intimal hyperplasia.

The Constructal design method has been employed in various engineering
sectors [80]-[81], and beyond, as a new approach for solving optimization problems.
In general, according to Constructal Law, stated by Adrian Bejan in 1996, “for a finite-
size flow system to persist in time (to live) it must evolve with freedom in such a way
that it provides easier access to imposed currents that that flow through it” [82].
Constructal Law deals with the physical concepts of life, evolution, design,
performance, and time arrow. Under Constructal Theory, evolution and design in
nature are deterministic because the living systems evolve in such a way to decrease
resistance to flow [13]. Constructal Design is the method that allows the mathematical
modeling of flow systems evolution. It can explain the configuration of existing
systems in nature and to design flow systems in engineering. This design methodology
has the objectives of accessing the effects of shape and geometry in flow performance
and finding the so that the optimal geometry may be discovered by means of a given

optimization technique (exhaustive search or heuristic methods), according to
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Constructal Law [3]. Therefore, taking into account the domain of coronary artery
bypass grafting, this papers documents numerically, on the basis of Constructal design,
the search for the length ratio that minimizes the dimensionless pressure drop for
definite combinations of stenosis degree, junction angle, aspect ratio and Reynolds
number. It is worth mentioning that no previous studies were found in literature

specifically focused on the effect of the bypass attachment point.

4.2 Methodology
4.2.1 Constructal Design
Dutra at al. [43] have conducted a very detailed study on the application of the

Constructal Design method to determine the system constraints and parameters. The
evaluation of the constraints begins from the definition of the domain shown in Figure
34,

Measure
inlet

Measure
outlet

L
l
La
!

Ls L L5 |

Figure 34. Problem Domain. [Ref. 7.5]

It is an idealized version of an artery partially obstructed and implanted with a
symmetrical graft. The artery is represented as the host artery with a diameter equal to
D and length equal to L;+ 2Ls. The main tube undergoes stenosis that reduces its
diameter Dy. The graft is placed at a distance L, from the center of the stenosis, and D
denotes its diameter. The junction angle is o, and the graft diameter is D;. L3 is the
distance from the center at the tube starts to get narrow, i.e., it models the stenosis
morphology. According to Ref. [43], the flow is incompressible and Newtonian. The

inlet average velocity is Um, assessed by fixing the Reynolds Number. The tube walls
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are modeled as rigid, impermeable, and non-slip. The flow is also assumed to be three-
dimensional, steady, incompressible, and laminar. It is worth mentioning that the
hypothesis of steady state simulations is common in literature (Refs. [83]). The inlet
section was placed far from the stenosis (Ls = 25D) to ensure that the flow arrives, at
the bypass inlet, fully developed. Instead, the outlet section was also taken away from
the stenosis (Ls) in such a way as to minimize the effect of imposing the constant outlet
pressure value. Imposing a constant outlet pressure value is not realistic, but it is
necessary to solve the equations in this case. For all simulations, the host artery
diameter D is equal to 3 mm, corresponding to an average value of the right coronary
artery. The system's characteristic volumes were defined in the following way [83],

where the total artery volume V is considered without the narrowed:
2

D
V= T (L, + 2Ls) (4.2.1.1)
where D is the artery diameter and (L1+2Ls) is the total artery length. The graft volume
V1 IS
2

D
V, = nTl L, (4.2.1.2)

where D; is the graft diameter and L4 is the total graft length. It is worth mentioning
that the graft is not a straight cylinder with inlet/outlet normal to its axis. In this work,
the value of V was fixed considering D =3 mm, L; = 50D and Ls = 30D. Instead, the
value of V1 is not fixed because the length L, is a function of the bypass attached point

position (L;) and the junction angle a. The stenosis degree S is calculated as
D—D
S = 2
D
where Dy is the diameter at the center of the stenosis.

100 (4.2.1.3)

A baseline case from literature [84] was used for the definition of the values Li/D
= 16.67 and L3/D=1. The value L,/D is the parameter that is made to vary in the range
2.5<L,/D<6.67. Figure 35 shows the configuration for L,/D equal to 2.5, 4 and 6.67.
In Ref. [83] this parameter was fixed at 2.5 D. This means that considering D = 3mm,
the value of L, was fixed at 7.5 mm. In this work L, varies from 7.5 mm to 20 mm.
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At fixed bypass junction angle a (30°) and bypass diameter ratio D;/D=1, two
values of stenosis degree S (50% and 75%) were evaluated at three different Reynolds
Numbers (150, 250 and 400). Blood is modelled as an incompressible Newtonian fluid
with density p = 1000 kg/m® and dynamic viscosity p = 0.0035 Pa.s [45]. The
assumption of blood as Newtonian fluid is acceptable and used by other studies in the
hemodynamic area, e.g., Ko et al. [45], [49], Xiong and Chong [52] and Vimmr et al.
[35]. The choice to keep a and D1/D fixed at the chosen values derives from the fact
that it is interesting to investigate the effect over the pressure drop due to the bypass
attachment point position. From previous studies [35], [43] it is known that an increase
of o would cause a greater pressure drop while a decrease of a would cause a lower
pressure drop. With D1/D values close to 1, the effect on the pressure drop improves
significantly [35], [43].

Figure 35. Some different bypass graft configuration for L2/D equal to 2.5 (top), 4 (middle) and 6.67 (bottom)
at fixed bypass junction angle a = 30° and bypass diameter ratio D1/D = 1. [Ref. 7.5]

Constructal Theory assumes that living systems evolve limited by space [1].
Accordingly, Constructal Theory systems must evolve to provide easier access to its
flows [2]. To this end, it was considered that the dimensionless pressure drop p (that
will be defined in Eq.(4.2.2.3)) along the length L should be as low as possible. Thus,
an optimization problem was formulated as in Ref. [83]: “Find the minimum p. The
design variable is the length ratio L/D.” Therefore, the degree of freedom for this

problem is the diameter ratio L,/D. A search is conducted for the length ratio L,/D that
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minimizes the value of the pressure drop p for specific combinations of S, a, D1/D and

Re. Figure 36 details all the steps required by the Constructal Design methodology.

Constructal Design Methodology

Step 1: Define precisely the flow system to be studied.
Bypass graft circumventing a partially stenosed idealized coronary artery.

Step 2: Indentify the flow (what is flowing and its magnitude).
Steady state flow of a Newtonian blood.

Step 3: Indentify the meaning of provide easier access (facilitate the flow) for the
physical problem.

Pressure drop along the length L. should be as low as possible.

Step 4: Solution of the physical problem to calculate performance indicator.
Numerical solution of conservation equation for incompressible fluids.

Step 5: Identify the constrains of the problem.
Artery and bypass lengths.

Step 6: Identyfy the degrees of freedom for changing system g try and flow
parameters to be evaluated.

Reynolds number Re; stenosis degree S; junction angle a; diameter ratio Dy/D; bypass
attachead point L,/D.

Step 7: Calculate the maximum or minimum performance indicator and
geometries which allow the achievement of the best performance.

Dimensionless pressure drop as a function of L,/D.

Figure 36 . Constructal design flowchart. [Ref. 7.5]

4.2.2 Mathematical Modelling
The flow system is described by the mass and moment balance equations [83]:

o,
— =0 4221
0% ( )
aﬁi - aﬁl 6}5 1 af'l]
ot ' '0%;, 0%, Re dx; (4222)

where {i; is the dimensionless velocity field, is the dimensionless position vector, is the
dimensionless pressure drop, is the dimensionless extra stress tensor field and Re is the

Reynolds number defined as [83]:

- U; - X - Ap N Tij pUmD
U =7—; X==; =—7; T= Re = —— 4.2.2.3
T TD P, Umt)/D p ( )

where Uy, is the average velocity at the inlet, D is the diameter of the artery, AP is the

pressure drop along L, p is the fluid mass density and [ is the fluid viscosity.
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The constitutive equation for the extra stress is that of a generalized Newtonian
liquid [85]:

7;; = 2n(y)Dy; (4.2.2.4)
where is the viscosity function and Dj; is the strain rate tensor, given as the symmetric
part of the velocity gradient tensor [59]. For a Newtonian fluid, is a constant and equal
to p [59]. For the simulation it was considered a Newtonian blood as working fluid.
The physical properties and parameters used for the dimensioning of Eqgs.(4.2.2.1)-
(4.2.2.2), according to rules Eq.(4.2.2.3), are p=1000 kg/m® and u=0.0035 Pa s.

4.2.3 Numerical Method and Computational Grid
Using ANSYS/FLUENT [67], the Finite Volume Method [86] was employed to

solve the partial differential equation system. A pressure-based solver was used with a
pressure-velocity coupling method, second-order interpolation functions for velocity
fields, and linear interpolation function for the pressure field. All calculations were
conducted in a double-precision representation of real numbers. The iterative algorithm
was a false transient. The mesh was parameterized to keep the element sizes
proportional according to the stenosis configuration and diameter ratio studied. Figure

37 shows the division of the domain.
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Section B-B

Figure 37. Computational mesh. [Ref. 7.5]

The inlet and outlet ducts are discretized with tetrahedral finite elements with
size 5.5x10* m. Instead, the area of interest was discretized with smaller tetrahedral
finite elements having size 3.0x10** m. Along the walls, prismatic layers elements were
used to capture the boundary layer better. Figure 37 presents a sample of the
computational mesh for the model with detailed views at the cross-section in the
different zone of the domain. As a convergence criterion scaled residuals of each
equation at an iteration were used and compared with a user-defined convergence
criterion equal to 10 for velocity and pressure fields. The Grid Convergence Index
(GCI) method was applied for different values of Reynold number Re and length
junction L,/D at two values of stenosis degree S (50%, and 75%). As explained by
Celik et al. [83], this method is useful for calculation and reporting of discretization
error estimated in CFD simulations where experimental data may not be available for
comparison. Table 7 and Table 8 summarize these results for S = 50% and S = 75%
respectively. N; represents the number of elements. It can be verified that the maximum
GCI index was 2.36% using a refining mesh of a 30% factor. It is important to observe

that, based on experience and not on formal derivation, a maximum GCI value of 5%
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Is considered acceptable for this method [83]. The method to evaluate the pressure drop

AP is explained in Section 4.2.4.

Table 7. crid Convergence Index (GCI) for S = 50 %, a = 30° and D1/D = 1 (with D = 3 mm). [Ref. 7.5]

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Lz/D 2.50 2.67 3.33 4.00 5.00 6.00 6.67
N1 259310 262360 276020 286970 304790 114870 118950
N2 156580 158630 164620 170220 179030 73428 75842
Ns 105150 106960 110460 113490 118560 50887 52255
APx1 [Pa) 109.55 109.46 106.73 102.42 98.09 91.71 87.41
Re=150 APxz [Pa) 109.39 109.40 106.86 103.30 97.87 91.48 87.16
APxs [Pa) 109.52 109.53 106.96 103.48 98.04 91.79 87.48
GCI % 0.80 0.060 0.58 0.29 0.97 0.91 1.30
APni [Pa) 202.39 200.07 197.79 191.77 182.89 171.38 162.02
Re=250 APz [Pa] 201.93 200.11 197.24 191.18 182.27 171.08 162.02
APys [Pa] 202.15 200.42 196.86 191.82 182.63 171.10 161.81
GCI % 0.27 0.0040 0.86 0.50 0.60 0.017 4.17x10-7
APy [Pa] 367.90 367.90 356.99 349.56 336.80 318.20 30245
Re=400 APxz [Pa) 367.98 366.61 356.46 347.82 335.10 316.68 300.97
APxs [Pa) 366.87 364.96 35640 348.62 335.38 316.74 301.19
GCl % 0.0023 1.81 3.67x105 0.54 0.13 0.027 0.11

Table 8. Grid Convergence Index (GCI) for S = 75 %, a = 30° and D1/D =1 (with D = 3 mm). [Ref. 7.5]

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
12/D 250 267 333 100 500 6.00 667

Ni 258330 261020 273360 285660 303880 321410 333890

N: 156090 157110 163950 170180 178670 187930 194740

N 104770 92633 110070 113380 116550 121490 125240

APn: [Pa] 11850 119.20 118.13 117.24 11587 114.00 11238

APz [Pa] 118.58 119.39 118.19 11731 116.09 11431 112.90

Re=150 APys [Pa] 118.70 119.69 118.22 117.84 11654 114.75 113.02
GC1% 0.17 034 0.064 0.011 023 081 0.17

APn: [Pa] 22058 21939 22167 219.44 21877 217.00 71424

APz [Pa] 219.85 221.87 221.58 219.18 218.63 21693 215.00

Re=250 APys [Pa] 219.97 2275 22194 219.97 219.13 216.50 21436
GC1% 0.081 0.018 0.017 0.073 0.031 0.055 236

APr: [Pa] 307.32 30257 30540 30372 303.98 30843 30732

Rec400 APy [Pa] 405.12 407.88 405.05 403385 402566 40536 406.71

APy [Pa] 403.98 408.40 406.66 40433 40533 406.45 406.01
GCI% 0.73 0.18 0.030 0.015 029 052 127

In Table 9 the GCI index for geometry without bypass is analyzed with the aim
of comparing the results of the different geometries. The mesh with the identical
elements size was applied at the artery graft without bypass for evaluating the pressure

drop on the same length and compare the results.
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Table 9. Grid Convergence Index (GCI) stenosis artery. [Ref. 7.5]

$-50% S=75%
N 316440 417500
N: 185110 234950
N 118740 153360
APyia [Pa] 286,61 4745.40
APyzg [Pa] 286.94 4739.95
Re=150 APysg [Pa] 288.85 4738.83
GCI % 0.030 0.037
APyco [Pa] 62761 11791.00
~ APyzg [Pa] 62231 1178035
Re=250 APysg [Pa] 62249 1142080
GCI% 0.037 0.0034
APyco[Pa] 130030 77750.00
~ APyzg [Pa] 1301.10 27690.35
Re=400 APy3q [Pa] 1302.00 27680.98
GCI % 062 0.050

4.2.4 Procedure
Figure 38 shows the planes position where the pressure inlet Py, and pressure

outlet P, measurements were taken. The measurements planes have been positioned
symmetrically concerning the shrinkage point. The distance L has been defined at 50
mm, or equivalent L/D=16.67. The L dimension remains fixed for all simulations. Once
the pressure values have been obtained, the pressure drop (Ap/L) has been calculated

as.
AP
<_L ) — P, —P,., (4.2.4.1)

After that, the values calculated according to Eq.(4.2.4.1) have been compared
with the pressure drop due without the bypass computed in the same way, obtaining
the dimensionless quantity:

__ (aP/L)

p= m (4.2.4.2)

Measure inlet plane Measure bypass plane
My, m

by

Measure before stenosis
e

Figure 38. Plane measure. [Ref. 7.5]
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4.3 Results and Discussion

Figure 39 and Figure 40 show the pressure drop as a function of the degree of

freedom L,/D with range 2.50<L,/D<6.67. Each curve represents the results of stenosis

degree S equal to 50% and 75% at Reynolds Number Re equal to 150, 250, and 400.
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Figure 39. Comparison of dimensionless pressure drop trend for S=50% (left) and S=75% (right) at different

Reynolds Number Re. [Ref. 7.5]
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Figure 40. Comparison of dimensional pressure drop trend for S=50% (left) and S=75% (right) at different

Reynolds Number Re. [Ref. 7.5]
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The results show a monotonically decreasing trend for the pressure drop with
increasing the distance of the bypass connection point L,. This effect is significantly
affected by the velocity of the fluid. When the Reynolds Number Re increases, the
pressure drop follows the same trend of the other Reynolds numbers, but the magnitude
of p, or (Ap/L), decreases. The stenosis S value has an important effect on the pressure
drop. The pressure mitigation effect with the bypass attachment point is less evident
when S = 75%. Its trend remains approximately constant for each Reynolds values. To
understand better the beneficial effect of the bypass, the mass flux in the different areas
of the system was assessed. Table 10 and Table 11 are referred to Figure 41 and show
the mass flow rate for S = 50% and S = 75% respectively.

The stenosis section was considered before the actual stenosis zone to be able to
compare all mass flow rate with the other sections since the diameter remains equal to
D.

As Number Re increases, the mass flow rate is distributed in an increasingly
different way, favoring the passage in the bypass section. This effect is more marked
when the stenosis S increases. The mass flow rate through the bypass represents
approximately 65-70% of the total mass flow rate. Knowing the mass flow rate values
in the different bypass sections, it was possible to evaluate the resistances to the passage

of fluid, due to the relation

g=2p (4.3.1)
m

where the resistance R is evaluated in [Pa s/kg] in S.1. It is worth mentioning that, with
reference to Figure 34., the resistance is evaluated between the outlet and inlet measure
plane.

Table 12 and Table 13 show the evaluations of the resistance R in the stenosis
and bypass sections for S values 50% and 75% respectively. The graphical results form
of Table 12 and Table 13 is represented in Figure 42. The flow resistance decreases
monotonically with increasing L. In particular, the stenotic resistance undergoes a

considerable decrease with the increase of the bypass attachment point.
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Finally, Figure 43 illustrates velocity contours and streamlines with reference to
a couple of outcome results. Please note the optimal configuration depiced on the right,
having the following coordinates: L,/D=6.67, S=75%, and Re=150.
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Figure 41. Mass flow rate for S = 50% (top: Table 4) and S = 75% (bottom: Table 5). [Ref. 7.5]
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Figure 42. Resistance R for S = 50% (top: Table 6) and S = 75% (bottom: Table 7). [Ref. 7.5]

Table 10. Evaluation of the mass fluxes in the measure inlet section ( m;,, ) stenosis section ( mg, ) and central
bypass section ( mny,, ) for S =50 %, = 30° o and D1/D = 1 (with D = 3 mm). [Ref. 7.5]

Re=150, ri, = 1.19x10-3 kg/s

Re=250, i1, =1.98x10-3 kgfs

Re=400, My, = 3.17x10-3 ke/s

107 kg/s % 10° kg/s % 10° kg/s %
rhi 0.33 27.73 0.57 28.79 0.96 30.28

La/D=2.50 ,
m, 0.86 72.27 141 7121 221 69.72
Th, 0.35 29.41 0.60 30.30 1.00 31.55

La/D=2.67 )
m,, 0.84 70.59 1.38 69.70 217 68.45
Ti’T, 0.39 32.77 0.64 32.32 1.03 32.49

L./D=3.33 .
m,, 0.80 67.23 1.34 67.68 214 67.51
rh; 041 34.45 0.67 33.84 1.06 33.44

Lo/D=4.00 ,
my, 0.78 65.55 1.31 66.16 211 66.56
I’i’T, 0.44 36.97 0.72 36.36 111 35.02

Lo/D=5.00 .
m,, 0.75 63.03 1.26 63.64 2.06 64.98
m, 0.46 38.66 0.75 37.88 115 36.28

L2/D=6.00 .
m,, 073 61.34 1.23 62.12 2.02 63.72
I’h, 0.48 40.34 0.76 38.38 1.18 37.22

Laf/D=6.67 }
m, 071 59.66 1.22 61.62 1.99 62.78
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Table 11. Evaluation of the mass fluxes in the measure inlet section ( m;,, ) stenosis section ( mg; ) and central
bypass section (m,,, ) for S =75 %, = 30° o and D1/D = 1 (with D = 3 mm). [Ref. 7.5]

Re=150, m, = 1.19x10-3 kg/s Re=250, m,, =1.98x10-3 kg/s Re=400, m,, = 3.17x10-3 kg/s
10° kg/s % 10° kg/s % 10° kg/s %
rhst 0.07 5.88 0.12 6.06 0.26 8.20
Ly/D=2.50 5
my, 112 94.12 1.86 93.94 291 91.80
rhst 0.07 5.88 0.11 5.56 0.20 6.31
Lo/D=2.67 .
my, 112 94.12 1.87 94.44 2.97 93.69
m, 0.07 5.88 0.12 6.06 0.21 6.62
Lo/D=3.33 .
m, 112 94.12 1.86 93.94 2.96 93.38
/D m, 0.08 6.72 0.13 6.57 0.22 6.94
=4.00 .
m,, 111 93.28 1.85 93.43 295 93.06
m, 0.09 7.56 0.14 7.07 0.24 7.57
Ly/D=5.00 .
my,, 1.10 92.44 1.84 92.93 293 92.43
m, 0.10 8.40 0.16 8.08 0.25 7.89
L2/D=6.00 .
m,, 1.09 91.60 1.82 91.92 292 92.11
m, 0.10 8.40 0.16 8.08 0.26 8.20
Lo/D=6.67 .
my, 1.09 91.60 1.82 91.92 291 91.80
Table 12. Resistance R values for S = 50%. [Ref. 7.5]
LJ/D Ap/L [Pa] m,, 10° [kg/s] iy, 10° [kg/s] Re [Pa s/ kg Rur [Pa s / kg]
2.50 109.55 0.33 0.86 331970 127380
267 109.46 0.35 0.84 312740 130310
3.33 106.73 0.39 0.80 273670 133410
Re=150 4 102.42 0.41 0.78 249800 131310
5 98.09 0.44 0.75 222930 130790
6 91.71 0.46 0.73 199370 125630
6.67 87.41 0.48 0.71 182100 123110
2.50 202.39 0.57 141 355070 143540
2,67 200.07 0.60 1.38 333450 144980
3.33 197.79 0.64 1.34 309050 147600
Re=250 4 191.77 0.67 131 286220 146390
5 182.89 0.72 1.26 254010 145150
6 171.38 0.75 1.23 228510 139330
6.67 162.02 0.76 1.22 213180 132800
2.50 367.90 0.96 221 383230 166470
267 367.90 1.00 217 367900 169540
3.33 356.99 1.03 2.14 346590 166820
Re=400 4 349.56 1.06 211 329770 165670
5 336.80 111 2.06 303420 163500
6 318.20 1.15 2.02 276700 157520
6.67 302.45 1.18 1.99 256310 151980
Table 13. Resistance R values for S = 75%. [Ref. 7.5]
Lo/D Ap/L [Pa] T, 10° [kg/s] iy, 10° [kg/s] Ret [Pa 5/ kg] Ruy [Pa 5 / kg]
2.50 118.50 0.07 112 169290 105800
2.67 119.20 0.07 112 170230 106430
3.33 118.13 0.07 112 168760 105470
Re=150 4 117.24 0.08 111 146550 105620
5 115.87 0.09 1.10 128740 105340
6 114.00 0.10 1.09 114000 104590
6.67 112.38 0.10 1.09 112380 103100
2.50 220.58 0.12 1.86 183820 118590
2.67 219.39 0.11 1.87 199450 117320
3.33 221.67 0.12 1.86 184720 119180
Re=250 4 219.44 0.13 1.85 168800 118620
5 218.77 0.14 1.84 156260 118900
6 217.09 0.16 1.82 135680 119280
6.67 214.24 0.16 1.82 133900 117710
2.50 403.70 0.26 291 201290 139970
2.67 402.57 0.20 297 201280 135550
3.33 405.40 0.21 296 193050 136960
Re=400 4 403.72 0.22 2495 183510 136850
5 403.98 0.24 293 168320 137880
6 408.43 0.25 292 163370 139870
6.67 407.32 0.26 291 156660 139970
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4.4 Conclusions
In this work, it was studied the influence of the bypass attachment point L, from

the artery stenosis position in different flow condition at fixed value of the junction
angle a. = 30° and diameter ratio D1/D = 1. Three pressure drop trends for each stenosis
degree were created using Constructal Design related to the CFD analysis. The stenosis
degree S considered were equal to 50% and 75%. Instead, the Reynolds number Re
used were 150, 250 and 400. The results obtained show a decrease in the pressure drop
trend as the distance of the bypass attachment point increases. The decreasing pressure
trend was less pronounced when S increases. Therefore, the optimum point is the point
as far as possible from the shrinkage. It was evaluated the mass flows rate in the various
sections of the system. Moreover, the results showed that the flow was all the more
diverted in the bypass section when the Reynolds number was more significant. It also
computed the resistance flow values in the bypass and stenosis section. It is an
alternative formulation for talking about the pressure drop trend.

At this point, some limitations of this study should be mentioned. First of all, a
steady-state condition was applied while the blood flow is known to be pulsating.
Secondly, the blood was assumed as a Newtonian fluid, which may affect the results
found at low Reynolds number. Moreover, the graft and arteries were assumed as rigid

walls and idealized without considering a patient-specific vascular model. Besides,
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literature does not yet provide many experimental data that are essential for validation
and clinical adoption of any proposed configuration.

Despite the simplifications mentioned above and assumptions, by applying
Constructal Design methodology, the main conclusions and the optimal graft design
found in this paper are following previous studies that evaluated the graft design with

other methodologies.
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5. Fluid Models Comparison
for the Study of the Bypass

The classification of fluids can be performed in two ways: (i) based on the
response of an external pressure; (ii) based on the effects produced under the action of
a shear force. In the first case, compressible fluids are distinguished from
incompressible ones according to whether the volume of an element of fluid depends
on the pressure or not. In the case of a gas, compressibility affects the flow
characteristics, while a liquid, except in special circumstances, can be considered
incompressible and the response to shear forces is of greater importance.

This chapter introduces the fluid models in their entirety, in order to uniquely
distinguish the differences between Newtonian fluid and non-Newtonian fluid. Then
the different consequences of the application of a non-Newtonian model for the
description of the blood flow inside the bypass analyzed in the previous chapters will

be analyzed.

5.1 Classification of Fluid Behaviour
5.1.1 Definition of a Newtonian Fluid
Consider a thin fluid layer contained between two parallel planes distant dy as

shown in Figure 44. If the upper wall is translated in the x-direction with a force F, this
will be balanced by an equal and opposite internal friction force. For an incompressible
Newtonian fluid in laminar flow, the resulting shear stress is equal to the product of
the shear rate and the viscosity of the fluid. In this simple case, the shear rate can be
expressed as the velocity gradient in the direction perpendicular to that of the shear

force, i.e.,
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F v
7=t = (=) = i (5.1.1.1)

Surface area A

Figure 44. Schematic representation of unidirectional shearing flow. [89]

Note that in Eqg.(5.1.1.1) the first subscript on both t and y indicates the direction
normal to that of shearing surface, while the second subscript refers to the direction of
the force and the flow.

Considering the equilibrium of a fluid element, it can be seen that on each shear
plane there are two equal and opposite shear stresses: a positive one that moves slower
and a negative one that moves faster. The negative sign in Eq.(5.1.1.1) indicates that
Tyx IS @ measure of the resistance to motion. Considering another point of view , for an

incompressible fluid of density p, Eq,(5.1.1.1) can be written as:

ko 5.1.1.2
Tyx = o dy PVx (5.1.1.2)

The quantity (pVy) is the linear momentum in the x-direction per unit volume of the
fluid and 7, represents the momentum flux in the y-direction and the negative sign
indicates that the momentum transfer occurs in the direction of decreasing velocity.
The constant of proportionality, p (ratio of the shear stress to the rate of shear)
which is called the Newtonian viscosity is, by definition, independent of shear rate

(¥yx) Or shear stress (7,,) and depends only on the material and its temperature and

pressure.
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The “flow curve” or “rheogram” is the plot of shear stress (t,,) against shear
rate (yy,). For a Newtonian fluid is a straight line of slope, W, and passing through the
origin; the sigle constant, y, thus completely characterizes the flow behaviour of a
Newtonian fluid at fixed temperature and pressure. The shear stress—shear rate data
shown in Figure 45 demonstrate the Newtonian fluid behaviour of a cooking oil and a
corn syrup; the values of the viscosity for some substances encountered in everyday

life are given in Table 14.

0 10 20 30 40 50 60 70 80

| | | | | I | T 550
o Cooking oil (T = 294 K)
100 - » Corn syrup (T = 297 K) - 500
90 - — 450
80 - — 400
Slope=p=11.6Pas
70 - — 350
o
o ©
w B0 — 300
w
e
®
@ 50 — 250
Q
-
n
40 - — 200
30 - — 150
20 Slope = =0.064 Pas 1100
10 - 50
0 : J 0

0 400 800 1200
Shear rate (s™)

Figure 45. Typical shear stress-shear rate data for a cooking oil and corn syrup [89]
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Table 14. Typical viscosity values at room temperature [89]

Substance i (mPas)
Air 1072
Benzene 0.65
Water 1
Molten sodium chloride (1173 K) 1.01
Ethyl alcohol 1.20
Mercury (293K) 1.55
Molten lead (673 K) 2.33
Ethylene glycol 20
Olive oil 100
Castor oil 600
100% Glycerine (293 K) 1500
Honey 104
Corn syrup 10°
Bitumen 10!
Molten glass 101

Figure 44 and Eq.(5.1.1.2) represent the simplest case wherein the velocity
vector which has only one component, in the x-direction and it varies only in the y-
direction. Such a flow configuration is known as simple shear flow. For the more
complex case of three-dimensional flow, it is necessary to set up the appropriate partial
differential equations. For instance, the more general case of an incompressible
Newtonian fluid may be expressed - for the x-plane (area oriented normal to the x-
direction) — as follows [87], [88]:

_ g P, 2, (% Oy OV 5.1.1.3
b = 2l 5 T3 Bx T oy T oz (5.1.1.3)
v, oV,
Tyy = —lk (a—;+a—;> (5.1.1.4)
v, av,
Taz = —H (a—z"+—x) (5.1.1.5)

Figure 46 shows the nine stress components schematically in an element of fluid.

93



]
IATzy
|
~p,, — Flow
XZ

X

/

Figure 46. Stress components in three-dimensional flow [89]
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By considering the equilibrium of a fluid element, it can be shown that 7,,, = 7,,,;
Tyz = Tzx AN T), = T,,,. The normal stresses can be visualized as being made up of

two components: isotropic pressure and a contribution due to flow, i.e.,

Pex = =D + Txx (5.1.1.6)
Py =—p+1y (5.1.1.7)
Pz = =D + Tz (5.1.1.8)

where Ty, T,,, T, contributions arising from flow are known as deviatoric normal

stresses for Newtonian fluids and as extra stresses for non-Newtonian fluids. For an

incompressible Newtonian fluid, the isotropic pressure is given by:

1
p = _§(pxx + Py, + B,,) (5.1.1.9)
From Eq.(5.1.1.6) to Eq.(5.1.1.9) it follows that

Tux T Tyy + T, =0 (5.1.1.10)
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For a Newtonian fluid is simple shearing motion, the deviatoric normal stress

components are identically zero, i.e.,

Tax = Tyy = Tzz =0 (5.1.1.11)

Thus, the complete definition of a Newtonian fluid is that it not only possesses
a constant viscosity but it also satisfies the condition of Eq.(5.1.1.11), or simply that it
satisfies the complete Navier—Stokes equations. Thus, for instance, the so-called
constant viscosity Boger fluids ([89], [90]) which display constant shear viscosity but
do not conform to Eq.(5.1.1.11) must be classed as non-Newtonian fluids. A cursory
inspection of AAAA reveals the widespread occurrence of non-Newtonian flow

behaviour in materials encountered in everyday life as well as in diverse industrial

settings.
Table 15. Examples of substances exhibiting non-Newtonian fluid behaviour [89]
m Adhesives (wall paper paste, carpet ®m Foodstuffs (fruit/vegetable purees and
adhesive, for instance) concentrates, sauces, salad dressings,
® Ales (beer, liqueurs, etc.) mayonnaise, jams and marmalades,
® Animal waste slurries from cattle farms ice-cream, soups, cake mixes and cake
® Biological fluids (blood, synovial fluid, toppings, egg white, bread mixes, snacks)
saliva, etc.) ® Greases and lubricating oils
® Bitumen ® Mine tailings and mineral suspensions
m Cement paste and slurries ® Molten lava and magmas
® Chalk slurries ® Paints, polishes and varnishes
® Chocolates ® Paper pulp suspensions
® Coal slurries ® Peat and lignite slurries

®m Cosmetics and personal care products ® Polymer melts and solutions, reinforced
(nail polish, lotions and creams, lipsticks, plastics, rubber
shampoos, shaving foams and creams,  ® Printing colours and inks

toothpaste, etc.) ® Pharmaceutical products (creams, foams,
® Dairy products and dairy waste streams suspensions, for instance)

(cheese, butter, yogurts, fresh cream, ® Sewage sludge

whey, for instance) m Wet beach sand
® Drilling muds ® Waxy crude oils

® Fire fighting foams
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5.2.1 Non-Newtonian Fluid behaviour

Yield-

pseudoplastic
Bingham
L plastic —

Shear stress

_F’seudo B
plastic Newtonian
fluid fluid

B Dilatant fluid N

| | |
Shear rate

Figure 47. Types of time-independent flow behaviour [89]

A non-Newtonian fluid is one whose flow curve (shear stress versus shear rate)
is non linear or does not pass through the origin (Figure 47), i.e. where the apparent
viscosity, shear stress divided by shear rate, is not constant at a given temperature and
pressure but is dependent on flow conditions such as flow geometry, shear rate, etc.
and sometimes even on the kinematic history of the fluid element under consideration.
Such materials may be conveniently grouped into three general classes:

1) Fluids for which the rate of shear at any point is determined only by the value of
the shear stress at that point at that instant; these fluids are variously known as

“time independent”, “purely viscous”, “inelastic” or “generalized Newtonian

fluids” (GNF).

2) More complex fluids for which the relation between shear stress and shear rate
depends, in addition, upon the duration of shearing and their kinematic history;

they are called “time-dependent fluids™.
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3) Substances exhibiting characteristics of both ideal fluids and elastic solids and
showing partial elastic recovery, after deformation; these are categorized as
“visco-elastic fluids”.

This classification scheme is arbitrary in that most real materials often exhibit a
combination of two or even all three types of non-Newtonian features. Generally, it is,
however, possible to identify the dominant non-Newtonian characteristic and to take
this as the basis for the subsequent process calculations. Also, as mentioned earlier, it
IS convenient to defi ne an apparent viscosity of these materials as the ratio of shear
stress to shear rate, though the latter ratio is a function of the shear stress or shear rate
and/or of time.

There are many types and models for the description of non-Newtonian fluids;
for our purpose we consider the non-Newtonian fluid models used to describe the

rheological behaviour of blood.

5.1.2.1 Time-Independent
In simple shear, the flow behaviour of this class of materials may be described

by a constitutive relation of the form

Vyx = f(Tyx) (5.1.2.1.1)

or its inverse form,

Tyx = fi(Vyx) (5.1.2.1.2)

This equation implies that the value of y,,, at any point within the sheared fluids is

determined only by the current value of shear stress at that point or vice cersa.
Depending upon the form of the function in Eq.(5.1.2.1.1) or Eq.(5.1.2.1.2), these
fluids may be further subdivided into three types:

a) Shear-thinning or pseudoplastic
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b) Viscoplastic
c) Shear-thickening or dilatant.
Qualitative flow curves on linear scales for these three types of fluid behaviour
are shown in Figure 47; the linear relation typical of Newtonian fluids is also included.
The most common type of time-independent non-Newtonian fluid behavior
observed is pseudoplasticity or shear-thinning, characterized by an apparent viscosity
which decreases with increasing shear rate. Both at very low and at very high shear
rates, most shear-thinning polymer solutions and melts exhibit Newtonian behavior,
I.e., shear stress—shear rate plots become straight lines, as shown schematically in
Figure 48, and on a linear scale will pass through origin. The resulting values of the
apparent viscosity at very low and high shear rates are known as the zero shear

viscosity, o, and the infinite shear viscosity, u.,, respectively.
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Figure 48. Schematic representation of shear-thinning behaviour [89]

Thus, the apparent viscosity of a shear-thinning fluid decreases from po t0 po, With
increasing shear rate. Data encompassing a sufficiently wide range of shear rates to
Illustrate this complete spectrum of pseudoplastic behaviour are difficult to obtain, and

are scarce. A single instrument will not have both the sensitivity required in the low
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shear rate region and the robustness at high shear rates, so that several instruments are
often required to achieve this objective. Figure 49 shows the apparent viscosity - shear
rate behaviour of an aqueous polyacrylamide solution at 293 K over almost seven
decades of shear rate. The apparent viscosity of this solution drops from 1400 mPa s to
4.2 mPa s, and so it would hardly be justifiable to assign a single average value of

viscosity for such a fluid!
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[F8ig]ure 49. Demonstration of zero shear and infinity shear viscosities for a shear-thinning polymer solution

The values of shear rates marking the onset of the upper and lower limiting
viscosities are dependent upon several factors, such as the type and concentration of
polymer, its molecular weight distribution and the nature of solvent, etc. Hence, it is
difficult to suggest valid generalizations but many materials exhibit their limiting
viscosities at shear rates below 102 s and above 10° s, respectively. Generally, the
range of shear rate over which the apparent viscosity is constant (in the zero-shear
region) increases as molecular weight of the polymer falls, as its molecular weight
distribution becomes narrower, and as polymer concentration (in solution) drops.

Similarly, the rate of decrease of apparent viscosity with shear rate also varies from
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one material to another, as can be seen in Figure 50 for three aqueous solutions of

chemically different polymers.
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Figure 50. Representative shear stress and apparent viscosity plots for three pseudo-plastic polymer solutions.
[89]

MATHEMATICAL MODELS FOR SHEAR-THINNING FLUID BEHAVIOUR
Many mathematical expressions of varying complexity and form have been
proposed in literature to model shear-thinning characteristics; some of these are
straightforward attempts at curve fitting, giving empirical relationships for the shear
stress (or apparent viscosity) - shear rate curves for example, while others have some
theoretical basis in statistical mechanics — as an extension of the application of the
Kinetic theory to the liquid state or the theory of rate processes, etc. Only a selection of
the most commonly used viscosity models for describing blood is provided here; more
complete descriptions of other models are available in many books ([87], [91]) and in

review paper [92].

100



(a) The power-law or Ostwald de Waele model

The relationship between shear stress and shear rate (plotted on double
logarithmic coordinates) for a shear-thinning fluid can often be approximated by a
straight line over a limited range of shear rate (or stress). For this part of the flow curve,

an expression of the following form is applicable:
Ty = M(Vyx) (5.1.2.1.3)
so the apparent viscosity for the so-called power-law fluid is thus given by:

T . -1
=2 = m(j,,)" (5.1.2.1.4)
Yy

For n<l the fluid exhibits shear-thinning properties; for n=1 the fluid shows
Newtonian behaviour, and for n>1 the fluid shows shear-thickening behaviour.

In these equations, m and n are two empirical curve-fitting parameters and are
known as the fluid consistency coefficient and the flow behaviour index respectively.
For a shear-thinning fluid, the index may have any value between 0 and 1. The smaller
the value of n, the greater is the degree of shear-thinning. For a shear-thickening fluid,
the index n will be greater than unity. When n=1, Eq. (5.1.2.1.3) and Eq. (5.1.2.1.4)
reduce to Eqg. (5.1.1.2) which describes Newtonian fluid behaviour.

Although the power-law model offers the simplest representation of shear-
thinning behaviour, it does have a number of shortcomings. Generally, it applies over
only a limited range of shear rates and therefore the fitted values of m and n will depend
on the range of shear rates considered. Furthermore, it does not predict the zero and
infinite shear viscosities, as shown by dotted lines in Figure 48. Finally, it should be
noted that the dimensions of the flow consistency coefficient, m, depend on the
numerical value of n and therefore the m values must not be compared when the n

values differ. On the other hand, the value of m can be viewed as the value of apparent
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viscosity at the shear rate of unity and will therefore depend on the time unit (e.g.
second, minute or hour) employed. Despite these limitations, this is perhaps the most
widely used model in the literature dealing with process engineering applications.
Finally, while each non-Newtonian fluid is unique and its rheological behaviour must
be evaluated directly, Table 16 provides a compilation of the power-law constants (m
and n) for a variety of substances. It needs to be emphasized here that these values are

provided here to give the readers a feel for their values.
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Table 16. Typical values of power-law constants for a few systems. [89]

System Temperature (K) ni—) m (Pas™)

Agro- and food-related products

Aerated poultry waste 283-298 1.81-0.161 Inx 1.12 x 107 (x>
slurry (x is % volume
of solids)

Ammonium alginate 297 0.5 13
solution (3.37%)
Apple butter - 0.15 200
Apple sauce 300 0.3-0.45 12-22
Apricol puree 300 0.3-0.4 5-20
Banana puree 293-315 0.33-0.5 4-10
Carrot puree 298 0.25 25
Chicken (minced) 296 0.10 900
Chocolate 303 0.5 0.7
Guava puree 296.5 0.5 40
Human blood 300 0.9 0.004
Mango pulp 300-340 0.3 3-10
Marshmallow cream — 0.4 560
Mayonnaise 298 0.6 5100
Papaya puree 300 0.5 10
Peach puree 300 0.38 1-5
Peanut butter — 0.07 500
Pear puree 300 0.4-0.5 1-5
Plum puree 287 0.35 30-80
Tomato concentrate 305 0.6 0.22
(5.8% sohd)
Tomato ketch up 295 0.24 33
Tomato paste - 0.5 15
Whipped desert toppings - 0.12 400
Yoghurt 293 0.5-0.6 25
Polymer melts
High density polyethylene 453493 0.6 3.75-6.2 = 107
(HDPE)
High impact polystyrene 443483 0.20 3.5-7.5 x 10¢
Polystyrene 463-498 0.25 1.5-4.5 x 104
Polypropylene 453-473 0.40 4.5-7 % 10°
Low density polyethylene 433473 0.45 4394 % 10°
(LDPE)
Nylon 493-508 0.65 1.8-2.6 X 10°
Polymethylmethyacrylate 493-533 0.25 2.5-9 % 10*
(PMMA)
Polycarbonate 553-593 0.65-0.8 1-8.5 % 10°
Personal care products
Nail polish 298 0.86 750
Mascara 298 0.24 200
Toothpaste 298 0.28 120
Sunscreen lotions 298 0.28 75
Ponds cold cream 298 0.45 25
il of Olay 298 0.22 25
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(b) The Carreau viscosity equation

When there are significant deviations from the power-law model at very high
and very low shear rates as shown in Figure 49, it is necessary to use a model which
takes account of the limiting values of viscosity W and p..

Based on the molecular network considerations, Carreau [93] put forword the

following viscosity model which incorporates both limiting viscosities o and g, :

U= Uoo . 2] D)/2
e |1+ (A7) (5.1.2.15)

where n and A are two curve-fitting parameters. This model can describe shear-thinning
behaviour over wide ranges of shear rates but only at the expense of the added
complexity of four parameters. This model predicts Newtonian fluid behaviour u = u,

when either n=1 or A=0 or both.

The Cross viscosity model and the Ellis fluid model also fall into the Shear-
thinning fluid family, but in literature these models are not commonly used for the
description of blood, therefore they are not reported here, but they are widely evaluable
in the literature [94].

To conclude the description of the time-independent fluids, the viscoplastic
models and the dilating models are briefly illustrated.

The viscoplastic type of fluid behaviour is characterized by the existence of a
yield stress (to) which must be exceeded before the fluid will deform or flow.
Conversely, such a material will deform elastically (or flow en masse like a rigid body)
when the externally applied stress is smaller than the yield stress. Once the magnitude
of the external stress has exceeded the value of the yield stress, the flow curve may be
linear or non-linear but will not pass through origin (Figure 47). Hence, in the absence

of surface tension effects, such a material will not level out under gravity to form an
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absolutely flat free surface. One can, however, explain this kind of fluid behaviour by
postulating that the substance at rest consists of three-dimensional structures of
sufficient rigidity to resist any external stress less than to. For stress levels greater than
To, however, the structure breaks down and the substance behaves like a viscous
material. In some cases, the build-up and breakdown of structure has been found to be
reversible, i.e., the substance may regain its initial value of the yield stress.

A fluid with a linear flow curve for |z,,,| > |z,| is called Bingham plastic fluid
and is characterized by a constant plastic viscosity and a yield stress. On the other hand,
a substance possessing a yield stress as well as non-linear flow curve on linear
coordinates (for |Tyx| > |1o]), is called “yield-pseudoplastic” material. Figure 51
illustrate viscoplastic behaviour as observed in a meat extract an in a polymer solution.

It is interesting to note that a viscoplastic material also display an apparent
viscosity which decreases with increasing shear rate. At very low shear rates, the
apparent viscosity is effectively infinite at the instant immediately before the substance
yields and begins to flow. It is thus possible to regard these materials as possessing a
particular class of shear-thinning behaviour.

The mathematical models for viscoplastic fluids are:

1) The Bingham plastic model,
2) The Herschel-Bulkley fluid model;
3) The Casson fluid model.
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Figure 51. Representative stress-shear rate data showing viscoplastic behaviour in a meat extract (Bingham
plastic) and in an agueous Carbopol polymer solution (yeld-pseudoplastic). [89]

Dilatant fluids are similar to pseudoplastic systems in that they show no yield
stress but their apparent viscosity increases with increasing shear rate; thus these fluids
are also called shear-thickening. This type of fluid behaviour was originally observed
in concentrated suspensions and a possible explanation for their dilatant behaviour is
as follows: at rest, the voidage is minimum and the liquid present is sufficient to fill
the void space. At low shear rates, the liquid lubricates the motion of each particle past
others and the resulting stresses are consequently small. At high shear rates, on the
other hand, the material expands or dilates slightly (as also observed in the transport of
sand dunes) so that there is no longer sufficient liquid to fill the increased void space

and prevent direct solid—solid contacts which result in increased friction and higher
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shear stresses (as shown schematically in Figure 52). This mechanism causes the
apparent viscosity to rise rapidly with increasing rate of shear.

The term dilatant has also been used for all other fluids which exhibit increasing
apparent viscosity with increasing rate of shear. Many of these, such as starch pastes,
are not true suspensions and show no dilation on shearing. The above explanation
therefore is not applicable but nevertheless such materials are still commonly referred

to as dilatant fluids.

At rest

£ 3——— Solid particle

Q

pa)l

Under shear O Liquid

QQQ 0

Figure 52. Schematic representation of shear-thickening behaviour. [89]

Of the time-independent fluids, this sub-class has received very little attention;
consequently very few reliable data are available. Until recently, dilatant fluid
behaviour was considered to be much less widespread in the chemical and processing
industries.

The limited information reported so far suggests that the apparent viscosity—
shear rate data often result in linear plots on double logarithmic coordinates over a
limited shear rate and the flow behaviour may be represented by the power-law model,
Eq.(5.1.2.1.6), with the flow behaviour index, n, greater than unity, i.e.,

u=my)" (5.1.2.1.6)
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One can readily see that for n>1, Eq. (5.1.2.1.6) predicts increasing viscosity
with increasing shear rate. The dilatant behaviour may be observed in moderately
concentrated suspensions at high shear rates, and yet, the same suspension may exhibit
pseudo-plastic behaviour at lower shear rates, as shown in Figure 53; it is not yet

possible to ascertain whether these materials also display limiting apparent viscosities.
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Figure 53. Shear stress-shear rate behaviour of polyvinylchloride (PVC) in dioctylphthalate (DOP) dispersion
at 298 K showing regions of shear-thinning and shear-thickening [95].
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5.2 Comparison of Different Bypass Fluid Models
For the comparison study between the different fluid models, the transient case

in which the inlet velocity was considered pulsed was numerically solved (Appendix
A). The conditions of the simulations are the same as in the pulsed regime case of
chapter 3. Referring to the models most commonly used in literature, we want to justify
that the use of the Newtonian model is a valid approximation also in this case.
Therefore, the model compered are: (i) Newtonian, (ii) Power-Law and (iii) Carreau
models. The validity of the approximation is justified both through the study of the
flow field and through the analysis of cyclic stresses. Table 17 summarizes the values

of the properties used in the simulations for the different models.

Table 17. Property values used in simulations for different models. [Ref. 7.1]

Newtonian Power Law Carreau
p [kg/m?] 1060 1060 1060
U [Pas] 3.45*10°3 - -
k - 0.017 -
a - - 2
n - 0.708 0.2128
yl - - 3.313005
Mo [Pa s] - - 0.056
W [Pa s] - - 0.0035

The validation of the numerical model was performed using the Grid
Convergence Index (GCI) method considering the Newtonian blood fluid to compere
the results with Vimmr et al. [35].

The grid quality tests were conducted for the cases shown in Table 18, where N;

Is the number of mesh elements and (ﬁ,‘f,l?) Is the Root Mean Square value of the

pressure drop measured in the fourth cardiac cycle.
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As explained by Celik et al. [68], this method is useful for calculating and
reporting discretization error estimates in CFD simulations. It is important to observe
that the method considers, based on experience rather than formal derivation, a GCI
value until 5% as acceptable (Celik et al. [68]). In this case the maximum GCI value is
2.52%. This ensures an acceptable mesh quality for all simulations as this value is less
than 5%.

Figure 54 illustrates the meshes valid for the calculation, i.e. those corresponding
to N3 in the Table 3.

Figure 54. Mesh sectional view. Stenosis degree 50% on the left and stenosis degree 75% on the right. [Ref.
7.1]

In Table 19 it is represented the error of the measure of the Root Mean Square

from the relative cycle. The relative error is computed from Eq.(5.2.1).

|Parvr — Pirl
Dai+1)T

100, i =1,2,3 (5.2.1)

Ei+1),i%0 =

The pressure errors evaluated in the fourth cycle are the order of 10%%, which is
acceptable as an approximation.

In order to have a further validation of the mesh models used and the relative
numerical setting, the data of Vimmr et al. [35] were used as input data (Newtonian
fluid described in Table 17) to compare the velocity field in two section of the

geometry. The results were represented in Figure 55. It is noted that the velocity
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differences are minimal and due to the different meshes used compared to Vimmr et

al. [35]. For this reason, the meshes used can be validated.

Table 18. Grid Convergence Index (GCI) for different bypass configurations. [Ref. 7.1]

S=50% S=75%
N1 115239 113832
N, 221972 219901
Na 427584 426428
prt [Pa] 0.1138141973 0.1238977365
pAr [Pa] 0.1128971193 0.1225465280
Py [Pa] 0.1122418939 0.1222117354
GCl 2.5203% 0.4490%

Table 19. Relative error ;1) ; from the cardiac cycle (i+1) to the cycle i in dimensional and non-dimensional

format. [Ref. 7.1]

S=50%

S=75%

0.1122829233
0.1122418444
0.1122418914
0.1122418939
3.65985-102
4.18653-10°
2.24951-10°°

0.1222636913
0.1222117059
0.1222117/833
0.1222117354
4,25372-10?
6.33594-10°
3.91521-10°®
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Figure 55. Comparison of the velocity profiles in the inlet (A) and bypass (B) sections for different values of
time-steps (t1, t2 and t3) with the results of Vimmr et al. [35] (red line) in the case of stenosis degree S=75%,
junction angle a=30°, diameter ratio D/d=1 and Newtonian fluid with density p=1060 kg m™ and dynamic
viscosity p=3.45*10"° Pas. [Ref. 7.1]
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5.2.1 Results

with the aim of comparing the results of the different numerical models, the
velocity results were analyzed in three different forms. First, the 3D velocity results
were analyzed in order to capture the three-dimensional behavior of the flow (Figure
56, Figure 57 and Figure 58). Second, the velocity contours on the geometry cross
section were examined in order to make the flow field more visible by identifying the
flow recirculation areas (Figure 59, Figure 60 and Figure 61). Third, 2D velocity plots
profiles on specific geometries sections were analyzed in order to make the difference
between the models clearer (Figure 62 and Figure 63).

To determine the intensity of shear oscillations, the well-known oscillatory shear
index (OSI) is introduced according to the study of He and Ku [96]

1 . |fOTTW dt|

0SI = = 0 , (5.2.1.1)
2 fo |tW| dt

where Ty, is the Wall Shear Stress (WSS) vector and T is the period of the cardiac
cycle. The OSI values range from 0 to 0.5. The time used to calculate the OSI field is
the one referred to the last cardiac cycle of the simulation, that is the period that goes
from 3T to 4T in order to consider the effect in the steady-state flow zone.

Figure 64 shows the OSI fields in the perspective views of the two geometries
(S =50% and S = 75%) for the different fluid models. It is easy to notice that the Power
Law model, due to its velocity profile, differs a lot from the other models and the OSI
values are almost zero. The Newtonian model and that of Carreau, on the other hand,
are comparable and the differences are almost minimal. It is noted that the accentuated
values of OSI occur in the fluid recirculation areas and in the junctions between the

bypass and the main vein.
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Figure 56. 3D velocity profiles for Newtonian model at different time steps for both stenosis degree (S

and S

75%) [Ref. 7.1]
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Figure 57. 3D velocity profiles for Carreau model at different time steps for both stenosis degree (S

75%) [Ref. 7.1]
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Figure 58. 3D velocity profiles for Power Law model at different time steps for both stenosis degree (S

and S

75%) [Ref. 7.1]
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Figure 59. Contour velocity profiles for Newtonian model at different time steps for both stenosis degree
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Figure 60. Contour velocity profiles for Carreau model at different time steps for both stenosis degree (S

and S

75%) [Ref. 7.1]
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Figure 61. Contour velocity profiles for Power Law model at different time steps for both stenosis degree
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Figure 62. 2D velocity profiles comparison along sections A, B, C, D and E for three time steps (t1, t> and t3) for stenosis

degree S=50%. Solid line for Newtonian, dashed line for Carreau and dotted line for Power Law. [Ref. 7.1]
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Figure 63. 2D velocity profiles comparison along sections A, B, C, D and E for three time steps (t1, t> and t3) for stenosis

degree S=75%. Solid line for Newtonian, dashed line for Carreau and dotted line for Power Law. [Ref. 7.1]
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Figure 64. Oscillatory Shear Index (OSI) [Ref. 7.1]
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6 Conclusion

This manuscript investigates the Constructal Design method as an innovative
method for the research of geometry that maximizes the performance of a specific
element, or system, of an engineering nature.

In the first chapter, a general look is given to ideas regarding construction theory,
construction law and the construction design method (CDM).

The main features of this topic and the development of some interesting
applications (heat transfer, flows in bifurcations) are discussed, and the results
presented. Some critical issues on the validity of this theory in engineering problems
are explained and the discussion is opened in a critical way by reporting numerous
examples in the literature in support of this theory.

The thesis is developed by presenting the mathematical model for the description
of the fluid pulsed flow inside a pipe. The result is a Womersley-style velocity profile.
It has been pointed out that this profile approaches the Poiseuille parabolic profile only
iIf the Womersley number exceeding 2. The Womersley profile velocity formulation
was then used in the cardiac bypass simulations.

Chapter 3 describes the mathematical model of cardiac bypass considering a
pulsed flow regime with a Newtonian fluid. Various simulations have been carried out
by determining the constraints across the Constructal Design and using the Response
Surface methodologies. The result provided the geometric configuration that
minimizes pressure drops.

Chapter 4, on the other hand, the similar problem was faced with the aim of
identifying the effect on the pressure drops due to the variation of the bypass
connection point. The results obtained show a decrease in the pressure drop trend as

the distance of the bypass attachment point increases. The decreasing pressure trend
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was less pronounced when the stenosis increases. Therefore, the optimum point is the
point as far as possible from the shrinkage.

Finally, in chapter 5, the effect on the bypass when the fluid under examination
Is not Newtonian was investigated. The Newtonian, Carreau and Power Law models
were compared. The Power Law model, due to its velocity profile, differs a lot from
the other models and the Oscillatory Shear Index (OSI) values are almost zero. The
Newtonian model and that of Carreau, on the other hand, are comparable and the
differences are almost minimal. It is noted that the accentuated values of OSI occur in
the fluid recirculation areas and in the junctions between the bypass and the main vein.

In this work, the topic of Constructal Design for the optimization of a cardiac
bypass was mainly dealt with. During the PhD program, other topics were treated and

published. In chapter 7 the list of publications is shown.

125



7 List of Publications

10.

11.

Prediction Capabilities of a One-Dimensional Wall-Flow Particulate Filter Model. Andrea
Natale Impiombato, Cesare Biserni, Massimo Milani, Luca Montorsi. (Submission Proceeding)
2021.

Pulsatile Bypass Flow: Power Law versus Newtonian model. Andrea Natale Impiombato,
Francesco Orlandi, Giorgio La Civita, Flavia Schwarz Franceschini Zinani, Luiz Alberto Oliveira
Rocha, cesare Biserni. (Submission proceedeng on Journal of Advances in Applied &
Computational Mathematics) 2021.

A Simple Transient Poiseuille-Based Function to Mimic Womersley Function and to Model
Pulsatile Blood Flow. Andrea Natale Impiombato, Giorgio La Civita, Francesco Orlandi, Flavia
Schwarz Franceschini Zinani, Luiz Rocha, Cesare Biserni. Dynamics. 2021.

Pulsatile Flow Through an ldealized Arterial Bypass Graft: an Application of the
Constructal Design Method. Andrea Natale Impiombato, Flavia Schwarz Franceschini Zinani,
Luiz Rocha, Cesare Biserni. Journal of Applied and Computational Mechanics. 2020.

Constructal Design of an Idealize Arterial Bypass Graft: Effect of the Bypass Attachment
Pointon Resistance to Flow. Andrea Natale Impiombato, Flavia Schwarz Franceschini Zinani,
Luiz Rocha, Cesare Biserni. Journal of Applied and Computational Mechanics. 2020.

Buoyancy-driven convection in a horizontal porous layer saturated by a power-law fluid:
The effect of an open boundary. Michele Celli, Andrea Natale Impiombato, Antonio Barletta.
Interna Journal of Heat an Mass Transfer. 2020.

Synthesis and characterization of mordenite zeolite from metakaolin and rice husk ash as a
source of aluminium and silicon. Klunk, M.A., Schropfer, S.B., Dasgupta, S., Das, M., Caetano,
N.R., Impiombato, A.N., Wander, P.R., Moraes, C.A.M. Chemical Paper, 2020.

Onset of thermal convection in a horizontal porous layer saturated by a power-law fluid.
Michele Celli, Andrea Natale Impiombato, Antonio Barletta. 37" UIT Heat Transfer Conference,
Padova, 24-26 June 2019.

Thermal convection of a power-law fluid saturating a horizontal porous layer with an open
boundary. Michele Celli, Andrea Natale Impiombato, Antonio Barletta. International Journal of
Heat and Mass Transfer. 2019.

Couette Vortex Formation and Topology in Duct with an Embedded Cavity: A Possible
Application in Flow Structures of Natural Systems. Eugenia Rossi di Schio, Cesare Biserni,
Andrea Natale Impiombato. 19" CIRIAF National Congress, Perugia ltaly, April 12, 2019.

Numerical analysis on building envelope moisture condensation: a case study using the

Glaser Diagram Method. Cesare Biserni and Andrea Natale Impiombato. AIP Conference
Proceedings 2191, 020023 (2019). 17 December 2019.

126


https://www.scopus.com/record/display.uri?eid=2-s2.0-85079325201&origin=resultslist&sort=plf-f&src=s&st1=impiombato&st2=andrea+natale&nlo=1&nlr=20&nls=count-f&sid=cc8d69a758d85a195751391791c6ed52&sot=anl&sdt=aut&sl=46&s=AU-ID%28%22Impiombato%2c+Andrea+Natale%22+57213676273%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85079325201&origin=resultslist&sort=plf-f&src=s&st1=impiombato&st2=andrea+natale&nlo=1&nlr=20&nls=count-f&sid=cc8d69a758d85a195751391791c6ed52&sot=anl&sdt=aut&sl=46&s=AU-ID%28%22Impiombato%2c+Andrea+Natale%22+57213676273%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85079504514&origin=resultslist&sort=plf-f&src=s&st1=impiombato&st2=andrea+natale&nlo=1&nlr=20&nls=count-f&sid=cc8d69a758d85a195751391791c6ed52&sot=anl&sdt=aut&sl=46&s=AU-ID%28%22Impiombato%2c+Andrea+Natale%22+57213676273%29&relpos=1&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85079504514&origin=resultslist&sort=plf-f&src=s&st1=impiombato&st2=andrea+natale&nlo=1&nlr=20&nls=count-f&sid=cc8d69a758d85a195751391791c6ed52&sot=anl&sdt=aut&sl=46&s=AU-ID%28%22Impiombato%2c+Andrea+Natale%22+57213676273%29&relpos=1&citeCnt=0&searchTerm=
https://www.scopus.com/authid/detail.uri?authorId=55774765800&amp;eid=2-s2.0-85079504514
https://www.scopus.com/authid/detail.uri?authorId=57209685024&amp;eid=2-s2.0-85079504514
https://www.scopus.com/authid/detail.uri?authorId=23466210100&amp;eid=2-s2.0-85079504514
https://www.scopus.com/authid/detail.uri?authorId=57210841658&amp;eid=2-s2.0-85079504514
https://www.scopus.com/authid/detail.uri?authorId=56472872300&amp;eid=2-s2.0-85079504514
https://www.scopus.com/authid/detail.uri?authorId=56472872300&amp;eid=2-s2.0-85079504514
https://www.scopus.com/authid/detail.uri?authorId=57213676273&amp;eid=2-s2.0-85079504514
https://www.scopus.com/authid/detail.uri?authorId=6701671307&amp;eid=2-s2.0-85079504514
https://www.scopus.com/authid/detail.uri?authorId=7101701085&amp;eid=2-s2.0-85079504514

12. Comparative study using different external sources of aluminum on the zeolites synthesis
from rice husk ash. Klunk, M.A., Das, M., Dasgupta, S., Impiombato, A.N., Caetano, N.R.,
Wander, P.R., Moraes, C.A.M. Materials Research Express 2019.

127


https://www.scopus.com/record/display.uri?eid=2-s2.0-85077952770&origin=resultslist&sort=plf-f&src=s&st1=impiombato&st2=andrea+natale&nlo=1&nlr=20&nls=count-f&sid=cc8d69a758d85a195751391791c6ed52&sot=anl&sdt=aut&sl=46&s=AU-ID%28%22Impiombato%2c+Andrea+Natale%22+57213676273%29&relpos=2&citeCnt=1&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85077952770&origin=resultslist&sort=plf-f&src=s&st1=impiombato&st2=andrea+natale&nlo=1&nlr=20&nls=count-f&sid=cc8d69a758d85a195751391791c6ed52&sot=anl&sdt=aut&sl=46&s=AU-ID%28%22Impiombato%2c+Andrea+Natale%22+57213676273%29&relpos=2&citeCnt=1&searchTerm=
https://www.scopus.com/authid/detail.uri?authorId=55774765800&amp;eid=2-s2.0-85077952770
https://www.scopus.com/authid/detail.uri?authorId=57210841658&amp;eid=2-s2.0-85077952770
https://www.scopus.com/authid/detail.uri?authorId=23466210100&amp;eid=2-s2.0-85077952770
https://www.scopus.com/authid/detail.uri?authorId=57213676273&amp;eid=2-s2.0-85077952770
https://www.scopus.com/authid/detail.uri?authorId=56472872300&amp;eid=2-s2.0-85077952770
https://www.scopus.com/authid/detail.uri?authorId=6701671307&amp;eid=2-s2.0-85077952770
https://www.scopus.com/authid/detail.uri?authorId=7101701085&amp;eid=2-s2.0-85077952770
https://www.scopus.com/sourceid/21100432452?origin=resultslist

Appendix A: Pulsatile Flow
Rate Description

The pulsed flow within the veins is taken as a reference by the literature (Vimmr
et al. [35]) and describes the time-dependent inlet flow rate Q(t) through the Fourier

series:

5
Q®) = Qo+ ) Qi cos(ket — i) (A1)
k=1

where the cardiac cycle period is T=1.68 s, Qo=65.07 mL/min represents the average
inlet flow rate, and Qy, and ¢k, k=1,...,5 are the amplitude and phase angle,
respectively. The values of Eq.(A.1) are coherent with the ones found by Vimmr et al.
[35]: Q1=18.149 mL/min, Q,=34.828 mL/min, Q3=12.329 mL/min, Q,=9.107 mL/min,
Q5=2.944 mL/min, ¢1=1.944 rad, ¢,=2.836 rad, ¢3=-2.124 rad, ¢,=-1.875 rad and @s=-
0.447 rad (Figure A.1).
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Figure A.1. Time-dependent flow rate Q(t) [Ref. 7.3]
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