AlmaMater Studiorum - Universita di Bologna

DOTTORATO DI RICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

Ciclo34

Settore Concor suale: 01/A6 - RICERCA OPERATIVA

Settor e Scientifico Disciplinare: MAT/09 - RICERCA OPERATIVA

FORMULATIONS AND METAHEURISTICS FOR COMBINATORIAL
OPTIMIZATION PROBLEMS

Presentata da: Carlos Rodrigo Rey Barra

Coordinator e Dottorato Supervisore

Michele Monaci Daniele Vigo

Esame finale anno 2022

ALMA MATER STUDIORUM-UNIVERSITA DI
BOLOGNA

DOTTORATO DI RICERCA IN

Ingegneria Biomedica, Elettrica e dei Sistemi
(curriculum Ricerca Operativa)

Ciclo XXXIV

Settore Scientifico Disciplinare: MAT /09 - R. OPERATIVA
Settore Concorsuale: 01/A6 - R. OPERATIVA

Formulations and Metaheuristics for
combinatorial optimization problems

Presentata da: Carlos Rodrigo Rey Barra
Coordinatore Dottorato Supervisori
Michele Monaci Prof. Daniele Vigo

Prof. Paolo Toth

Esame finale anno 2022

https://www.unibo.it/it
https://www.unibo.it/it

ii

iii

ALMA MATER STUDIORUM-UNIVERSITA DI BOLOGNA

Abstract

Formulations and Metaheuristics for combinatorial optimization problems

by Carlos REY

Combinatorial optimization problems have been strongly addressed throughout his-
tory. Their study involves highly applied problems that must be solved in reason-
able times. This doctoral Thesis addresses three Operations Research problems: the
first deals with the Traveling Salesman Problem with Pickups and Delivery with
Handling cost, which was approached with two metaheuristics based on Iterated
Local Search; the results show that the proposed methods are faster and obtain good
results respect to the metaheuristics from the literature. The second problem cor-
responds to the Quadratic Multiple Knapsack Problem, and polynomial formula-
tions and relaxations are presented for new instances of the problem; in addition,
a metaheuristic and a matheuristic are proposed that are competitive with state
of the art algorithms. Finally, an Open-Pit Mining problem is approached. This
problem is solved with a parallel genetic algorithm that allows excavations using
truncated cones. Each of these problems was computationally tested with difficult
instances from the literature, obtaining good quality results in reasonable computa-
tional times, and making significant contributions to the state of the art techniques
of Operations Research.

HTTPS://WWW.UNIBO.IT/IT

Acknowledgements

First, I want to thank my supervisor professors Paolo Toth and Daniele Vigo, for
their advice and help in this doctoral process. I will be eternally grateful for the op-
portunity they have given me to study at the Universita di Bologna.

Also, thank the professors who helped me in my Ph.D. process: Laura Galli, Silvano
Martello, Victor Parada, and Nelson Morales. Thank you for having considered me
for these projects worked on.

I also want to thank many friends and colleagues who supported me during my
preparation as a Ph.D.: Luca Accorsi, Carlos Contreras, Nicolas Campana, Federico
Naldini, Alan Osorio, Paolo Paronuzzi and Henri Bertrand Roger Jean- Marc Arthur
Lefebvre. Thank you very much for always having a word of support and advice at
all times. Also, thank all my doctoral colleagues that I met in the laboratory.

Also, thank Daniela and Gabriele for helping me throughout the process, especially
during my quarantines. Without their help, I would not have been able to visit my
family in Chile, and I would not have been able to return to continue my studies.

Thank friends in Chile, Wences, Pipe, Marcos, Diego y Gera. They always had a
word of encouragement at different times of my trip. Thanks !!!

I also want to thank the church choir I participate in Chile. Thanks to all the mem-
bers, especially in the pandemic when we have come together the most.

Thank my girlfriend, Elizabeth. Thank you for always being by my side at all times.
Thank you for having the assertive phrase in times of chaos. Thank you for your
patience and your love. I love you bototo.

Finally, thank my family: my father Julidn, my mother Albertina, brother Julidn and
sister Carmen. Thank you for giving me unconditional support during these 3 years
of study. It was a very difficult time due to the pandemic, so I appreciate your pa-
tience and understanding at all times.

A formal thanks to my scholarship: National Agency for Research and Development
(ANID) / Scholarship Program / Doctorado Becas Chile / 2018-72190600.

Contents

Abstract
Acknowledgements

1 Introduction

1.1 Main problemsstudied L o L oL
1.1.1 The Traveling Salesman Problem
1.1.2 The Knapsack Problem
1.1.3 The Open-Pit Mine Production Scheduling Problem
12 Overview e

Iterated Local Search Algorithms for the TSPPD-H
2.1 Introduction e
22 TheHandlingCost
221 Dynamic programming algorithm
222 Improved DP Algorithm
2.3 The Iterated Local Search Algorithm
23.1 Existingalgorithm
2.3.2 [Iterated Local Search using Frequency (ILS-F)
2.3.3 Roulette Perturbation
234 Elementary Heuristics
2.3.5 Localsearchmethods
23.6 AcceptanceCriterion o L
2.4 Granular Iterated Local Search
241 Thegranularapproach
2.4.2 Neighborhoods, perturbation and local search
Neighborhoods
Perturbation
Localsearch
25 Results e e
251 Instances e
2.5.2 Parameters and Experiments for ILS-F.
2.5.3 Parameters and Experiments for GILS
254 Resultsand comparison
About the Iterated Local Search with frequency
About the Granular Iterated Local Search
2.6 Conclusion and future directions

viii

3 Formulations, Relaxations and Heuristics for the QMKP

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

Introduction
Linear Formulations
3.2.1 Classical Linear Formulations
3.2.2 Reformulation Linearization Technique
A decomposable Level 1 RLT model
Surrogate relaxation of the quadraticmodel
Decomposable Lagrangian relaxations
3.4.1 Relaxing the QuadraticModel
342 Relaxing DRLT1.
Meta-heuristic Approach: The Multi-Start Iterated Local Search
351 MS-ILS: Main Scheme
Initial Solutions
Feasible Local Search
Perturbation
Infeasible local Search and the Repair procedure
Matheuristics Approach 0o L.
Matheuristic: Main Scheme
Computational experiments
3.7.1 Formulations and the Relaxations
Benchmarkinstances L.
Experiments o L.
3.7.2 Multi-Start Iterated Local Search
General descriptions and Parameter Setting
Comparison of results without time limit
3.7.3 Matheuristic Experiments
General descriptions and Parameter Setting
Comparison o
Conclusions e
3.8.1 Formulations and Relaxations
3.8.2 Multi-Start Iterated Local Search
3.8.3 Matheuristic

4 A parallel genetic algorithm for strategic mine planning

4.1
4.2
4.3

4.4

4.5
4.6
4.7

Introduction L
General description of the Parallel Genetic Algorithm
Representation of CPIT-P for PGA
43.1 Representing a feasible solution for the CPIT-P
43.2 Definition of the PGA operators
43.3 Fitnessevaluation
Computational Experiments
441 Setofinstances
442 Tuning of the parameters
Results
Conclusion e e
Currentand futureworks o oL

iX

5 Conclusion 929
A GILS - Details for the Granular parameters 101
Al Results e 101
A2 WilcoxonTest e 102
B MS-ILS 113
B.1 Repairprocedure 113
B.2 Wilcoxonsigned-randtest 115

Bibliography 119

xi

List of Figures

1.1
1.2

1.3

2.1

2.2
2.3
24
25
2.6
2.7
2.8

4.1
4.2
4.3
44
4.5
4.6
4.7

Al
A2

B.1

B.2

Timeline of some metaheuristics 3
For berlin52 (to the left), the heuristic took 0.01 sec with an average percent-
age optimality gap of 0.00%, while for vm1084 (on the right) it took 314.01
sec with an average percentage optimality gap of 0.0185%. The number of
nodes and the geometry have a significant impact on the computing times.
Also, consider that the Lin-Kernighan heuristic is not an exact approach, so
algorithms like Branch and Bound takes larger computing times. 4
Example with the three-dimensional blocks 7

A Handling Cost example for delivery and pickup of oxygen tank

between hospitals. 0 13
Final matrix p for the TSPPD-Husing DP. 16
Recursive Tree of DP Approach. 17
Originalroute. 18
New route with improvement (red) 18
Perturbationmoves L L 21
FlowChartofthe ILS-F 24
Frequency of use (200 iterations, instance with n=120 and 1=10) 40
Truncated cone (Image from [127]) 87
Examples about the phases 88
FlowChart of the Simple Genetic Algorithm 89
FlowChart of the Parallel Genetic Algorithm 90
Representing a feasible solution (Image from [127]) 92
Crossover operator (Image from [127]) 92
Mutation operator (Image from [127]) 93
GroupGl. e 111
Group G2. e 111

Box plot about the performance of the metaheuristics for the instances
withn =100 117
Box plot about the performance of the metaheuristics for the instances
withn =200 118

xiii

List of Tables

1.1 Main works forthethesis 9
2.1 ParametersSetting oL 33
2.2 Fixed values for 6, 7 and ratioReset 34
2.3 Setof parameters fromlIrace L o oL 34
2.4 Computational Results for the TSPPD-H with the instances from [63] . 36
2.5 Computational Results for the TSPPD-H with the instances from [63] . 37
2.6 Computational Results for the TSPPD-H with the instances from [63] . 38
2.7 Computational Results for the TSPPD-H with the instances from [63] 39
3.1 CPLEX solution of the polynomial formulations within one hour. Av-
erage percentage optimality gap, number of instances solved to proven
optimality, average number of nodes and CPU time over five instances.
Time limit: Thour. 66
3.2 Upper bounds computed through LP relaxation of the linear formu-
lations. Average percentage optimality gap and CPU time over 5 in-
stances. Time limit: Thour. 68
3.3 Upper bounds computed through surrogate and Lagrangian relax-
ations. Average percentage gap and CPU time over 5 instances. Time
limit: Thour. 70
3.4 CPLEX solution and upper bounds for larger instances. Average per-
centage gap and CPU time over 5 instances. Time limit: 1 hour (3
hours for CPLEXruns). 72
3.5 Best sets of parameters from Irace for MS-ILS 74
3.6 Computacional Results for the MS-ILS with the instances from [83]
withn =100 76
3.7 Computacional Results for the MS-ILS with the instances from [83]
withn =200 77
3.8 Average values over the 5 instances of each triple (n,m,d) for the Bergman
Instances. L 80
3.9 Average values over the 5 instances of each triple (n,m,d) for the in-
stancesby [59] 81
41 SetofInstancesforCPIT 95
42 SetofParameters o oo 95
43 Computacional Results for the CPIT-P with Set4 97
A9 p-values for the Wilcoxon Testfor G1. 102

A.10 p-values for the Wilcoxon Testfor G2. 102

Xiv

Al
A2
A3
A4
A5
A6
A7
A8

B.1
B.2
B.3
B.4

Computational Results for the TSPPD-H with the instances from [63]
Computational Results for the TSPPD-H with the instances from [63]
Computational Results for the TSPPD-H with the instances from [63]
Computational Results for the TSPPD-H with the instances from [63]
Computational Results for the TSPPD-H with the instances from [63]
Computational Results for the TSPPD-H with the instances from [63]
Computational Results for the TSPPD-H with the instances from [63] .
Computational Results for the TSPPD-H with the instances from [63]

% Gap between BKS and Average for the instances withn =100
p-values for the Wilcoxon Test for the instances, withn =100.
% Gap between BKS and Average for the instances withn =200
p-values for the Wilcoxon Test for the instances with n = 200.

. 103
. 104
. 105
. 106
. 107
. 108

109

. 110

115
115
116

XV

The mystery of life is certainly the most persistent problem
ever placed before the thought of man..... The inability of
science to solve it is absolute. This would be truly frightening
were it not for faith.

Guglielmo Marconi (10 Sep 1934 to the International Congress
of Electro-Radio Biology, Venice).

Chapter 1

Introduction

Modern Operations Research originates from the Second World War. War scenar-
ios such as aircraft redeployment, and camouflage were tasks deployed by essential
Operations Research personnel, such as Great Britain’s Army Operations Research
Group (AORG), for Normandy’s Battle [1]. Once the war ended, these personnel
adapted the knowledge obtained during that period for civil needs and later indus-
trial markets. Since then, Operations Research continues to grow in applications,
such as allocation, network optimization, routing, and planning processes [2]. Op-
erations Research is defined as a discipline that uses methods supported in mathe-
matical sciences (such as mathematical modeling or statistical analysis) that help a
decision-maker [3].

An important branch that is related to Operations Research is combinatorial op-
timization. Combinatorial optimization could be defined as a field of research that
seeks a maximum (or minimum) of an objective function within a discrete space [4].
This branch has contributed to crucial research areas such as artificial intelligence,
software engineering, and computer science. The complexity theory classifies many
combinatorial optimization problems due to their difficulty. This theory formalizes
the classification and helps to quantify the number of resources necessary to solve
them, such as time and memory [5].

There are problems of combinatorial optimization that have been widely studied
throughout history. The Traveling Salesman Problem (TSP), for example, consists of
minimizing the distance of a route, where it is necessary to visit a set of places (for
example, cities, commercial premises, among others) only once and later return to
the point of origin. This problem is classified by complexity theory as NP-Hard [6].
It has various applications in industry such as drilling of printed circuit boards [7],
overhauling gas turbine engines [8], X-Ray crystallography [9], and Vehicle Routing
[10]. A specific case of the TSP that has been widely studied in the literature is the
TSP with time windows or TSPTW; this problem consists of solving the TSP prob-
lem such that each customer has a window time in which it can be visited, therefore,
the time availability of each customer must be taken into account. Another signifi-
cant and widely studied problem is the Knapsack Problem (KP). Given a finite set of
items, each with a weight and a profit, it is necessary to select a subset of these items
so that the global weight does not exceed a specific capacity and the global profit is
maximized. This problem is classified by complexity theory as NP-Complete [11]. It
has various applications in the industry such as selection of investments and portfo-
lios [12] or selection of assets for asset-backed securitization [13].

2 Chapter 1. Introduction

Solving these types of problems can impact a company’s resource allocation.
For example, a copper deposit study problem (related to knapsack constraints men-
tioned above) is necessary to get the site’s geological and geographic properties to
plan future extraction and obtain future profits. Chile is one of the leading countries
in copper exports, and the demand increases every year; by 2020, the demand in-
creased by 5.82 million tons of copper, equivalent to a year-on-year increase of 0.6%,
and by 2021, it is estimated that it will increase by 5.99 million tons [14]. Maximiz-
ing copper extraction during the mining process is vital for deposits of this type,
which must respond to a set of resource constraints over a time horizon. One prob-
lem that has been applied to real-world systems is the TSPTW; a recent extension is
the on-demand delivery service problem [15], which considers the mobility of a cus-
tomer to a delivery point, for example, Amazon Locker in the United States [16] and
UNIQL-7eleven in Japan. By solving these types of problems, the company saves
delivery times to customers without losing quality in the service time, allowing de-
livery companies to save money and generate profits at the delivery points. The
examples mentioned must be solved with approaches capable of responding to the
decision-maker’s timing, vital for Operations Research.

Optimization problems can be solved using different approaches. These are clas-
sified into two large sets: exact and heuristic. Exact methods are characterized by
finding optimal solutions, and generally solve small or medium size problems since
their computing time and required computational resource are large. Examples of
these approaches are Dynamic Programming, Branching Approaches (Branch and
Bound, Branch and Cut, and Branch and Prize), and Constrained Programming. On
the other hand, heuristics are search procedures that do not guarantee optimal solu-
tions but ,for large problems, find solutions faster than an exact approach. In 1962
a different line of research on solution methods appeared that used the evolution
of species [17] as an analogy to generate an algorithmic framework. This idea gave
way to a set of techniques known as metaheuristics.

A metaheuristic is a high-level process that helps to generate a heuristic that pro-
vides a good quality solution in reasonable computational times independently of
the problem [18]. This set of techniques has proven to be a good approach through-
out the history of Operations Research. Figure 1.1 shows a graph with some meta-
heuristics mentioned in this thesis organized according to their year of definition
(inspired by [19]). The arrows indicate the relationship between the metaheuris-
tics. The fundamental techniques are Local Search and Greedy heuristics. In 1962
the first essential evolutionary computing techniques appeared: Evolutionary Pro-
gramming [20] and Genetic Algorithms [21]. Various techniques based on Local
Search (LS) were defined during the 1980s and 1990s, such as Simulated Annealing
[22], Tabu Search [23], GRASP [24], Memetic Algorithm [25], Iterated Local Search
([26] but formally in [27]) and Variable Neighborhood Search [28]. During the 90s,
techniques such as Ant Colony Optimization [29], Particle Swarm Optimization [30]
and Genetic Programming [31] were also defined. Metaheuristics based on some of
those mentioned above have been defined in the last 25 years, such as Granular Tabu
Search [32] or Multi-Start Iterated Local Search [33].

1.1. Main problems studied 3

Local Search (1947)

Genetic Algorithms(1962)

Evolution Strategies (1965) . ’.
Greedy Heuristic (1971)

GRASP (1989)

Simulated Anneling (1983)

Tabu Search (1986)
Memetic Algorithms (1989)
Iterated Local Search (1991)

Ant-Colony Optimization (1992)
Genetic Programming(1992)
Differential Evolution (1994)
Variable neighborhood search (1995)
Particle Swarm Optimization (1995) .
@ Granular Tabu Search (2003)
Multi-Start Iterated Local Search (2012)

1940 1960 1980 2000
Years

FIGURE 1.1: Timeline of some metaheuristics

Modeling a mathematical problem to obtain optimal solutions, or designing a
metaheuristic to find feasible solutions in reasonable times, remain challenging ac-
tivities. Operations Research makes discoveries year by year to answer real indus-
try problems or to improve the techniques mentioned above. In this way, this thesis
presents solutions for various Operations Research problems defined in recent years.

1.1 Main problems studied

1.1.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) has a long history in Operations Research.
There are two classifications for the TSP according to the edges: asymmetric TSP
or ATSP where the graph has edges with direction (i.e., the distance between two
customers depends on the source customer and the destination customer); and sym-
metric TSP or STSP where the graph does not have edges direction (i.e., the distance
between two customers does not depend on the origin customer and the destination
customer since both are equivalent). The most important foundations for the ATSP
were proposed by George Dantzig, Delbert Ray Fulkerson and Selmer M. Johnson
between the 1950s and 1960s, with exact approaches based on integer linear pro-
gramming models and the addition of valid inequalities (cutting plane methods).
Subsequently, other techniques for the solution of the symmetric STSP were de-
signed based on the Minimum Spanning Tree, approximate algorithms [34], and
new branch and bound and branch and cut approaches, solving instances of almost

4 Chapter 1. Introduction

1200 1

: 12000 g —p— TN e e
AN N VIR N A
I N s\ Ly | k-\ S I AL f A/ vy
1000 ; NN 1100077 TSNy
- < . 17 \l f \ L A \
{ . \ =~ AV il A
N \ 10000 s AN vy S | L~ a)
. . PACARY VM L s
800 \ \ N AR EATEIER
i\ \ A 9000 4 TV g \ /.\ AR
< A ~\ ~. (= A v BRI g i~
600 | N NP WA Y _ ~ s000d V7 [N U S B g B S W AN
\ b | i - kA% \/ VoL r L.\
' - | \ N 4 PEI P
ya / \ \ 7000 A L Vi AT
400 KA — N \ RN A |
AN > - IR T NI e
e ; \ - \ 6000 L L I S S | e ' B
.~ »_,,.l i 7 ; ./«\/ \ vz A S| ~.
200 f—— v } -1 X § |7 n \ A, _,—.\/ r~ H \
i L= /,/ 5000 1 X 07 B S W TN B B e > R
- { A NERSN - A
o L Nk ld YT A5 (i
N g \/ 000 [EFASE VNN LT BT A —mg TV RN
0 250 500 750 1000 1250 1500 1750 0 2500 5000 7500 10000 12500 15000 17500

FIGURE 1.2: For berlin52 (to the left), the heuristic took 0.01 sec with an av-

erage percentage optimality gap of 0.00%, while for vm1084 (on the right) it

took 314.01 sec with an average percentage optimality gap of 0.0185%. The

number of nodes and the geometry have a significant impact on the com-

puting times. Also, consider that the Lin-Kernighan heuristic is not an ex-

act approach, so algorithms like Branch and Bound takes larger computing
times.

2400 cities. During the 1990 the Concorde program was developed, famous for ob-
taining optimal solutions for different large size instances. Besides, [35] publishes
the most important library of the TSP: TSPlib. This library of instances is used to
test the effectiveness of TSP algorithms and is widely recognized by the operations
research scientific community. Even this group of instances is used to test the ef-
fectiveness of the algorithms in other related problems such as the generalized TSP
(GTSP). In the year 2000 an effective implementation of the Lin-Kernighan heuristic
[36] was designed to solve large problems [37].

Formally, in the STSP, we are given G = (V,E) a complete undirected graph,
where V is a set of nodes (customers for the next explanation) such that V = {1..n}
and E is the set of edges such that E = {(i,j) : i,j € V,i # j}: Eachedge (i,j) € E
has a positive and symmetric cost ¢;; : ¢;; = ¢j;. The problem consists of generating a
Hamiltonian cycle, i.e. a cycle such that all nodes are considered only once.

The execution time to solve the TSP could depend on the number of cities and
their geometry. An interesting exercise to demonstrate the completeness of TSP is
randomly selecting two instances from TSPlib as berlin52 (based on the city of Berlin
with 52 cities) and vm1084 (generated by Reinelt with 1084 cities). Figure 1.2 shows
the image of two solutions to classic STSP instances: berlin52 and vm1084 using the
Lin-Kerninhan heurisitic with the same parameters for both executions [38].

Different variants for the problem have been defined. However, the variants
considered in this thesis will focus on the definition of pickup and delivery. Pickup
and Delivery problems (PDPs) are an important class of routing problem, where
a finite amount of commodities (called demand) is associated with each customer.
The customer’s demand can be classified in the pickup, where the vehicle must load

1.1. Main problems studied 5

the customer’s demand, and delivery, where the vehicle must unload the customer’s
demand. Finally, a transport vehicle with a previously defined capacity, is associated
with the route. The restrictions for this type of problem are:

All pickup and delivery requests must be satisfied.

No transshipments of commodities are made at customers.

The vehicle must not exceed its capacity.

The initial node, called depot, has a pickup unitd = 0.

The classification of the PDPs was defined in-depth in [39], and extended for
the VRP in [40]. The categories are based on three main aspects: structure, visits,

and vehicles. For the structure, the origin and destination of the commodities are
defined:

* Many to many (MM): Any customer can serve as an origin or destination for
any commodity.

¢ One-to-many-to-one problems (1-M-1): the commodities are initially available
at the depot and are transported to the customers. In addition, commodities
available at the customers are transported to the depot.

* One-to-one (1-1) problem, each commodity has specific origin and destination.

On the other hand, visits can be classified according to the way the pickup and de-
livery process is carried out:

¢ PD indicates that each customer must be visited (mandatory) only once for
pickup and delivery combinations.

¢ P-D indicates that each costumer can be visited more than once to satisfy the
pickup and delivery combination.

* P/D, when only one type of commodity must be satisfied (i.e., either pickup
or delivery for each customer, not both).

Finally, vehicles relate to the number of vehicles used in operation. For the TSP, this
last classification does not apply since only one vehicle must be used. Consequently,
the P-D classification cannot be applied to a Hamiltonian cycle with a single vehicle.
The exceptions mentioned above can be applied to different variants of the VRP (see
in-depth [41]).

Aim of this Thesis: A problem defined in recent years is the Traveling Sales-
man Problem with Simultaneous Pickup and Delivery and Handling Cost TSPPD-
H, [42]). This problem falls precisely in the definition of PD and 1-M-1 ([1-M-1 | PD
| 1] for the general classification). This thesis defines in detail the problem and two
metaheuristic approaches in Chapter 2: an ILS with a dynamic local search based
on the frequency of use, and a granular version of the ILS (GILS). Computational
experiments on instances of the literature will be presented.

6 Chapter 1. Introduction

1.1.2 The Knapsack Problem

Another problem studied is the Knapsack Problem (KP). Given a set N of items,
each one associated with a profit p; and weight w;Vi € N, and given a knapsack
of capacity C, the KP problem consists of selecting a set of items such that the to-
tal profit is maximized and the total weight does not exceed C. In [43] affirm that
this problem is widely studied due to 3 reasons: KP can be considered as one of
the simplest problems of Integer Linear Programming; it appears as a subproblem
in many more complex problems; it represents many practical situations. Essential
foundations for the problem were presented by Bellman in the 1950s, designing a
dynamic programming algorithm, and by Danzing in 1957 proposing a continuous
relaxation. Subsequently, new approaches or improvements of Dynamic Program-
ming were designed [44], branch and bound [45], approximate algorithms [46, 47],
Lagrangian relaxations [48]. Variants of the KP and related problems are widely
described in the book "Knapsack problems: algorithms and computer implementa-
tions" by [49]. This last book is considered one of the most important ones written
on the problem (over 5000 citations according to Google Scholar). It continues to be
an important reading in the Operations Research courses. Another important book
for the study of knapsack is presented at [50].

Although different approaches have solved KPs with good results, the problem
remains a challenge. Indeed, depending on the correlation between the weight and
the profit of each item, the problem may take longer to resolve [51]. Dynamic pro-
gramming methods guarantee to find optimal solutions in pseudo-polynomial times
in the worst case and is used to solve KP instances mixing constructive and destruc-
tive heuristics [52].

KP has a broadly defined set of variations and related problems. One of them is
the Multiple Knapsack Problem (MKP), where more than one knapsack with a de-
fined capacity are considered. Another problem is the Quadratic Knapsack problem
(QKP, [53]), which consists of maximizing a linear objective function (called linear
profit, associated with the selection of an item) and a quadratic objective function
(called quadratic profit, related to the choice of a pair of items). QKP applications
found in telecommunication [54] and location problems [55].

Aim of this Thesis: The Quadratic Multiple Knapsack Problem (QMKP, [56]) is an
extension of the two previous described problems (and it is detailed in the chapters
3). Several approaches are presented in order to solve this problem: Polynomial-size
formulations and relaxations, a matheuristic approach, and a multi-start iterated
local search metaheuristic.

1.1.3 The Open-Pit Mine Production Scheduling Problem

Within the mining systems, Operations Research has aided the extraction planning,
determining where to extract and when to extract. For this reasons, the economic
potential that a study of the mine should consider (shape, size) and also the associ-
ated resources (roads, vehicles, excavators, among others) must be evaluated. In this
way, a preliminary study must be carried out to obtain the properties of the mine.
The mine is modeled in small blocks or three-dimensional segments with differ-
ent properties (ore or trash) to obtain planning [57]. Generally, deeper blocks must

1.1. Main problems studied 7

be removed respecting to the precedence restriction of the blocks and have a higher
cost (or a positive cost). In contrast, blocks on the surface are removed at a nega-
tive cost. An example of a block model is shown in Figure 1.3. The yellow blocks
(B={D, E,F,G, H, I'}) must be removed since they have a higher profit. However, the
precedence restriction must be respected, i.e., the brown blocks must first removed
from the previous levels (B={ A, B, C}) with negative cost.

FIGURE 1.3: Example with the three-dimensional blocks

The Open-Pit Mine Production Scheduling Problem (OPMPSP) consists of schedul-
ing the extraction of a mineral deposit divided into several smaller segments or
blocks so as to maximize the Net Present Value (NPV) of the mine [58]. Let T be
the set of periods, B the set of blocks, By C B the set of blocks preceding block v’, R
the set of resources, the model is described as follows:

max Y Y pprxp (1.1)
beBteT
s.t.

bes S be/s vV b € B, b/ S Bb,t € T/ (12)

s<t s<t
Y xy<1 ¥V beB; (1.3)

teT
Lit <Y qurxpe < Uy V teT,rek; (14)

beB

xp € {0,1} V beBteT; (1.5)

The problem must maximize a pre-calculated profit p;; associated with a block
extracted in period ¢ (1.1) using a binary decision variable x;; (1.5). The variable xy;
is 1 if the block b € B is extracted in the period t € T, and 0 in case the block is not
extracted. Constraints 1.2 consider the restriction of maintaining the precedence of
the blocks, i.e. to extract block b, the preceding blocks of b (B;) must be extracted
in the same period in or a previous period. Constraints 1.3 indicate that one block
must be mined only once in a single period. Finally, Constraints 1.4 are the resource
constraints (for example, mine capacity or processing capacity), so the resource use

8 Chapter 1. Introduction

is associated with a block and a resource g;,. In this way, the sum of the resources
extracted in period ¢ is between L,; and U,;.

Aim of this Thesis: In this thesis, a variant of the OPMPSP, which is called Con-
strained Pit Limit Problem with Phases or CPIT-P is presented. The problem was
solved by a means of parallel genetic algorithm (PGA) based on the master-slave
approach which is applied it to well-known instances from the literature. It is shown
that the proposed algorithm can find reasonable solutions compared to previously
known results for these instances.

1.2 Overview

The problems described above were approached with different techniques and pre-
sented at conferences (or accepted in journals). Table 1.1 shows a summary of the
most important works of the doctoral process. Each work has the title with which it
was presented, the acronym of the associated problem, the type of approach used,
the associated chapter of the document, the conference (or the journal) related to the
work. Describing in detail:

* "An Iterated Local Search for the Traveling Salesman Problem with Pickup,
Delivery and Handling Costs" was presented at the 39th International Confer-
ence of the Chilean Computer Science Society. An article was indexed in IEEE
in November 2020 in Chile

¢ "A Granular approach for the Traveling Salesman Problem with Pickup, De-
livery and Handling Costs" was presented at the International Conference on
Optimization and Decision Science (ODS) in November 2020 in Italy.

* "Polynomial-size formulations and relaxations for the quadratic multiple knap-
sack problem" is has been published in the European Journal of Operational
Research [59].

* "Matheuristic Algorithms for the Quadratic Multiple Knapsack Problem" has
been presented at the 31st European Conference on Operational Research (EURO)
in Athens, July 2021.

¢ "Lagrangian heuristics for the Quadratic Multiple Knapsack Problem" has been
presented at the 34th Conference of the European Chapter on Combinatorial
Optimization (ECCO), Madrid, June 2021.

¢ "Open pit mining with truncated cones by a parallel genetic algorithm" was
presented at IFORS 2021, and that was the internship period carried out in
Santiago-Chile (3 months).

1.2. Overview

(T20T ‘STOAT) SIULI0G YoIeasdy
reuonernd jo uonersps] [euoneu

wryjzode onauad [arrered e £q ssuod

-I9)U] 3} JO URIJUO)) Puge YL (D) ¥ OISLINSL] JIIdD peoyeounn ym Surunu yid usdp

woy

-qo1 oesdewy ordnmin onerpend

(2202) panrwqgng ([) € pLqAH DINO 2y 103 sopsumayjews uerduerde]

01eas [ed0]

Ppajeray preys-ynwt Aq wapqoid spes

(¢e0z) panrugns (D) € dUSHNSH IDINO -dewy spdynw onerpend) Surajog

(TT07) uonezZILUY wa]

-do rerojyeurquoy uo 193deyn uead -qoi pesdeuy ordnnin onerpengd

-0Ing 9y} JO NDUAILUOD) YFe (D) € PUQALL DINO 9y 105 sopsunay uerdueide]

wIa

(1207) yoressay reuoneradp -qoi spesdeuy ordnnin onerpengd

uo aduareyuo) ueadomyg 3s7g (D) ¢ PUgALT DINO 9y 10J SWLIOI[Y OUSLINSYILA

waqoxd spesdeusy ard

(12027) yoreassy -nw dryerpenb ay} 10§ suonexera1

reuonerad(jo reumo(ueadoing ([) € jexy DIANO Ppue SUORe[NULIO] JZIS-[EIWOUAIO]

(0202) 01V 49 (SAO) §150D) Bur[pueH pue AIBAIdQ

20USIG UOISI(] pue uonezrumdo ‘dnypdrg ym warqoi g uewsareg 3ur

U0 DULIAJUO)) [euoneuwrdul (D) z OUSLINSL] H-AddSL -[eaeif, ays 103 yoeoxdde remuern v

$3180D)

(0202) 3941 49 432 Surpuey pue Arwarpg ‘dnypig

-100g 2ouaDg Jamndwoy) uearny) ayy UM WR[qoI] Uewsa[eg Jurpaely,

JO ddUBIDJUOD) [euoeUIdI] YisE (D) z oISLINSY H-AddSL @Yy I0J yoIeag [ed0] pajers}] uy
pajerar

(Drewmo(/(D)aouardyuoy 1deyDd powyeN 2dAT, WA[qOL] ST

SISaY} 9} I0J SIOM UTeJA :1°T 414V,

11

Chapter 2

Iterated Local Search Algorithms
for the TSPPD-H

2.1 Introduction

Routing problems with pickup and delivery have been widely studied. The single
vehicle routing problem with pickups and deliveries (SVPDP-P&D), for instance, is
an NP-hard problem, which implies designing a minimum cost Hamiltonian tour
for a specific capacitated vehicle. Each customer may be visited once for simultane-
ous pickup and delivery of commodities, or twice if these operations are performed
separately, applying reverse logistics [39].

A special case of SVPDP-P&D is the Traveling Salesman Problem with Pickups,
Deliveries, and Handling Costs (TSPPD-H). Given G = (V, A) a non-directed, com-
plete graph, where V = {0, 1,...,n} is the set of vertices, and A the set of arcs; ver-
tex 0 represents the depot and vertices V. = V/{0} are the customers. Each arc
(i,j) € Aisrelated to a travel time cij, and each customer i € V, is related to a; deliv-
ery commodity units and B; pickup commodity units. In this problem, we assume
that both commodities have the same dimension. The cost of loading/unloading
a pickup commodity unit is /,, and the cost of loading/unloading a delivery com-
modity unit is h,. The capacity of the vehicle is Q, a last in, first out (LIFO) loading
policy is applied. TSPPD-H requires to determine a Hamiltonian tour satisfying the
capacity constraint and minimizing a global cost given by the sum of the tour cost
and the handling cost related to the loading/unloading operations performed at the
customers. TSPPD-H has several applications: Delivery of full bottles and pickup
of empty bottles [60, 61], pickup and delivery of damaged and working bicycles in
public spaces [42], pickup and delivery of new and broken machinery from hospitals
for specific suppliers.

In [42] defined three essential policies for TSPPD-H. As the internal vehicle flow
follows a LIFO loading policy, there is an obstruction between delivery or pickup
units. If we suppose that the vehicle is a stack data structure, the beginning being
the top, and the front the final part, Policy 1 always maintains pickup units at the
top and delivery units in the final part. Therefore, it is always necessary to load
pickup units every time a customer is visited. Policy 2, on the other hand, always
maintains delivery units at the top and pickup units in the final part. Therefore, it
is always necessary to load delivery units every time a customer is visited. Policy

12 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

3 requires determining the specific position of delivery or pickup units at each visit
to a customer. That is, the position of pickup/delivery commodities at the top or
final part of the vehicle must be decided. Thus, the handling costs are defined as the
additional cost for loading delivery or pickup commodity units.

Several methods regarding TSPPD-H have been developed. In [42] presented
the problem and propose three linear programming models for the three defined
policies, and solve them with two exact algorithms, a Branch & Cut, and a Ben-
ders Decomposition [62] considering up to 25 customers. Clearly, it was necessary
to generate new approaches to solve larger problems. The policies used in [42] are
also studied in [63], where two approaches are defined in order to get the handling
cost: a dynamic programming algorithm with complexity O(n?) for computing a
route; the second algorithm is a heuristic approach with complexity O(n), that al-
lows to identify whether a route is promising or not. Furthermore, [63] presented
three metaheuristics for TSPPD-H, an Iterated Local Search (ILS, [27]), a Tabu Search
[64], and an Iterated Tabu Search based on the first two approaches. The main aim
of their paper is to compare the three metaheuristics and the handling cost algo-
rithms. Thus, similar termination criteria were defined, maintaining the simple al-
gorithms. Recently, [65] defined a version with several routes and vehicles (VRP —
Vehicle Routing Problem), solving the instances of TSPPD-H proposed by [63] with
an Adaptive Large Neighborhood Search (ALNS, [66]), finding new best known so-
lutions (BKS). However, the large-scale instances are solved in 7 hours with the DP
approach and in 30 minutes with the heuristic approach.

A new approach based on ILS can be applied. As a matter of fact, considering
fluctuations on the elementary procedures of an ILS would contribute to explore
new solution spaces for TSPPD-H. In this chapter an ILS with the Granular version
for TSPPD-H is presented. This algorithm proposes a roulette wheel method for
the perturbation and a frequency-based local search procedure. In section 2.2, a
variation of the handling cost algorithm for the local search is described. Section 2.3
details a new ILS for TSPPD-H, called ILS-F. In section 2.4 the granular version of
the ILS-F, called GILS, is presented. Section 2.5 reports computational results and
Section 2.6 presents our conclusions and future directions. A preliminary version of
this ILS metaheuristic has been presented in [67].

2.2 The Handling Cost

In the TSPPD-H, for each vehicle it is necessary to analyze the handling cost at each
customer and to consider that the commodities follow a LIFO policy, i.e., the last
commodity that enters the vehicle must be the first to be unloaded. In this way, each
time a customer is visited, an additional time is spent for the loading and unloading
management on the vehicle, and this time must be considered in the global cost
function.

The formulation of the handling cost was proposed in [42]. The handling cost
depends on the additional operations that must be performed for unloading and
reloading one unit of commodity at a customer location. The optimal solution of the
TSPPD-H is then a Hamiltonian circuit on G that minimizes the sum of the cost of
the total travel time and of the additional operation times.

2.2. The Handling Cost 13

—(D)
d5k eeeecoso 000w

- i (T

e

S

TS

i fiichs ;=M
ii

di=2 pi=1 dy =3 p=2
CostD=0 CostP=4 CostD=0 CostP=35 TotalHandlingCost =9

&8
— o

(D
e=aill e

®

[

o

[jiiiicy:=/spmiiiie
[| il

dj=2 p;=1 dj=2 p;=1
CostD=3 CostP=4 CostD=0 CostP=0 Total HandlingCost =7

TS

FIGURE 2.1: A Handling Cost example for delivery and pickup of
oxygen tank between hospitals.

Figure 2.1 shows an example of the handling cost concept applied to oxygen tank
supply vehicles for hospitals. We assume that the cost i, and h; are both equal to
1. For this case, there are two identical sub-routes with hospitals i, j, k, and the load
management must be carried out for hospitals j and k. Empty oxygen tanks inside
the vehicle are represented in white tanks and must be collected from each hospital.
Full oxygen tanks are gray and must be delivered to each hospital. For routes a)
and b), when the vehicle goes the hospital i to hospital j, it has four empty oxygen
tanks at the beginning of the vehicle, five full oxygen tanks in the middle of the
vehicle, and three empty oxygen tanks at the end of the vehicle. When the vehicle
arrives at hospital j, pickups and delivery operations must be performed; for this
example, hospital j has a delivery equal to 2 and a pickup equal to 1 unit. In this
way, considering the current state of the vehicle, we could consider two policies:

e Route a):

- Unload from the beginning of the vehicle four empty oxygen tanks.

— Deliver two full oxygen tanks of the current load to satisfy the demand in
J.

- Reload at the beginning of the vehicle the four empty tanks previously
unloaded.

— Pickup at the beginning of the vehicle the empty tank corresponding to
the demand of ;.
e Route b):

— Unload from the beginning of the vehicle four empty oxygen tanks.

- Deliver two full oxygen tanks of the current load to satisfy the demand in
j.

14 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

- Unload from the beginning of the vehicle the three remaining full oxygen
tanks.

— Reload at the beginning of the vehicle the four empty tanks previously
unloaded.

— Pickup at the beginning of the vehicle the empty tank corresponding to
the demand of ;.

— Reload at the beginning of the vehicle the three full oxygen tanks previ-
ously unloaded.

For route a) in hospital j, an additional handling cost is generated for pickup
commodities (CostP) equal to four, since four empty oxygen tanks must be unload.
In contrast, the additional cost for delivery commodities (CostD) is not generated,
since only one full oxygen tank was unloaded corresponding to the demand of the
hospital j, and there are no additional costs related to the commodities. For route
b) in hospital j, an additional handling cost equal to four is generated for pickup
commodities, since four empty oxygen tanks must be unload. On the other hand, the
additional cost for delivery commodities is three since three additional full oxygen
tanks are unloaded and must be reloaded into the vehicle. Observe, that the vehicle’s
state after leaving hospital j is different for each route. The handling cost of hospital
j for route a) is 4 (CostP + CostD = 4 4 0 = 4), while for route b) the handling cost
is 7 (CostP + CostD = 4 + 3 =7). In conclusion, more additional movements were
made on route b).

The vehicle must continue its the route and arrive at the hospital k . At this point,
routes a) and routes b) have different additional handling costs since the vehicle’s
state that arrives from hospital j impacts the load management cost. For route a),
the vehicle must unload five empty oxygen tanks that are carried over from hospital
j, unload three full oxygen tanks corresponding to the demand of hospital k, and
finally reload the five empty oxygen tanks initially unloaded plus the empty tank
corresponding to the demand of hospital k. In this case, the additional handling cost
at hospital k is 5, and the global handling cost for this subroute is 9. For route b),
the vehicle must only unload three full oxygen tanks and upload one empty oxygen
tank, both corresponding to the demand of hospital k. For this stop, no additional
costs are generated, and the final handling cost for this sub-route is 7.

The handling cost value depends on each decision made along the route. For
the previous example, it is assumed that the vehicle’s state when it leaves hospital i
is the same for routes a) and b). However, this is not necessarily the case since the
accumulated handling cost depends on the additional costs generated by previous
customers. In this way, a route can have many associated handling costs. In [63]
proposed the first approaches in order to get the additional handling cost. The first
is a quadratic time dynamic programming (DP) algorithm, and the second is a linear
time heuristic algorithm. The DP algorithm is an approach that can be improved
and adapted for heuristic search moves. The following sections describe the DP
algorithm and its improvements.

2.21 Dynamic programming algorithm

The two most important processes of the algorithm are the following:

2.2. The Handling Cost 15

* Recursive formulation: Given a Hamiltonian route with i and j the customer
indexes along the route, hc(i) is the optimal handling cost between customers
i+ 1 to n with policy 2 applied to customer i. Also, p;; is the handling cost
associated with applying policy 1 between customers i 41 to j — 1. For policy
2 to customer j, a recursive formulation of dynamic programming is as follows:

(DP); he(i) = min {pj;; +hc(j)},Vi € {0,..,n -1} 2.1)
jef{i+1n}

he(n) =0 (2.2)

Remember that i and j are customer indexes along a previously defined route
and that the termination condition of the DP algorithm is n with handling
cost equal to 0. Generate matrix p: In order to generate the matrix elements
pij, Vi, j € {1,...,n} three state variables are used:

- &’ as the number of delivery units onboard the vehicle.
- B’ as the number of pickup units onboard the vehicle.

— 0 as the accumulated cost of applying policy 1.

Algorithm 1 shows the procedure to calculate the matrix p and the execution of
the dynamic programming algorithm. The state variables &, f/, and 6 are initialized
within the main loop (lines 3,4, and 5). Between lines 9 to 20, the values of the matrix
elements p; ; are calculated as follows:

e The state variable «’ is updated, containing the remaining delivery units for
the future customers. All delivery units corresponding to customer demand j
are unloaded regardless of the policy (line 10).

* The algorithm checks if the customer j has pickup units demand and if the ve-
hicle has pickup units on board from other customers. If the global number of
pickup units units (8’ + B;) is greater than 0, p;; is set equal to the accumulated
cost of applying policy 1 up to this customer of the route plus the cost of the
management associated to the units onboard the vehicle (pickup and deliv-
ery). If the sum B’ + B; is equal to 0, p;; is equivalent to the accumulated cost

of applying policy 1.

e If the delivery request of the customer j is greater than 0, the state variable 0 is
updated.

e Finally, the state variable ' is updated as if policy 1 were used.

Note that each external for-loop has complexity O(n?). In [63] stated that, when
using this algorithm within heuristic search moves, the complexity can reach O(n*).

16 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

Algorithm 1 DP algorithm by [63]

Input: «,B,h,,hy

Output: hcy (Optimal Value)
1: // Generating p
2: fori=0ton —1do

3: ,B, =0

4: =0

5 o =ag

6 forj=1toido

7: o =o' —a

8: end for

90 forj=i+1tondo
10: o =o' —a;

11: if B’ + B; > 0 then
12: pij = 0+ (h,;*Dé,) + (hb*ﬁ,)
13: else

14: pij = 0

15: end if

16: if K; > 0 then

17: 0:9+(hb*ﬁ,)
18: end if

19: B =p +B;
20: end for
21: end for
22: // DP procedure
23: he(n) =0

24: fori=n—1to0do
25: forj=i+1tondo

26: if he(i) > pi; + he(j) then
27: hC(i) = pij + hC(j)

28: end if

29: end for

30: end for

31: return hc(0)

0 8 10 18 31]
0 0 8 10 17
p=]/0 0 0 6 9
0 0 0 0 2
00 0 0 O]
d:}ﬁ:es d=4 p=4
(1) .

L(——

d=2 p=1 d=2 p=5

FIGURE 2.2: Final matrix p for the TSPPD-H using DP.

2.2. The Handling Cost 17

An example of the handling cost calculation is shown in Figure 2.2. At the bottom
of the figure, a route with four customers and the depot with simultaneous pickup
and delivery requirements is presented. To apply the exact approach, input data
must be precalculated & = {a9,4,4,2,2} and B = {bo,6,4,5,1} withag = ;e a; =
12 and by = Y ;cy. Bi = 16. Considering this example with i, = h;, = 1, the output
matrix p generated by Algorithm 1 is shown at the top of the figure.

With the matrix p and its candidate handling cost values, a recursive tree is gen-
erated and shown in Figure 2.3. Note that each value hc(i) requires the values hc;
hi ¥V j e {i+1,..,n} with h(n) = 0. For each operation, the minimum value is
selected, which defines the definitive handling cost value for the route between the
depot and each customer (colored boxes). Finally, an output vector hc = {8,8,6,2,0}
is generated and the optimal value of handling cost is hc(0) = 8.

he(3) he(4)
i J. (po.)2+ B | | pig = 1, = 0

he(2) :
il — (pes)6+ @) he(4)

he(1) (P2.4))9+ he(@) he@) = h, =0
(Pa,2))8+ he(2) o

1 (Pa3))10+ he@) [he(3) he(4)
(pa.4))17+ he@) | (P 4y)2+ HE@) M

he(4)
_ | me@®=h, =0
h(o) min)
he(4)
he@)= h, =0

(P0.1))8+ he(1) he(2) he(3)
(P0,2))10+ he(2) (p2,3))6+ he(3) (pi4)2+ he(@)
(p0.3))18+ he(3) (p2.4))9+ he(@)
(pow)31+ He@) he(4)
Be@)= h, =0
he(3) he(4
(pes.)2+ il }— -

he(4)
he@) = he(n) =0

he=[8 8 6 2 0]

FIGURE 2.3: Recursive Tree of DP Approach.

18 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

2.2.2 Improved DP Algorithm

The original DP algorithm from [63] can be adapted in order to be used for local
search methods. It should be noted that the improvement to the algorithm does not
change the value and logic of the process; it only decreases the execution time. We
show an example of this improvement using Figure 2.4. The handling cost vector is
calculated as exemplified in the recursive tree of Figure 2.3.

Note that the value of each handling cost depends on its predecessor. In this way,
original values of vector hic and matrix p can be maintained during a local search in-
dependently of the type of movement. For the example above, customers 1 and 2
could be swapped. However, the rest of the route maintains the handling costs cal-
culated with the previous values of hc and p. As some initial arcs of the original
route are changed, some rows of matrix p must be recalculated, and also some new
values for vector hc must be recalculated. This principle allows to generate an im-
provement on the DP algorithm previously described. Figure 2.5 shows the details
of this movement.

0 31 31 26 36 46 60 72
0 0 31 22 28 34 44 52
0 0 0 19 22 25 32 37
p000025232525
[0 31 30 25 35 45 59 71] 0 0 0 0 0 12 13 12
0 0 31 23 30 37 48 57 00 0 0 0 0 12
0 0 0 19 22 25 32 37 00 0 0 0 0 0 1
(oo 0o o 25 23 25 25 (0 0 0 0 0 0 0 0]
P=lo 0 0 0o 0o 12 13 12
00 0 0 0 0 12 9
00 0 0 0 0 0 1
0 0 0 0 0 0 0 O]
d=4 p=3 d=4 p=4 d=12 p=5
d=2 p=1
he=1[26 22 19 23 12 9 1 0]
7 (6) 5
d=9 p=6 d=1 p=6 d=3 p=2 limit

he=[25 23 19 23 12 9 1 0]

FIGURE 2.5:
New route with
FIGURE 2.4: Orig- improvement

inal route. (red)

2.2. The Handling Cost 19

Algorithm 2 DP algorithm for Local Search

Input: «,B,h,,hy,costCurrent, costRoute, limit, hc
Output: hicy+ costRoute
1: for i = limit to 0 do

2: ﬁ, =0
3: 0=0
4: o = L%
5. forj=1toido
6: o =a —a;
7: end for
8 forj=i+1tondo
9: o =a -
10: if g’ + B; > 0 then
11: pij = 0+ (hg*tl{’) + (hb*ﬁ’)
12: else
13: pij = 0
14: end if
15: if a; > 0 then
16: 0=0+ (hyxp)
17: end if
s B =p+p
19: end for
20: min = co
21: / /DP starts from route change
22 fork=i+1tondo
2: if min > he(k) + p; then
24: min = he(k) + pix
25 end if

26: end for
27: / /1f the current value has not decreased from the original path

28: if costCurrent < (costRoute + min) then
29: return costCurrent

30: else

3L he(i) = min

32: end if

33: end for

34: return hc(0)+ costRoute

Algorithm 2 shows the details of the improvement. This process has new input
parameters: costCurrent is the current cost of the original tour corresponding to the
sum of the cost of the original tour and of the optimal handling cost of the original
tour; costRoute is the cost of the tour applying the movements to the original tour;
limit is an integer parameter defining the initial customer to be considered; and hc
is the current vector of handling costs of the original tour. Note that the core of
the algorithm (lines 2-19) is not changed but the considered customers depend on
the value of limit. Then, for each considered customer (row) i, the DP routines are
applied (lines 20 -26). Finally, a boundary condition for the algorithm is applied, for
which the cost of the route costRoute is added to the handling cost on the customer
i (min, line 28). If this value is less than the original cost costCurrent, the algorithm
cut the execution and continues with another movement (returning costCurrent);
otherwise, the algorithm continues calculating the optimal handling cost.

This algorithm will be used to calculate the handling costs, within the procedures
defined for the ILS algorithm. In the next section, the metaheuristics will be defined
in more details.

20 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

2.3 The Iterated Local Search Algorithm

2.3.1 Existing algorithm

Algorithm 3 ILS by [63]

Input: s, Nrand » Niter,
Output: bestSolution

1: costCurrent = cost(sg)

2: bestSolution = sg

3: fori =1to Ny, do

4 Tour = bestSolution

Perturbation :

5 forr =1to N,,,q do

6 j, k=RandomNumber(1,|V¢|)
7: if (j == k) then
8
9

p =RandomNumber(1,|V;|) / p # |
Tour = Relocate(Tour,j,p)

10: else
11: Tour = Reverse(Tour,j+1,k)
12: end if

13: end for
Local Search :

14: while improvement do

15: Tour = Relocate(Tour)

16: Tour = 2-Opt(Tour)

17: end while

18 if (cost(Tour) < costCurrent) then
19: costCurrent = cost(Tour)

20: bestSolution = Tour

21: end if

22: end for

23: return bestSolution

The Iterated Local Search approach (ILS) was introduced by [27] and has been
used for several routing problems related to TSP [68-70]. Algorithm 3 shows an
ILS pseudocode designed in [63]: the algorithm receives an initial solution sy gen-
erated by the Symmetric TSP software Concorde [71], a number N,,,; of iterations
of perturbation and a number Nj;,, of iterations of ILS. The variable costCurrent is
initialized with the cost of the initial solution sy, and the best route or bestSolution is
initialized with the solution sy (lines 1 and 2). Later, within the internal cycle of the
ILS, two random numbers, j and k are generated. If j = k, a new random number p
(with p # j) is generated and the customer j is relocated in position p; otherwise, a
reverse function between the customers j 4 1 and k is applied. Then, the 2-Opt [72]
and Relocate improve heuristics are used on the perturbed route until no further
improvement is found.

Relocate and Reverse moves are considered in the perturbation. Figure 2.6 shows
an original route (with indices from 1 to 7 representing the sequence of its cus-
tomers), and three random perturbation moves: Swap(i, /) moves the customer from
position i to position j and vice versa, Relocate(i, j), which moves the customer from
position i to position j, and Reverse(i, j) which changes a direction subroute (sub-
route between i, j). The moves considered in the ILS by [63] are Relocate and Re-
verse. Swap is considered by the new metaheuristics detailed in 2.3.3.

2.3. The Iterated Local Search Algorithm 21

Criginal Route 1 2|13 14|65 |6 7
T

Swap(i,j) = Swap(4,7) 1 2 (3|7 |5 1|6 4
\—/

Relocate(i,j) =Relocate(2,5) 1({3 (4 |5 |2 |6 7

Reverse(i,j) = Reverse(3,6) 1 2 6 |5 4|3 7

»

FIGURE 2.6: Perturbation moves

The previous algorithm can be used to define a new ILS. To do so, the two defined
procedures must be taken into account.

2.3.2 [Iterated Local Search using Frequency (ILS-F)

A new ILS called ILS-F is introduced to solve the TSPPD-H. The new approach con-
siders new procedures that improve the performance of the metaheuristics and that
are different from those used in the ILS of [63]:

e It is possible to generate an initial feasible solution using a framework that
solves the TSP with Pickups and Delivery. Although Concorde can find good
initial solutions for the TSP, it does not consider the demands of the customers,
which are vital for the proper management of the handling costs.

¢ This initial solution can be improved by a local search based on the best neigh-
borhood approach (called GreedyBasedLS).

¢ Subsequently, a perturbation based on a not crooked roulette (called Roulet-
tePerturbation) can be applied. In this process, the perturbation must select a
random movement without preference among a set of possible movements.

* A local search based on the frequency of use (called Local search with fre-
quency or LSF) can be applied. This adaptive local search allows to improve
the performance of a search. To do this, the algorithm considers whether a
neighborhood improves the current solution; if this is true, the neighborhood
increases its probability to be executed in the next search iteration.

* An acceptance criterion can be applied based on the Simulated Annealing ap-
proach. This criterion allows us to accept solutions that do not improve the
objective function but can allow us to escape from local optima.

Note that the higher-level components listed above are not part of a standard
ILS. ILS-F tries to guide the search with the same initial solution, not randomly per-
turbing it as done in the ILS from [63]. For ILS-F, a local search based on the best

22 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

neighborhood is used, and a local search executes the best moves using frequency.
Algorithm 4 shows the pseudocode of ILS-E.

Algorithm 4 ILS-F: Main Scheme

Input: Data, N1 , Nper, Niter,€,t0
Output: s,
: so = LKH(Data)
s« = GreedyBasedLS(s)
t=1p
Sp — Sx
costS, = costSy = cost(sy)
fls = equivalentFrequency()
historyy, = @
forit = 1to Ny, do

s+ = RoulettePerturbation(s., history,a;, Nper)
1 (S++rfls) = LSF(S+rflS/ NitrL)
11: if (cost(s44) < costSp) then
12: Sh = Sx = S+
13: costSy = costS, = cost(s4)
14: historyy, = @
15: historyy,,.enqueue(costSy)
16: fls = equivalentFrequency()
17: t =1t
18: else if (cost(s4+) < costS.||A(cost(sy+),costS,,t,€)) then
19: Sy =S4
20: costS, = cost(s4+)
21: t = max(t*¢€,0)
22: else
23: t = max(t*¢€,0)
24: end if
25: end for
26: return s,

DR A L i ey

e

ILS-F receives several input parameters for its execution and initial processing.
The instance data (Data), the number of iterations N;;,; for the LSF, the number of
iterations Ny, for the perturbation, the corresponding number Nj,, of iterations of
the main loop, € the value ¢y used for the acceptance criterion based on a cooling con-
figuration in the decreasing variable f that is explained in detail in section 2.3.6. The
initial solution sg is generated by the Lin-Kernighan TSP heuristic (LKH), version
2.0.9 [37]. Then, a GreedyBasedLS is performed, obtaining a solution s., which will be
the current search solution. After that, the variables to be used in the main loop are
updated: s; represents the best known solution and costS. and costS; are the cost of
the solution s, and s, respectively. The variable fIs (line 6) is a triple of pairs of the
form (< 2 —Opt,§ >, < Relocate,{ >,< Swap,n >)/6,{,n € [0,1],0++1n =1,
where 4, and 7 are the frequencies of moves "2-Opt", "Relocate” and "Swap", re-
spectively (see section 2.3.4). Initially the three moves have equivalent frequencies

2.3. The Iterated Local Search Algorithm 23

(6 =1/3, =1/3,7 = 1/3). Finally, the variable history,, is a queue structure that
saves the values of the target function (pair < TSPcost, HandlingCost >) generated
by the perturbation.

The main loop contains the perturbation and local search procedures defined for
ILS-F. RoulettePerturbation uses the current solution and generates a new neighbor-
ing solution s in a number N, of iterations. Subsequently, the routine local search
with frequency LSF is used, which performs two main processes: LSF improves the
perturbation solution s by generating s, 4, and it also updates the variable fIs with
new frequencies for the following search process. The new current solution may be
accepted under three criteria:

¢ If the solution is the best from the search: All search variables are updated and
the variable fIs, the variable history,,;, and the variable t are reset (lines 12-17).

¢ If a local optimum is found or an acceptance criterion is fulfilled (section 2.3.6,
A function). Only the variables storing the current search solutions are up-
dated (line 18-21).

A flow-chart of the algorithm is shown in Figure 2.7.

2.3.3 Roulette Perturbation

The RoulettePerturbation algorithm makes random perturbations using three moves.
Algorithm 5 details the process and receives a solution s, a queue with the values
from the last perturbations history,, and the number Ny, of iterations for pertur-
bation. The internal loop randomly performs 3 types of moves: Reverse, reverting a
sub-route between positions j + 1 and k; Relocate, selecting a customer j and putting
it on position k, and Swap, exchanging the customer in position j with that in posi-
tion k. It is worth noting that the number of moves made by the internal loop only
depends on Np.,. Once the random moves are applied, it is verified that the route
cost and the handling cost from s, are not contained within the variable history,,;.
The process behind this verification is based on the pair < TSPcost, HandlingCost >
having a high chance of being unique data for a route, i.e., a route generates a route
cost and a handling cost unique to both together. Thus, routes containing both costs
in history,, are avoided for not applying a redundant local search. If the route is
valid, the first pair input to history,, (the oldest one on queue) is removed, and
the new perturbation route is returned. Otherwise, the internal algorithm loop is
executed again until a valid perturbation is found.

Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

[Data, Nitr1, Nper, Niter, €, To]

[Set so = LKH(Data)]

!

[Set s, = GreedyBased LS(sp)]

{

[Sett =ty]

’

[Set sy = 54]

!

[Set costSy = costSy = cost(S,)]

Create triple variable

fls=<6=1¢(=1.n=12>

[Create empty list RiStOryya]
[Set 55 = 54]
[Set it=0]

K ——— : ;

[Set 5, = Roulette Perturbation(s., historyyar, Nper)]

l

(514, fls) = LSF(s., fls,Nurr) |

cost(s44) < costS, or

AcceptanceCriterion(cost(s4+), cost Sy, t, €

No

[Sp = Sy = S44]

l

t = max(t * €,0) [Sy = S4+] costSy = cosrf* = COST(S++)’

] history,, = @
history,, . enqueue(costS})

YES

i

[costS, = cost(syy)

[t=max(t *¢€0)]

Reset variable
— SRS (g S Pp—
fls=<6=3,{=3,n=3

FIGURE 2.7: FlowChart of the ILS-F

2.3. The Iterated Local Search Algorithm 25

Algorithm 5 RoulettePerturbation

Input: s.,historyy., Nper,
Output: s
1: S+ = Sx
2: ValidPerturbation = False
3: while (ValidPerturbation==False) do
4: Sper = Sx
5. fori=1to Ny, do
6: per = RandomRoulette(1,2,3)
7: (j, k) = RandomUniform(1,n) / j <k
8: if (per == 1) then
9 Sper = Reverse(spgr,j+1,k)

10: else if (per == 2) then

11: Sper = Relocate(sper,j, k)

12: else if (per == 3) then

13: Sper = Swap(Sper,J,k)

14: end if

15: end for

16: if (costTSP(sper), costHC(sper) & history,,) then
17: ValidPerturbation = True

18: S+ = Sper

19: end if

20: end while
21: historyy,,.dequeue()
22: return s

2.3.4 Elementary Heuristics

Given a route to apply a move, three heuristics may be described for TSPPD-H:
Relocate, 2-Opt, and Swap. Relocate implies the best relocation of a single customer
during the route, therefore, the number of possible relocationsis | V| * (|Vc| —1). The
move 2-Opt removes two arcs from the route and replaces them with two other arcs,
thus, a single enhanced Hamiltonian cycle is formed, and the number of possible
moves in this neighborhood is ((|V:| + 1) * (|V¢| —2))/2. Swap consists of finding
the best exchange of positions for two customers in the route, therefore, the number
of exchange moves in each neighborhood is | V| * (|V.| — 1) /2. For our ILS-F, each
heuristic is executed until the first improvement is found, i.e., the total number of
possible neighborhoods is only executed in a worst-case scenario.

The effectiveness study made in [63] suggests that it is better to use two of the
three described heuristics. As a matter of fact, for this problem, Relocate and 2-Opt
were the best among three considered heuristics. In this way, two neighborhoods
are used in the metaheuristics of [63] and one (i.e. Swap) is completely discarded.

However, for the procedure LSF (described in section 2.3.5), we consider all three
heuristic but, only two are performed during the local intensification search, and the
third one is executed only when there is no possibility of improving the current
solution. The two best moves are defined based on their use frequency during the

26 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

searching. Our hypothesis is based on the effectiveness of the heuristics depending
on the structure of the instance, given by the travel time between the customers, the
commodities on-board, the commodities not on-board. Now, the use of the heuristics
within the local search is explained.

2.3.5 Local search methods

Algorithm 6 GreedyBasedLS

Input: s
Output: s.
1: S¢« = 90
: costS, = cost(sp)
. improve = True
: while (improve==True) do
ss =2 — OptHeu(sy)
s; = RelocateHeu(sx)
sy = SwapHeu(s.)
costs = min(cost(ss), cost(sg), cost(sy))
bestyoute = best(ss,s,5y)
if (costy < costSy) then
costS, = costs
s« = bestyoute
else
improve = False
15: end if
16: end while
17: return s

VPN TR W@y

Y
LRI

The algorithm GreedyBasedLS (see Algorithm 6) chooses the best solution by ap-
plying each heuristic to a current solution. The Algorithm 6 receives a solution sg as
parameter. After the updating of the algorithm variables (current solution s., and
costS.), aloop is executed, where all the three described heuristics are applied to the
current solution (lines 5-7) getting the routes s;, s; and s, . Then, the best route is
selected (lines 8-9) and the solution improved is compared with the current solution
(lines 10-15). The loop end criterion is applied when no further improvements over
so can be found.

The local search frequency (LSF) algorithm iteratively executes the heuristics
based on the use of the last iterations. Algorithm 7 receives a solution s, the cur-
rent use frequencies fls and the number of iterations of the local search Nj;. As
with the previous algorithms, the current solution variables of the algorithm must
be updated. In addition, a variable fls;¢, to be used to update the new frequency
values according to the local search to be performed is generated. First, the internal
loop of the algorithm (lines 5-20) takes each heuristic heu from fIs, assuming it is al-
ready ordered according to the prior iteration use frequency (it is worth noting that
for the first iteration all the frequencies are equal. However, 2-Opt and Relocate are
executed first, based on [63]). Then, the chosen heuristic is applied, and the solution
is stored in sy, (line 7). If the solution is feasible (line 9) and suffered changes due to
the heuristic (line 10), 3 actions are performed (lines 11-14): the variable fIs;., with
the applied heuristic, the current solution variables are updated, and the counter of
improvements is increased of one unit. It is also worth mentioning that the inter-
nal loop may execute all three moves if, and only if, any (or none) of the first two

2.3. The Iterated Local Search Algorithm 27

heuristics does not achieve an improvement of the current solution. Once the heuris-
tic move loop is finished, the variable fIs is updated with the new values (line 22,
sort process) and it is verified that the new current solution is the best solution of
the search. If this falls in a local optimum, the main loop is terminated without com-
pleting the N4, iterations (lines 23-28). The LSF algorithm returns the final solution
found and the updated frequency.

Algorithm 7 LSF

Input: s ,fIs,Nj,.
Output: s, flsnew

1 S4+4 =SLSF =S+

2 flSpew = fls

3: for (it = 0 to N;,1) do

4 improve=0

heuPair is a pair structure <frequency ratio, heuristic> :

5 for (heuPair in fls) do

6: heu = HeuPair.getHeuristic()
7: Sheu = applyHeu(heu, sy sp)
8:
9

COStSpey = COSt(sheu)
if (fesaible(sj,,)) then

10: if (costSy,, # costSpsp) then
11: Update(flsyew, heu)

12: SLSF = Sheu

13: costSysp = costSyey

14: improve = improve + 1

15: end if

16: end if

17: if (improve==2) then

18: break

19: end if

20: end for
21: fls = flspew
The fls structure is sorted based on the new frequency ratio :
2. sort(fls)
23: if (costSysp < costSy) then

24 S4+4 = SLSF

25 costSy4 = costSysr
26: else

27: break

28: end if

29: end for

30: sort(flspew)
31: return sy, flSpew

2.3.6 Acceptance Criterion

The acceptance criterion for the ILS-F is based on a Simulated Annealing cooling
setup. This metaheuristic defined in [73] and [22], is based on the controlled cooling
of materials. However, the cooling setups for this metaheuristic are different and
have been used in several works of the literature [74, 75]. For this ILS-F, a configura-
tion expressed in equation 2.3 has been defined, where t; and ¢ are initial and final
temperatures, respectively, Ny, is the number of iterations, € is the cooling factor,
544 is the current solution and s, is the new solution to consider accepting in the
search.

28 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

1
= (L) Vit £ t
€= () o<t <0 (2.3)
teyr = €%ty 0 <k < Niter
cost(ss) < cost(s44) —txIn(U(0,1))

to and tf are initial and final temperatures, respectively.

Niter is the number of iterations.

€ is the cooling factor.
® s, . is the current solution.
* s, is the new solution to consider for acceptance in the search.

The convergence of the temperature allows the change of neighborhood within
the ILS. The criterion is applied for each iteration and it is necessary to check the
cooling temperature each time a solution is obtained from the local search.

2.4 Granular Iterated Local Search

The Granular Iterated Local Search (GILS) is based on the ILS metaheuristic [27] and
the granular search concept proposed by [32]. The essential idea of this algorithm is
to use ILS but with a granular search within the neighborhoods in the local search.
The concept of granularity is based on eliminating a priori arcs of the problem that
may not be part of the optimal solution, reducing the search computation time. For
example, the algorithm could calculate an average arc value and remove the arcs
having values greater than threshold given by a fixed percentage of the average arc
value. This idea proved to be effective for the VRP obtaining good results [32].

2.4.1 The granular approach

The granular search concept consists of evaluating only those edges which have
larger probabilities to be part of a good solution. The classical granular approach
proposed by [32] uses a travel time based criterion to decide which edges will be
evaluated. Nevertheless, we propose an hybrid criterion, which combines the travel
time based-criterion with the similarity of the demand between customers. Thus, a
new granular cost A; ; associated to each edge (i,), connecting two customers i, j in
the graph, is generated. The new granular cost will be used to guide the local search
and the neighborhood exploration; it can be computed as follows:

Cij |9 — q
i 1 qf’) (2.4)

Aij =0 (gras)+ (Z*MAXQ
Where, MAXc is the maximum traveling cost computed over all edges in the
graph, g; is the absolute value of the difference between the pickup and the delivery

2.4. Granular Iterated Local Search 29

demand of a customer i (i.e. |a; — B;]), MAXq represents the largest absolute differ-
ence between g; and g; computed out of all pairs of customers (i,)i # j,i,j € V..
The parameters § and # represent the weights respectively of the travel time and
the demand in the final cost, with § + #=1. Note that if # = 0, the granular cost is
reduced to a travel time based criterion. The idea of the hybrid criterion is based on
the fact that the similarity between the customers requirements affects the handling
sub-problem. Finally, the factor 2 is used in the second denominator since there are
two demands considered (that is, two customers i and j).

The details of the main algorithm are presented in Algorithm 8. A feasible ini-
tial solution (line 1) generated with the well known LKH-3 heuristic [76] is used as
starting point of the GILS. The obtained solution is improved by using a initial local
search procedure (line 2), which is exclusively applied after the initial solution. Fur-
thermore, the variables related to the acceptance criteria, expansion factor, and tabu
solutions are initialized. The main cycle follows the original ILS, with a perturbation
(line 12), and a local search (line 13). Then, the GILS updates the solution variables
according to three criteria:

e If the solution found (LSRoute) is better than the global solution (bestRoute),
the algorithm is restarted (i.e. all the parameters are updated), and the current
solution (currentCost) is updated.

¢ If the solution found (LSRoute) is only better than the current solution (currentCost)
or the solution found (LSRoute) fulfills the acceptance criteria (section 2.3.6),
the current solution is updated.

The next step is to check if it is necessary to increase the granular factor p (lines
34-42). This factor is an input parameter for the granular local search and is de-
fined as the neighbor ratio for the search. This check is applied through the variable
reset. If the algorithm reaches reset iterations, p is increased to p + v (with 7y constant
throughout the search), the tabu list is cleaned and the variable reset is updated in
order to increase again in the following iterations of the main cycle. When p = 1, the
GILS algorithm runs without granularity, using all neighbors with Niter iterations.
Finally, the temperature and the iteration counter are updated.

The granular cost is used to sort the edges, and the p% cheapest ones are evalu-
ated. The parameter p is initialized to 50%, nevertheless, if the algorithm remains in
a local optimum for reset iterations, p is augmented to p + 7.

30 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

Algorithm 8 GILS Main Scheme

. (initialRoute, initial Cost) = LKH3()

. (bestRoute, bestCost) = GreedyLocalSearch(initialRoute, initialCost)

0 = Pinitial

: sReset = N/ratioReset

. reset = sReset

. currentRoute = bestRoute

. currentCost = bestCost

. temp = sTemp

. TabuSolutions = empty

10: it =0

11: while it < Nlter do

12: (perturbationRoute, perturbationCost) = Perturbation(currentRoute, currentCost, TabuSolutions)
13: (LSRoute, LSCost) = LocalSearch(perturbationRoute, perturbationCost, p)
14: if LSCost < bestRoute then

R N R N

15: bestRoute = LSRoute

16: bestCost = LSCost

17: currentRoute = LSRoute

18: currentCost = LSCost

19: TabuSolutions.clear()

20: UpdateTabuList(bestRoute, TabuSolutions)
21: temp = sTemp

22: it=0

23: ResetParameter = sReset Parameter
24: else

25: if LSCost < currentCost then

26: currentRoute = LSRoute

27: currentCost = LSCost

28: else

29: if AcceptanceCriteria(temp, LSRoute, LSCost) then
30: currentRoute = LSRoute

31: currentCost = LSCost

32: end if

33: end if

34: if reset == it then

35: if o+ v < 1.0 then

36: p=p+7

37: TabuSolutions.clear()

38: reset = reset + sReset

39: else

40: reset = Nlter

41: end if

42: end if

43: it=it+1

44: temp = max(temp * alpha, eTemp)

45: end if
46: end while

2.4.2 Neighborhoods, perturbation and local search

This subsection details the operators used as neighborhoods of a certain solution,
the perturbation procedure used to escape from local optima, and the local search
process.

Neighborhoods

The neighborhoods used in GILS are the same ones defined in chapter 2.3.4 and also
defined in [67]. For this approach, each neighborhood works with the expansion
factor (only in local search procedures) p, previously defined. This parameter defines
the number of customers (within the neighborhoods) that can be used (i.e. n x p).

2.4. Granular Iterated Local Search 31

Perturbation

The perturbation algorithm is based on the method proposed in [67] (see Algorithm
9). It selects randomly a neighborhood, and a random move of the neighborhood is
applied if it is feasible and is not contained in the TabuSolutions list. If one of the
two mentioned conditions does not hold the whole process is repeated. That is, the
neighborhood and the move are randomly selected again until the conditions are
fulfilled. Once the perturbation is accepted, the tabu list and the objective function
are updated. The perturbation process described is less-aggressive than that used in
[67] since only feasible moves are accepted.

Using a tabu list within the perturbation avoids the redundant execution of the
local search procedure for routes previously considered, with a reduction of the com-
putation time to obtain the optimal value of the handling cost. For this reason, the
output solution of this perturbation is a new route and avoids delivering to the local
search process a solution that has been visited.

Algorithm 9 Perturbation for GILS

Input: currentRoute, currentCost, TabuSolutions

Output: TabuSolutionsperturbationRoute, perturbationCost
1: noPerturbationFound = true
2. perturbationRoute = empty
3. while (noPerturbationFound) do

perturbationRoute = currentRoute
ipr=0
jpr=20

while ipr == jpr do
ipr = RandomInteger Number(0, N)
jpr = RandomInteger Number(0, N)
10. end while
11: selectNeghboord = RandomIntegerNumber(1,3)
122 if selectNeghboord == 1 then
13: perturbationRoute = SingleRelocate(currentRoute, ipr, jpr)
14: endif
15. if selectNeghboord == 2 then
16: perturbationRoute = SingleSwap (currentRoute, ipr, jpr)
17: end if
18: if selectNeghboord == 3 then

19: perturbationRoute = SingleTwoOpt(currentRoute, ipr, jpr)

20: end if

21: if NoTabu(perturbationRoute, TabuSolutions) and isFeasible(perturbationRoute) then
22 noPerturbationFound = false

23 endif

24: end while

25 UpdateTabuList(perturbationRoute, TabuSolutions)

26: perturbationCost = HandlingCost(perturbationRoute) + RouteCost(perturbationRoute)
27: return (TabuSolutions, perturbationRoute, perturbationCost)

Local search

The proposed algorithm uses two local search procedures. The first one (GreedyBasedLS)
is applied only once, after the construction of the initial solution. The objective of
this local search is to improve the solution provided by the LKH-3 algorithm, be-
cause this algorithm seeks for minimizing the traveling cost without considering the
handling cost. The second algorithm (LocalSearch) is used within the ILS, i.e. after

32 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

the perturbation process. The GreedyBasedLS description was proposed in [67] and
is described in detail in Algorithm 6.

Algorithm 10 LocalSearch

Input: perturbationRoute, perturbationCost, p, Nyax
Output: LSRoute, LSCost

1: iter =0

2: LSRoute = perturbationRoute

3: LSCost = perturbationCost

4: while iter < Ny, do

5 currentRoute = LSRoute

6 currentCost = LSCost

7. forselectNeghboord € {1,2,3} do

8

9

if select Neghboord == 1 then
(RouteN, costRouteN) = TwoOpt(currentRoute, currentCost, p)

10: end if

11: if selectNeghboord == 2 then
12: (RouteN, costRouteN) = Relocate(currentRoute, currentCost, p)
13: end if

14: if selectNeghboord == 3 then
15: (RouteN, costRouteN) = Swap(currentRoute, currentCost, p)
16: end if

17: if currentCost > costRoute then
18: currentRoute = costRouteN
19: currentCost = RouteN

20: end if

21: end for

22: if isFeasible(currentRoute) then

23: if LSCost < currentCost then
24: LSRoute = currentRoute

25: LSCost = currentCost

26: iter = iter + 1

27: else

28: break

29: end if

30: else

31: break

32: end if

33: end while
34: return (LSRoute, LSCost)

The LocalSearch procedure is detailed in algorithm 10. The input parameters
are the following: a feasible route generated by the perturbation process, the cost
of that route, p, Nyux, and the maximum number of iterations. The internal cycle
executes the three neighborhoods in a sequential way, one per iteration. Then, it
verifies the feasibility of the solution, and if it is improved in order to replace the
current solution. The change in the current neighborhood is performed regardless
of the result in the internal cycle, that is, if the current solution is improving or not.
Finally, within the outer cycle the global solution is updated if an improvement is
found, otherwise, the cycle ends and the algorithm returns the best solution found
and its cost.

2.5. Results 33

2.5 Results

2.5.1 Instances

The computational experiment is performed by considering the instances presented
by [63]. This set contains ten instances for each value of n =[20; 40; 60; 80; 100; 120;
140; 160; 180; 200]. Each of these instances was adapted from [77] and the pickups
and deliveries were scaled from [42]. For each customer i € V, the pickup value
pi is scaled using p; = max{1, p; mod 20}. Finally, each value of «; and f; for the
TSPPD-H is obtained using :

Bi = |pi(i mod 5)/5| and wa; = (p; — Bi) (2.5)
The vehicle capacity is Q = max{Y;cy, «i,};cy, Bi}. Finally, an analysis in [63]

suggests using 1 = h, = h;, in a constant way with value h = 20/|V,|.

2.5.2 Parameters and Experiments for ILS-F

TABLE 2.1: Parameters Setting

Parameter Values Final Value
to [50,100,200] 100
Niter [50,100,200,300] 200
Nitert [10,20,30,40,50] 10
Nper [50,100,200,300,400] 200

In order to obtain appropriate values of the parameters, different ranges were
used, executing ILS-F for the instances with n = 60. Table 2.1 shows a summary of
the domain range used for each parameter and the chosen value. The ranges of the
values were considered according to the performance of the algorithm, which was
executed 5 times for each combination of the parameter values:

e typ: The value fp = 100 was determined by considering the behavior of the
algorithm. During different iterations, the allowed temperature and cooling
scheduling change the current solution in an effective way inside the ILS-F.

® Niir: If the number of iterations is large (Nj,, > 200), the metaheuristic does
not improve the current solution. On the other hand, if Nj,, is small (Nj,, <
200), low quality solutions are obtained.

* Niterp: The number of iterations of the local search can generate better solutions
with a value of 10. Even the local search finishes the execution earlier when it
does not improve a perturbation.

® Nper: If the number of iterations Ny, is large (Nper > 200), the perturbation
generates a neighbor that is too far from the current solution. As a conse-
quence, the improvement procedure does not obtain better results with respect

34 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

to the current solution. On the other hand, if the number of iterations is low
(Nper < 200), the perturbation generates a neighbor too near to the current
solution. For this reason, the improvement procedure falls in a local optimum.

Metaheuristic ILS-F has been coded in C++ programming language, and the ex-
periments were executed on an Intel Xeon E5-2660 processor of 2.2 Ghz and 8 GB.

2.5.3 Parameters and Experiments for GILS

The granular version of the ILS was calibrated using the Irace package [78]. This
package iteratively and elitistically searches for the best parameters using a prede-
fined range (or set) for each GILS parameter. Each iteration of Irace updates the pa-
rameters, thus obtaining high quality parameters. Small instances (n=20 and n=40)
were used for the calibration, and the values related to the granular formula (i.e. ¢
and 7) and the ratioReset parameter were fixed. The details are given in Tables 2.2
and 2.3.

TABLE 2.2: Fixed values for ¢, 7 and ratioReset

0 n | ratioReset
05 | 05 0.5
05 | 05 0.7
0.25 | 0.75 0.7
0.75 | 0.25 0.7

TABLE 2.3: Set of parameters from Irace

ID| v ti | tf | Nlter | tabutenure
1 /005|250 |1 | 200 40
2 1005|100 | 5 200 40
3 101 100 5 200 40
4 1005|100 | 1 | 200 30
5 1005|100 | 5 200 30

The final experiments were performed using the four sets of parameters reported
in Table 2.2. No combination of parameters in this table generates results dominated
for each considered instance, with respect to others, the details of these results are
reported in Appendix A. In this way, we executed the algorithm four times, and we
used only the best set of parameters from Irace, i.e., the set ID = 1. . The calibration
experiments were performed on a multi-thread AMD Ryzen 7 2700X Eight-Core Pro-
cessor running at 3.7 GHz with 64 GB RAM. Finally, the algorithm was run on the
same computer as ILS-F to make a fair comparison. The calibration time was 296
hours.

2.5. Results 35

2.54 Results and comparison

Tables 2.4, 2.5, 2.6 and 2.7 contain the computational results obtained by the algo-
rithm Series [63], ALNS [65], ILS-F and GILS for the considered instances.The results
of ALNS correspond to those reported in [65], and were obtained on an Intel Xeon
Gold 6148 processor of 2.4 GHz with 16 GB (having characteristics similar to those
of our computer). The tables report for each instance, the values of the best known
solution (column BKS defined as the minimum value found by [63] and [65]) and
of the best solution found in [63] (column Series). In addition, for the algorithms
ALNS, ILS-F, and GILS the following values are reported:

¢ The best solution value using dynamic programming (DP column).
¢ The best solution value using linear heuristics (Heu column).
¢ The best solution value between DP and Heu (Best columns).

¢ The sum of the average times (expressed in seconds) required by DP and Heu
(Time(s) column).

* The percentage gap between the best-known solution value (BKS) and Best,
computed as Gap(%) = 100*((Best - BKS) / BKS).

At the end of each set, the average values of the corresponding columns are also
shown. The ALNS results with |V.| = {80,100} were not presented, as in [63],
the reported values were abnormal, and therefore in [65], it was decided to avoid
the comparison on these two sets of instances. However, we rectified those values
presenting the best known value found by the metaheuristics presented in [63], and
made a full comparison with ILS-F and GILS.

About the Iterated Local Search with frequency

Relocate, Swap and 2-Opt heuristics are used in the local search procedure. The two
best (with respect to the frequency) heuristics always used and when these heuristics
do not improve the current solution, the third heuristic is used. Figure 2.8 shows (for
the instance with n = 120 and / = 10) a chart that contains the frequencies of use
of the heuristics (from 0 to 1 on axis f) during 200 iterations (x axis) and a line chart
(red) for the temperature (T axis). Our algorithm resets the initial temperature (100°)
when a new best solution is found in the search process. When this happens, the
frequencies of use are again equivalent < 1/3,1/3,1/3 >. Between iterations 1 and
28, the prioritized heuristics for the execution are 2-Opt and Relocate. However,
when the first new best solution is found, Relocate starts to not enhance solutions in
LSF and Swap begins to do so. Thus, the frequencies start to change in the following
iterations. When a second best solution is found (iteration 73), Relocate has again
a higher frequency during the remaining iterations. The studies presented in [63]
can be confirmed in this case, as 2-Opt and Relocate are used in most iterations.
However, Swap is necessary at some point of the search to find good results.

ALNS obtains better results than ILS-F. Our results are competitive only for small
instances. However, for larger instance sets (particularly |V.| = {180,200}), ILS-F is
bested by the metaheuristics of [63], and by ALNS. However, it should be taken into

TABLE 2.4: Computational Results for the TSPPD-H with the instances from [63]

Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

36

N°cus 1 BKS Series [63] ALNS [65] ILS-F [67] GILS
DpP Heu Best Time(s) GAP(%) DpP Heu Best Time(s) GAP(%) DP Heu Best Time(s) GAP
20 1 633.0 633.0 633.0 633.0 633.0 10 0.00 633.0 633.0 633.0 1.29 0.00 633.0 633.0 633.0 7.0 0.00
20 2 5840 584.0 584.0 584.0 584.0 10 0.00 584.0 584.0 584.0 1.26 0.00 584.0 584.0 584.0 7.0 0.00
20 3 5730 573.0 573.0 573.0 573.0 10 0.00 573.0 573.0 573.0 1.24 0.00 573.0 573.0 573.0 7.5 0.00
20 4 706.0 706.0 706.0 706.0 706.0 10 0.00 706.0 706.0 706.0 1.35 0.00 706.0 706.0 706.0 7.3 0.00
20 5 501.0 501.0 501.0 501.0 501.0 10 0.00 501.0 501.0 501.0 1.50 0.00 501.0 501.0 501.0 7.1 0.00
20 6 5780 578.0 578.0 578.0 578.0 10 0.00 578.0 578.0 578.0 1.16 0.00 578.0 578.0 578.0 6.9 0.00
20 7 6120 612.0 612.0 612.0 612.0 11 0.00 612.0 612.0 612.0 1.37 0.00 612.0 612.0 612.0 6.8 0.00
20 8 5670 567.0 567.0 567.0 567.0 10 0.00 567.0 567.0 567.0 1.36 0.00 567.0 567.0 567.0 6.8 0.00
20 9 6040 604.0 604.0 604.0 604.0 21 0.00 604.0 604.0 604.0 131 0.00 604.0 604.0 604.0 8.1 0.00
20 10 565.0 574.0 565.0 565.0 565.0 21 0.00 565.0 565.0 565.0 1.29 0.00 565.0 565.0 565.0 11.1 0.00
Average 592.30 593.20 59230 59230 59230 12.30 0.00 59230 59230 592.30 1.31 0.00 59230 59230 592.30 7.6 0.00
40 1 909.5 909.5 913.5 909.5 909.5 79 0.00 909.5 909.5 909.5 12.42 0.00 909.5 909.5 909.5 91.7 0.00
40 2 8830 885.0 883.0 883.0 883.0 81 0.00 883.0 883.0 883.0 13.76 0.00 883.0 883.0 883.0 74.2 0.00
40 3 8155 815.5 8155 815.5 8155 79 0.00 8155 815.5 8155 12.51 0.00 815.5 815.5 815.5 91.0 0.00
40 4 898.0 898.0 898.0 898.0 898.0 83 0.00 898.0 898.0 898.0 12.77 0.00 898.0 898.0 898.0 71.0 0.00
40 5 7435 743.5 745.0 743.5 743.5 81 0.00 743.5 743.5 743.5 12.36 0.00 743.5 743.5 743.5 82.6 0.00
40 6 8835 901.0 883.5 883.5 883.5 82 0.00 883.5 883.5 883.5 13.39 0.00 883.5 883.5 883.5 89.9 0.00
40 7 7985 798.5 798.5 798.5 798.5 83 0.00 798.5 798.5 798.5 8.06 0.00 798.5 798.5 798.5 96.2 0.00
40 8 795.0 795.0 795.0 795.0 795.0 82 0.00 795.0 795.0 795.0 13.48 0.00 795.0 795.0 795.0 80.7 0.00
40 9 8765 876.5 876.5 876.5 876.5 82 0.00 876.5 876.5 876.5 12.30 0.00 876.5 876.5 876.5 79.4 0.00
40 10 8625 866.0 862.5 862.5 862.5 81 0.00 862.5 862.5 862.5 13.36 0.00 862.5 862.5 862.5 82.3 0.00
Average 846.55 848.85 847.10 846.55 84655 81.30 0.00 846.55 846.55 84655 1244 0.00 846.55 846.55 846.55 83.9 0.00
60 1 1051.0 1060.1 1051.0 1051.0 1051.0 316 0.00 1051.0 1056.7 1051.0 4843 0.00 1051.0 1051.0 1051.0 2325 0.00
60 2 10443 1051.1 1047.3 10443 1044.3 321 0.00 1047.3 10473 10473 5241 0.29 1044.3 10467 10443 283.0 0.00
60 3 9904 990.4 993.7 993.7 993.7 315 0.33 993.7 993.7 993.7 46.33 0.33 993.7 993.7 993.7 262.3 0.33
60 4 1061.5 1061.5 1066.0 1066.0 1066.0 322 0.43 1066.0 1066.0 1066.0 51.33 0.43 1066.0 1066.0 1066.0 259.6 0.43
60 5 9869 986.9 989.7 989.7 989.7 322 0.28 989.7 989.7 989.7 17.01 0.28 989.7 989.7 989.7 225.0 0.28
60 6 10677 1086.3 1067.7 10733 1067.7 323 0.00 1080.7 10833 1080.7 55.58 1.21 1067.7 10743 1067.7 4245 0.00
60 7 1005.4 1005.4 1007.3 1007.3 1007.3 315 0.19 1007.3 10073 10073 55.74 0.19 1007.3 10073 1007.3 310.1 0.19
60 8 10272 1027.2 1031.0 1031.0 1031.0 318 0.37 1031.0 1031.0 1031.0 50.59 0.37 1031.0 1031.0 1031.0 339.0 0.37
60 9 10014 1001.4 1004.3 1004.3 1004.3 318 0.29 1004.3 1004.3 10043 4793 0.29 1004.3 10043 10043 296.5 0.29
60 10 10487 1062.1 1048.7 10487 1048.7 328 0.00 1053.3 10487 1048.7 48.17 0.00 1048.7 10487 1048.7 3299 0.00
Average 102845 103325 1030.67 1030.93 1030.37 319.80 0.19 103243 1032.80 1031.97 47.35 0.34 1030.37 1031.27 1030.37 296.2 0.19

37

2.5. Results

6'8G/E LL6SVL /[S'T6VL LLO06FL TEO PHGE9 €6'66FL SPO0ST 86L0ST 000 Ob'Te6e €TS6VL IFG6FT 98°T0ST SF'€CST €TS6FL aderony
0'6hTe STEST GTEST STEST L60- 84'€89 0TEST 0TEST 0°TEST 000 600F SOFST SOPST £'8¥SI 6'€LST 80FST 0L OCL
6Fc6c OTCSL OTeST £'8TST 020 $9T6S 0TEST 0TEST 0'9FST 000 9107 6'8CST L0€ST 68T 08FST 685 6 oct
€9F6c €L0ST §'80ST €L0ST L850 $6'859 €€IST S8IST €EIST 000 €96¢ 8TOSL §F0ST TLISI THCST 8F0ST 8 (48
9916€ LOIST €LIST LOIST 190 L6T69 0LTST 0LTST €4TST 000 186€ LLISL LZIST 00TSL €4SST LLIST L oct
L€9TF L°GTST T8TST L'STST 120 LU8SS 8'8EST §'8eGT €TSST 000 $96€ 0'8CST 0'8TST LOPST €9¥ST 0'8CST 9 (148
GPele TSI GLTHL TSI a8’ 8865 STHHL STHVL TEFFL 000 968 L0SPL LOSFT SLEbl |75 4 SR> 4 S (148
61005 ZSTSL TTIEST L'GTST €80- S£089 L'8eST £'8€ST 09FST 000 116 L€PST L'€FST S6¥SI G€9ST LE€FST ¥ oct
£980€ GE9PL SE9FT GEIFL 650 L€88S TVLFL TULPL S0SPL 000 L/8€ GS9FT SS9FT 6'€8FL TOIST SQ9%L € oct
V8¢ TISPL 0€SPL TISHL 0%°0 $6789 CI9FT CTI9FT S9LFL 000 678¢ GGSFL GSSPL 96SFL €T8FL GSSHL ¢ oct
GT8ee LSEPL L'SERT 0'8ehl LT0 06869 T6EPL T6EPL £TIFL 000 8/8¢ L9SPL L9EFT 9THIL UL L9EFL 1 oct
6'0L1C TL6SEL TLT9EL 086GET G90- S89PE 00'69€T 9T'SLET OB 0LET 9U'8LET 9T'8LEL aderaay
966cc TIOPL 9TOFL FIOFT S80- 9989 9TOFL 9FOFT 9°TOFL 9FIFL 9FIFL 0L 00T
9TIST 0TLET 0TLEL 0TLEL 1L0- 6149 0TLEL 0TLUEL TSLEL IS8T QISET 6 00T
€060c TT6EL TT6EL TT6EL LPO- 19G0F FIOPL FIOPL CT60PL 0'80FT 0'80FT 8 00t
G'E€S0T SLEEL §LEEl SLEEL 6V0- 896bE TTSEL 9FSEl TTSEL 8'8GeT 885l £ 00T
8%F9c 9'GOPL F'SOPT 9'GOFL 8G0- 0TS6E FLIFL TSIFL FLIFL 9GTHL 9STHL 9 00T
LTFIT 9TIEL ¥SIEl 9TIEl 0T LLTTE 99T€L TEEEl 9'9TEL 9TIEl 9TIEL S 00T
g/6c OOWL 9TIFL O0IFL ZL1- 0641 9€IFL TSTPL 9€IHL 06EFT 06EFL ¥ 00T
Fee0c 092l ¥Teel 09¢el LT'T- 8G8TE€ 90FEl OLFET 90Fel F0LT VO0LL € 00T
F8P0C 86TEL 8Geel §'6cel 140- 00FIE SFREL FOPEL 8FFel FPGEL FESEL ¢ 00T
9Clcc 00LEL 00IEL 90IEL 810 €000€ 88IET 0'9¢El 88IEl FOIEL ¥91el 1 00t
6886 0LZ0TL 0TS0CL S6Z0TL €£0- T€09T 060ICT €6TITl 09°TICL 88FITL 88FICI a3eraay
TIl6 €L6IT SL6LL €L6IL 80°0 1961 €86I1 €86IT 88611 €L6IL €611 O 08
0656 €F6IL €H6I1 €F6IT 850~ TLEST 08611 0T0CL 08611 0€0ZT 0'S0ZL 6 08
%96 00cCl S0Tcl 00l 000 PE8ST 002Cl S9zel 00Tl 00zect 00Tl 8 08
8'9F8 8'89IL 88911 0°0LIL 900 96191 GTILIT STUIL STLIL 04T S0LIT £ 08
8Pecl €T9CL 8F9CL €T L£0- L9TUL €Ll SLLIL €ELTL 08Il 084l 9 08
T69Cl STl STITl €Tl 140~ I€P9T 00zel 00cCl gseel 8'8cCl 88l S 08
£€98 OFPLIL §SLTl 0FLL OT0- ZEFST €8T €84l S64TL g6l g6l ¥ 08
9LFL S0LIT SO0LIT S0LIT 000 ISeST §04IT S0LIT S0LIL 04T Q0LIT € 08
TOSOL 0'98IT 09811 0'98TT 9F0- 90691 09811 €T6IT 09811 G161 SI6IT T 08
L/S01 €TEIL €T6I1 8T6IL 8T~ 8G¢9L 0¢pll €€6IL 0'€6ll €071 €L0Tl 1 08
(s)urry 3s9g NoH da (%)dvD (s)purl 3sdg o da (%)dvD (s)pwrl 3sdg O da

ST [£9] 4-5T1 [$9] SNTV [c9]sotdg Sy 1 SMON

[£9] woay sedue)sur oy YIm H-AdJS.L 943 10§ synsay reuonendwo)) :G 7 414V],

TABLE 2.6: Computational Results for the TSPPD-H with the instances from [63]

Necus 1 BKS Series [63] ALNS [65] ILS-F [67] GILS
DP Heu Best Time(s) GAP(%) DP Heu Best Time(s) GAP(%) DP Heu Best Time(s) GAP(%)
140 1 15752 1575.2 1586.6 1589.0 1586.6 7285 0.72 15914 1600.1 15914 954.36 1.03 1580.3 1585.1 1580.3 6255.2 0.32
140 2 15849 1605.8 1596.8 15849 1584.9 7439 0.00 1597.3 15933 1593.3 1064.24 0.53 1599.9 1593.6 1593.6 8156.1 0.55
140 3 15713 1583.7 1572.8 15713 1571.3 7388 0.00 1583.3 15704 15704 104758 -0.06 1567.7 15709 1567.7 81254 -0.23
140 4 16827 1712.7 1694.1 16827 1682.7 7355 0.00 1692.0 1709.6 1692.0 1087.76 0.55 1688.7 1685.0 1685.0 9023.4 0.14
140 5 15429 1547.4 15429 1549.1 15429 7333 0.00 1558.3 1559.7 15583 1075.18 1.00 1541.1 15474 15411 79474 -0.11
140 6 16313 1662.3 1659.3 16313 1631.3 8361 0.00 1658.3 1662.0 16583 1106.05 1.65 1636.1 16339 16339 8601.1 0.16
140 7 16214 1664.4 16339 16214 16214 8367 0.00 16554 1637.0 1637.0 986.82 0.96 1629.6 16194 16194 7688.8 -0.12
140 8 1611.0 1646.1 1628.7 1611.0 1611.0 7432 0.00 1631.0 16121 16121 940.44 0.07 1620.0 16181 1618.1 7558.4 0.44
140 9 1629.1 1629.1 16435 16453 1643.5 7569 0.88 1647.1 1646.7 1646.7 1137.83 1.08 1645.0 1640.1 1640.1 73739 0.68
140 10 16719 1693.8 1683.1 16719 16719 7455 0.00 1689.3 16874 16874 1152.70 0.93 1665.3 16714 1665.3 75335 -0.40
Average 1612.17 1632.04 1624.17 1615.79 1614.75 7598.40 0.16 1630.35 1627.84 1624.70 1055.29 0.78 1617.37 161650 1614.46 7826.3 0.14
160 1 17126 1741.8 17132 17126 1712.6 12354 0.00 17284 17185 17185 1515.11 0.34 17125 17059 17059 11506.0 -0.39
160 2 17257 1773.6 1730.3 17257 1725.7 12544 0.00 1754.8 17458 17458 1662.23 1.16 17359 17314 17314 10164.3 0.33
160 3 16843 1690.9 1684.3 1689.7 1684.3 12220 0.00 17249 17271 17249 1300.47 2.41 1697.1 17104 1697.1 9656.3 0.76
160 4 18375 1858.1 1842.8 18375 1837.5 12486 0.00 1857.8 1829.5 1829.5 127791 -0.44 1827.3 1816.1 1816.1 15900.0 -1.16
160 5 1654.1 1667.8 1654.1 1658.0 1654.1 12424 0.00 16795 16478 1647.8 145522 -0.38 1637.0 16450 1637.0 100523 -1.03
160 6 1726.7 1813.0 1738.6 17267 1726.7 12646 0.00 17889 1783.8 1783.8 1557.13 3.30 17634 17519 17519 10944.8 1.46
160 7 17424 1774.3 1753.7 17424 17424 12585 0.00 17629 17645 17629 1074.67 1.18 17689 1753.6 1753.6 8625.2 0.64
160 8 17492 1770.8 17624 17492 1749.2 12459 0.00 17794 1789.6 17794 1260.07 1.73 17635 17634 17634 12879.5 0.81
160 9 1786.7 1800.9 1786.7 17932 1786.7 12724 0.00 17943 1796.1 17943 1220.66 0.42 1779.0 17825 1779.0 9775.0 -0.43
160 10 17563 1764.4 1756.3 1757.6 1756.3 12578 0.00 17574 17583 17574 1562.13 0.06 17574 17574 17574 73757 0.06

Average 1737.55 1765.54 1742.24 1739.26 1737.55 12502.00 0.00 1762.80 1756.09 1754.40 1388.56 0.98 174419 1741.75 1739.28 10687.9 0.10

Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

180 1 18189 1854.2 1833.8 18189 18189 19122 0.00 1871.8 18423 18423 2703.05 1.29 1815.6 1818.1 1815.6 19539.9 -0.18
180 2 18389 1863.3 1851.4 18389 1838.9 19361 0.00 1873.8 1866.2 1866.2 2239.02 1.49 18472 18499 1847.2 12244.1 0.45
180 3 18221 1858.4 1822.1 18309 1822.1 19330 0.00 1859.8 1840.4 1840.4 1861.19 1.01 1829.7 18243 18243 177833 0.12
180 4 19428 1988.2 19439 19428 1942.8 19614 0.00 19969 19523 19523 1867.83 0.49 1955.2 19417 1941.7 225889 -0.06
180 5 1785.2 1795.8 17852 17854 1785.2 19506 0.00 1818.0 18182 1818.0 2040.62 1.84 1796.0 1793.1 1793.1 15695.4 0.44
180 6 18175 1817.5 1826.4 18204 1820.4 19451 0.16 1847.7 18421 18421 2445.59 1.36 1831.1 1829.1 1829.1 14847.6 0.64
180 7 1846.8 1868.0 1846.8 1848.3 1846.8 19552 0.00 1888.9 1868.9 1868.9 332.81 1.20 1831.8 1847.3 1831.8 164954 -0.81
180 8 18622 1883.4 1865.3 18622 1862.2 19493 0.00 1874.0 1909.7 1874.0 1667.39 0.63 18789 18759 18759 13818.8 0.74
180 9 19175 1931.4 19175 19350 1917.5 19754 0.00 1942.0 19422 1942.0 1694.72 1.28 19294 1930.7 19294 144777 0.62
180 10 18459 1852.5 1857.6 18459 18459 19464 0.00 1875.3 1882.8 18753 2150.64 1.59 18539 1857.1 18539 123205 0.43
Average 1849.78 187128 1855.00 1852.87 1850.07 19464.70 0.02 1884.81 1876.52 1872.17 1900.29 1.22 1856.88 1856.72 1854.20 15981.2 0.24

38

39

00T=U pue g=U }IM S3DUBISUI ISPISUOD JOU S0P ZSAY [eul]
S9OUEB)SUI [k SISPISU0D [SAY [eur]

6FSSL 0TT6EL 68°€6ET LLF6EL | £9°0 €678 L6TOFL T9'€0VL SP'60FL | SO0 86'GC16 8L06EL STT6EL THP6EL | LTS0FL ST°06€1 | Z3aV [eur]
665£9 0S0LEL T1'TLEL TTTLEL | ¥F0 OLFIZ 9S°6/E1 TGI8ET 8/S8ET T6'S8ET SPILET | 13AV [eur]
V61T 690461 0THL6L 967FL61 | GL1 9I'E6ST 14661 €7'9661 65810Z | 00°0 0696067 TH'6S6L 01'S961 86'0961 | 158661 Th6s61 aderany
£9°0 VECIVL Vec6l es6l LFR6L | LST 96911C 94561 L/S61 9°/S61 | 00°0 G976C €LT6L €/T61 0'€E6l | 64461 g/z61 | 01 00T
67’1 GTPFSL §'€P0C 8EH0T SLFOT | ST 6L'6VFT 9°€h0C 9€HOT 6'€60C | 000 £096C L€I0C L'€10T €910C | £'TS0T L€10C |6 00T
Tro TLIEVT VLe61 TL66L S€00T | ¥8°0 €Teh/T 8110¢ STI0OC 650 | 000 LL18T TS66L 8G661 1'G66L | £000T TGe6L |8 00T
9¢°0 ¥Le66C FLe6l TLS6l STREL | SPT 1S0STT L4461 LLL6T 63661 | 000 8hT6C v0€6L T0961 6T€6L | 0°€861 vog6l | L 00T
T PIF60C T'€L6l T'€L61 F6L6L | €8T LUS/81 S'€00C §'€00T T'S00C | 000 60€6C €8F6L 9/S61 £8F6L | T'T10T gkl |9 00T
800~ 6STFOC 88881 6'8681 §'888T | €L0- GI'F9¢T 0'888T T'SI6L 0'888T | 000 1016C 70681 TT06L F068T | 9°S061 7068T | S 00T
P10 0'0F68C THHOC £TGOT THROT | FE1 IEFPCl £890C £'890C TI91T | 000 L€T6T PIP0C G190 PIF0C | S611T PIF0C | ¥ 00T
wo £LT2061 8961 78961 66461 | 0S'T 00€I8T 9'€861 9'€861 €661 | 000 8968T €PS6L 88561 €FS6L | L9461 €Fs6l | € 00T
9%°0 TSEIST S'EL6L 8EL6L G6L6L | SOE FO'SIIT £F20C £¥20T 9€H0T | 00°0 6988C L7961 TSL6L LF961 | 0'T86L L¥961 | T 00T
290 1'S662C 9'0F6L T'/S61 9'0F61 | 95T G0'GS61 64461 64461 ¥'G861 | 0070 8868C 9'8C6L 98761 THE6L | €961 98261 | T 00T
(%)dVD ()il 1s9g oy da (%)dVD (s)auwr] 1s3g oy da (%)dVD (s)puri], 1s9g noy da
SO [£9] 4-sT1 [s9] SNTV [9] soudg | Sy [Sm,N

2.5. Results

[£9] woxy sadurISUT a3 WIM H-AJSL U 10§ synsay Teuonemdwo) :/£'g a14v]

40 Chapter 2. Iterated Local Search Algorithms for the TSPPD-H

f r

1 - 100
0,3 - 80
0,6 - 60
04 - 40
0,2 - 20

0 -0

— O v 00 M~ WWw o= MmN D @ 00~ WWw s NN D M
— — N M s W w000 QO A N M s Wm0 ;M
™~ ™~ o = A A A o A A —~ -

m20PT mRelo Swp —T° Cel

FIGURE 2.8: Frequency of use (200 iterations, instance with n=120
and 1=10)

account that the results presented in [63], are obtained by executing three different
metaheuristics, thus the computing time are even larger than that of ALNS. Also,
considering the global average, the |V.| = 200 set is the only one to present a per-
centage gap close to 1% (with respect to [63]). Therefore, our results are close to
those shown by the previously proposed studies algorithms.

ILS-F is significantly faster than ALNS. As a matter of fact, it is faster on each in-
stance. For n = 200, ALNS takes, on average, 7.5 hours against 27 minutes for ILS-F.
This may have two explanations: first, the ALNS approach used a depth intensifi-
cation process applying the three elementary heuristics proposed in [65], while we
bet on the study presented in [63], and considered always to use two of the three
heuristics, only using a third one if no enhancement could be found with the other
two heuristics; second, our DP approach allows us to avoid redundant operations in
the computation of the handling costs.

About the Granular Iterated Local Search

There are no significant differences between ALNS and GILS for the small instances.
The value of %gap for ALNS and GILS is identical in Table 2.4, and the execution
times are similar. Of course, the GILS was run 4 times, so the average time for a
single run is considerably smaller than that of ALNS in this case. Another strange

2.6. Conclusion and future directions 41

behavior is that in 6 instances for n = 60, ALNS, ILS-F, and GILS do not obtain
results better than those found by the metaheuristics in [63]. Still, the best results
among them are the same (for example, for I = 9, the metaheuristics from [63] get
1001.4, while the other metaheuristics find 1004.3).

For medium-size instances, the granular approach gets the best results in the
literature (Table 2.5). Considering n = 80 and n = 100, GILS gets better (or equal)
results than those found by the metaheuristics in [63] and by the ILS-F approach.
Thus, the new best known solution values for these set are updated. For n = 120,
algorithm GILS finds 9 new best known solutions compared to the algorithms in the
literature.

For the large instances, ALNS is globally better than GILS (Tables 2.6 and 2.7).
While GILS finds new best known solutions for 12 (over 40) instances, on average,
ALNS appears to be better (although not significantly) than GILS. However, the run
times of ALNS remain high with respect to GILS. As the number of customers in-
creases, GILS loses quality compared to ALNS. For n = 200, GILS finds only one
best known solution, and the worst value of %gap becomes 1.49%.

2.6 Conclusion and future directions

This study proposes a new Iterated Local Search algorithm (called ILS-F) for the
solution of TSPPD-H based on the frequency of use during the iterations and a gran-
ular version (called GILS). We have improved the algorithm proposed by [63] for
computation of the handling cost during the execution of the local search methods
so as to avoid redundant computational processes of the dynamic programming ap-
proach. ILS-F uses a roulette wheel-type perturbation based on a queue-data his-
tory structure that allows us to generate new neighbors. Also, a local search us-
ing frequency, and an acceptance criterion based on Simulated Annealing were pro-
posed. ILS-F seems to be competitive with the recently proposed algorithms, result-
ing 20 times faster than ALNS algorithm [65]. GILS was executed with four differ-
ent groups of parameters concerning the proposed granular formula. The formula
considers the travel time between the customers and also the pickup and delivery
units to be handled at each customer. The granular approach finds several new best
known solutions for the instances of the literature. Its performance for small and
medium-sized instances is better than that of the state-of-the-art metaheuristics, but
it loses quality for large-sized instances.

New experiments will be considered for the travel time granularity and a new
calibration process for the large instances will be analyzed. In addition, a new prob-
lem based on Handling cost could be defined with Draft Limits or Time Windows.

43

Chapter 3

Formulations, Relaxations and
Heuristics for the QMKP

3.1 Introduction

The (linear) Multiple Knapsack Problem (MKP) has been intensively studied in the last
40 years (see the relative chapters in the monographs by [79] and [50]).

The MKP is defined on n items and m knapsacks. Each knapsack k € M =
{1,...,m} has a capacity Cy. Each item i € N = {1,...,n} has a profit p; and a
weight w;. The objective is to select m disjoint subsets of items to be assigned to the
knapsacks so that the total weight assigned to each knapsack does not exceed its
capacity and the total profit of the selected items is maximized. By introducing nm
binary variables xj (i € N,k € M) taking the value 1 if and only if item i is assigned
to knapsack k, the problem is formally defined by the 0-1 Linear Program

max Z Z PiXik (3.1)
i=1k=1
n

s.t. Zwixik < Ck (k S M) (3.2)
i=1
Z xp <1 (l S N) (3.3)
k=1
x € {0,1}"™, (3.4)

where (3.2) and (3.3) are the classical capacity and cardinality constraints, respec-
tively. The problem is a generalization of the famous 0-1 Knapsack Problem (KP), in
which m = 1. While the KP is ordinary N P-hard and admits pseudo-polynomial
time dynamic programming algorithms, the MKP is known to be strongly A/P-hard,
as it can be seen by transformation from 3-partition (see, e.g., [79]). Strongly N 'P-
hard is a complexity class of decision problems which are still NP-hard even when
all numbers in the input are bounded by some polynomial in the length of the input
[80].

Although a problem with a similar flavor had been considered by [81] in 1975,
to the best of our knowledge, the first quadratic version of a knapsack problem was

44 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

introduced by [82]. In the (single) Quadratic Knapsack Problem (QKP) one is given a
knapsack with capacity C and 7 items. Each item i € N has a profit p; and a weight
w;. In addition, each pair of distinct items i, j gives a profit p;; if both belong to the
solution. (It is assumed that p;; = p;;.) The objective is to select a subset of items
so that the total weight does not exceed the capacity, and the total profit (sum of the
profits of the selected items and of their pairwise profits) is maximized. Formally,

max 2p1x1+ E 2 pijXix; (3.5)

i=1 j=i+1

s.t. Zwixi <C (3.6)
i=1
x € {0,1}", (3.7)

where x; is a binary variable taking the value 1 if and only if item i is selected. We
refer the reader to monograph ([50], Chapter 12) for an extensive treatment of the
QKP until 2003, and to [83], [84], [85], [86], [87], and [88] for later studies.

The Quadratic Multiple Knapsack Problem (QMKP), to which this study is devoted,
was first introduced by [89], and ideally combines the objective function of the QKP
and the constraints of the MKP. We have 1 items and m knapsacks. Each knapsack
k € M has a capacity Cx € Z4, each item i € N has a profit p; € Z, and a weight
w; € Z. Bach pair of distinct items i, j produces a profit p;; € Z (with p;; = pj)) if
both are assigned to the same knapsack. The objective is to select m disjoint subsets
of items to be assigned to the knapsacks, so that the total weight assigned to each
knapsack does not exceed its capacity, and the total profit (sum of the profits of the
selected items and of the pairwise profits of items assigned to the same knapsack) is
maximized. Formally,

n m —
ZE Xik + 2 Z quxzkx]k (3.8)
i=1k=1 i=1 j=i+1k=

st Y wixyg < Cx (ke M) (3.9)
=1
Zm
Y X <1 (i€N) (3.10)
k=1
x € {0,137, (3.11)

where x is defined as for the MKP. As the QKP is the special case of the QMKP
arising when m = 1, the QMKP is strongly NP-hard. In addition, all computational
experiments reported so far in the literature indicate that it is extremely challenging
to solve in practice.

Owing to its many practical applications, that range from project management to
capital budgeting to product-distribution system design, as well as to its mathemat-
ical structure borrowing from well-studied combinatorial problems, the QMKP has
received increasing attention in the literature over the last fifteen years. In their sem-
inal work, [89] presented the first 60 benchmark instances and three heuristics. Their

3.2. Linear Formulations 45

paper started a stream of research based on meta-heuristic techniques, that includes
a genetic algorithm by [90]; an artificial bee colony algorithm by [91]; and a memetic
algorithm by [92]. More recently, [93, 94] presented a strategic oscillation algorithm
and a Tabu-enhanced iterated greedy approach. In [95] and [96] used, respectively,
an iterative response threshold search algorithm, and an evolutionary path relinking
approach, for which recent variations have been proposed by [97] and [98]. Other
recently proposed methods are presented in [99] and [100].

Despite this growing stream of research on heuristics, no exact method for the
QMKP was proposed in the literature until the recent contribution by [101], who
presented the first exact solution approach to the QMKP, that uses a formulation
based on an exponential-size number of variables, solved via a Branch-and-Price
algorithm.

While the literature has been so far concentrating on exponential-size formula-
tions and meta-heuristic approaches, our contribution consists of investigating sev-
eral polynomial-size formulations, aiming at devising the relaxations that produce
good upper bounds in reasonable computing times. In particular, our goal is to com-
pare the effectiveness of the Lagrangian relaxation when applied to the quadratic
formulation (3.8)-(3.11) and to a Level 1 Reformulation Linearization, that leads to a
decomposable structure. We present the results of computational experiments on a
large set of benchmark instances.

The chapter has the following structure. In Section 3.2, we derive several lin-
ear models for the QMKP, obtained from classical reformulations of 0-1 quadratic
programs. Some theoretical properties and dominances among the resulting formu-
lations are outlined. The surrogate relaxation of the quadratic model is discussed in
Section 3.3. Section 3.4 is concerned with the Lagrangian relaxation of the quadratic
model (3.8)-(3.11) and of a linear reformulation leading to a set of independent, well-
structured subproblems.. Section 3.5 describe a Multi-Start Iterated Local Search.
Section 3.6 present a Matheuristic approach for the problem.Section 3.7 presents the
computational results and Section 3.8 contains some concluding remarks.

3.2 Linear Formulations

In this section we show how some linear reformulations for 0-1 Quadratic Programming
problems with linear constraints (01QP) can be specialized for the QMKP.

3.2.1 Classical Linear Formulations

In [102] proved that any integer-valued algebraic function can be transformed into
a linear function by introducing auxiliary binary variables and linear linking con-
straints. In 1974 the idea was independently re-discovered and developed by [103]
for 01QP. A direct application to the QMKP would result in 4-index variables, each
representing the product XikXje fori,j € N and k,¢ € M. We can observe, however,
that our objective function (3.8) only includes products involving the same knapsack
index, so it is sufficient to introduce 3-index binary variables 7;j;, taking the value one
if and only if items 7 and j are assigned to the same knapsack k:

Jijx = xpxj fori € N\ {n},j € N (j > i),k € M. (3.12)

46 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

The Fortet-Glover-Woolsey (FGW) formulation for the QMKP is

n o m n—-1 n m

(FGW) max Y Y pixic+ Y. Y. Y piifi (3.13)
i=1k=1 i=1 j=i+1k=1

st Pk < Xk (ie N\{n},je N(j>i),ke M) (3.14)

Pijk < xjx (ie N\{n},je N(j >i),ke M) (3.15)

Dk > xp+x3—1 (i€ N\{n},jeN(>i)keM) (3.16)

ik € {0,1} (ie N\{n},je N(j >i),ke M) (3.17)

(3.9), (3.10), (3.11).

Constraints (3.14) and (3.15) ensure that variable j;j; takes the value 0 when at
least one of the two variables x; and xj is equal to 0. Constraints (3.16) force J;jx to
take the value 1 when both variables x;; and xj; are equal to 1.

We next show that an equivalent formulation can be obtained by removing con-
straints (3.16) and (3.17):

Lemma 1 The optimal solution to the LP relaxation of FGW does not change if constraints
(3.16) are removed.

Proof. Let (x*,7*) be an optimal solution to the LP relaxation of FGW without
inequalities (3.16). The second term of the objective function maximizes a linear
function of § with coefficients p;; > 0. It follows that every variable]?l’.‘].k will take

the largest possible value, and hence, from (3.14)-(3.15), yA;}k = min{x;‘k, x;-"k}. Since
x; <1Vie Nandk € M, we have min{x}, x]’-‘k} > x5+ x]i*k —1. O

Corollary 1 If the LP relaxation of FGW satisfies (3.11), constraints (3.17) are automati-
cally satisfied.

Proof. Assume that the optimal solution (x*,7*) to the LP relaxation of FGW
satisfies x3 € {0,1} Vi € N and k € M. From the proof of Lemma 1 we have

¥ = min{xj, x5}, and hence §j; € {0,1}. O
Proposition 1 Constraints (3.16) and (3.17) are redundant for FGW and for its LP relax-
ation.

Proof. Immediate from Lemma 1 and Corollary 1. O

Model FGW has O(n?m) variables and constraints. A more compact, O(nm),
linear model for 01QP was proposed in 1975 by [104], who introduced, for each
original variable x;;, a new continuous variable z; to represent its contribution to
the objective function. For the QMKGP, let us define, for eachi € N and k € M,

ooy = it Bl pixe ifie N\{n};
glk(x) = { D ifi—n (318)

The contribution of xj; to the objective function is then

zip = gi(¥)xix (i € N,k € M), (3.19)

3.2. Linear Formulations 47

and observe that z; will always take integer values as the profits are assumed to be
integer. The resulting Glover model (GLOV) for the QMKP is

n m
(GLOV) max Y) zj (3.20)
i=1k=1
s.t. Lixj <zy <Ujxj (l € N,k e M)
(3.21)
Qik(x) —Ui(1—xi) <zjp < gi(x) — Li(1 —x) (i € N,k € M)
(3.22)

(3.9),(3.10), (3.11),

where gii(x) is defined in (3.18), while L; = p; + 1",y min{0, p;;}, U; = pi +
Yj—it1 max{0, p;} (fori € N\ {n}), and L, = U, = py are the smallest and largest
values, respectively, that g;r (and hence z;) can take. Note that, as we assume the
pairwise profits p;; to be non-negative, these values can be simplified to L; = p;,
U, = pi + Z};Hl pij (for i € N). Constraints (3.21) and (3.22) link variables x; and
zik: constraints (3.21) impose z;; = 0 when x;; = 0, while constraints (3.22) impose
zix = gik(x) when x; = 1. (Note the similarity with the effect of (3.14)-(3.15) and
(3.16), respectively.)

GLOV is indeed more compact than FGW, but, as proved by [105], its LP relax-
ation is weaker.

3.2.2 Reformulation Linearization Technique

In [106] strengthened FGW by proposing a new linearization method for 01QP. The
idea was later extended to general 0-1 problems in [107]. The method, known as
the Reformulation Linearization Technique (RLT), provides different Levels of represen-
tation with an increasingly stronger LP bound.

Let 71 denote the number of original binary variables appearing in each con-
straint. New quadratic constraints are added to the original formulation, to strengthen
the resulting LP relaxation. At Level 1,

(i) each equality constraint results into 7 quadratic constraints obtained by multi-
plying it by each original binary variable;

(ii) each inequality constraint results into 27 quadratic constraints obtained by
multiplying it by each original binary variable and by its complement.

All the resulting quadratic constraints are then linearized by introducing auxiliary
binary variables to represent the products of the original ones together with appro-
priate linking constraints. Higher levels are rarely used as the problem size increases
so sharply that the bound computation becomes impractical.
In order to adapt the RLT to the QMKEP, let us define binary variables y; similarly
to variables §;;; of Section 3.2.1, but by considering all ordered pairs (i, j) with i # j,
ie.,
Yijk = XikXjk fori e N,j € N\ {i},k e M. (3.23)

48 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

A Level 1 RLT model (RLT1) for the QMKEP is then

(RLT1) max Y Y pixic+ 3 YY) piiyiie (3.24)
i=1k=1 =11 k=1
s.t. Yijk < Xk (ZEN,]GN\{l},kGM) (3.25)
Yijk = Yijik (ie N\{n}jeN(j>i)ke M)
(3.26)
Yijk ink‘i‘x]'k—l (iGN,jEN\{i},kEM) (3.27)
Z WilYijk < (Ck — wz-) Xik (Z €N, ke M) (3.28)
JEN\(i}
Y wi(xj—yix) <Ce(1—x) (i€N,keM) (3.29)
JEN\(i}
yij € {0,1} (ieN,jeN\{i},ke M) (3.30)
(3.9), (3.10), (3.11).

(3.29) are the RTL constraints derived for each knapsack k (k € M) from the
corresponding capacity constraint (3.9) by multiplying both the left-hand side and
right hand side times the binary variable x;; and its complement (1 - x;) for each
item i(i € N). For each pair (i, k), withi € N and k € M, by multiplying (3.9) times
Xjx we obtain:

Xik Z WjXik < Crxjx (l € N, ke M) (3.31)
jeN

From which we obtain:

Z WiXik Xk < Crxye — WjXik (l € N,k e M) (3.32)
jeN\{i}
And then:
Y wiyip < (Ce—wj)x; (i € N,k € M) (3.33)
jEN\{i}

Which corresponds to (3.28). For each pair (i, k), withi € N and k € M, by
multiplying (3.9) times (1 - x;;) we obtain:

(1 — xik) Z WiXjk < Ck(l — xik) (i € N,k e M) (3.34)
jEN

From which we obtain:

Z wj(x]-k — xikx]-k) + wi(xz-k — xizk) < Ck(l — xik) (i € N,k € M) (3.35)
JEN\{i}

And then:

3.2. Linear Formulations 49

Y wilxk — i) < C(1—xi) (i € N ke M) (3.36)
JEN\{i}
Which corresponds to (3.29).
We next show that if we drop the RLT constraints from RLT1, the LP relaxation
of the resulting model is equivalent to the LP relaxation of FGW.

Proposition 2 The polyhedra associated with the LP relaxation of RLT1 without the RLT
constraints (3.28)-(3.29), and the LP relaxation of FGW are isomorphic under the linear
transformation

yAl‘jk = Vijk = Yjik VI,] S N(] > Z), keM
(with x unchanged).

Proof. Inequalities (3.25) and (3.26) imply y;x < xj Vi,j € N (i # j), k € M. By
observing the different j-indexing in the two objective functions, it easily follows
that the two solutions produce the same value. U

If, besides removing the RLT constraints, we also remove inequalities (3.27), the
resulting LP bound is still as strong as the one produced by the LP relaxation of
FGW:

Corollary 2 The LP relaxation of RLT1 without constraints (3.27)-(3.29) is equivalent to
the LP relaxation of FGW.

Proof. According to Proposition 2, the polyhedra associated with the LP relaxations
of the two models are isomorphic. Lemma 1 guarantees that inequalities (3.27) can
be removed without changing the optimal value. U

Note that RLT1 does not include the RLT constraints obtained from cardinal-
ity constraints (3.10). The reason for this comes from our choice of having 3-index
variables. Indeed, by applying RLT to (3.10), we would obtain products involving
different knapsacks, for which an additional index would be needed. On the one
hand, this choice makes the LP relaxation of the resulting model weaker, but, on the
other hand,

(i) it produces a more compact model, of size O(n?m) (instead of O(n?m?)), which
lends itself to a much faster computation of the resulting LP bound;

(ii) RLT1 can be effectively decomposed, as shown in the next section.

A decomposable Level 1 RLT model

In this section we show how, starting from RLT1, we can construct a new linear re-
formulation that is amenable to a decomposable Lagrangian relaxation (to be examined
in Section 3.4.2) that: (i) provides a stronger bound than the one given by its contin-
uous relaxation, and (ii) can be computed with reasonable computational effort.
Point (i) obviously requires that the relaxed model does not have the integrality
property (see, e.g., [108]). An effective way to pursue point (ii) is to obtain a “de-
composable” Lagrangian problem, leading to a set of independent, well-structured

50 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

subproblems. We generalize the approach presented by [109] for the single QKP.
The same approach was later applied by [110] to the p-dispersion problem, then
generalized by [111] to 0-1 quadratic problems with linear constraints, and recently
adopted by [112] for a generalization of the quadratic assignment problem. Recall
that the coefficients of the quadratic terms of the objective function (i.e., the pair-
wise profits p;;) are assumed to be non-negative, as it normally holds for the QMKP
instances considered in the literature.

Let y;jx be defined as in (3.23). A Decomposable Level 1 RLT model (DRLT1) for the
QMKRP can be obtained from RLT1 by eliminating constraints (3.27) and (3.29), i.e.,

n m n n m
(DRLT1) max Y) pixi+3 YY) Pilijk (3.24)
i=1k=1 i=1 //;} k=1
s.t. Yijk < Xik (Z €N,je N\ {1},’(S M) (3.25)
Yijk = Yiik (ieN\{n}jeEN(j>i)keM)
(3.26)
2 Wilijk < (Ck — ZUZ') Xik (l € N,k € M) (3.28)
JEN\{i}
vix € {0,1} (ieN,je N\{i}, ke M) (3.30)

(3.9),(3.10), (3.11).

Note that the effect of RLT1 constraints (3.29) was purely to strengthen the con-
tinuous relaxation of the model. Moreover, as formally proved in Proposition 1 (also
see [109] and [111]), constraints (3.27) are redundant when the coefficients of the
quadratic term are non-negative. Therefore, DRLT1 is a valid (linear) reformulation
for the QMKP.

The continuous relaxation of DRLT1 is weaker than that of RLT1 but stronger than
that of FGW. In addition, it has the advantage that dualizing constraints (3.26) results
in a decomposable Lagrangian relaxed problem, that does not have the integrality
property, as we will show in Section 3.4.2.

Proposition 3 The LP relaxation of DRLT1 is stronger than the LP relaxation of FGW.

Proof. From Corollary 2, the LP relaxation of FGW is as strong as the LP relaxation of
DRLT1 without constraints (3.28). Therefore, it is enough to show an example where
inequalities (3.28) improve the LP bound. Consider an instance consisting of a single
knapsack of capacity C = 8, and three items with w; = 2, wo = 8, w3 =5, p1 =1,
p2 = 3, p3 = 1, and pairwise profits p1o = 4, p13 = 2, p23 = 2. The optimal solution
of the LP relaxation of DRLT1 is ¥; = X3 = 1, ¥» = 0.125, i/13 = 731 = 1 (all other
7 being 0) and has value 4.375. The optimal solution of the LP relaxation of FGW is
instead %1 = X, = %3 = 0.53, 712 = H13 = J23 = 0.53 and has value 6.93. d

Model DRLT1 can be improved by means of the following considerations:

(i) variables y;j for which p;; = 0 can always be set to zero;

ii) variables y;; for which w; + w; > C; must take the value zero;.
Yij j

3.3. Surrogate relaxation of the quadratic model 51

(iii) due to Corollary 1, constraints (3.30) can be relaxed in a continuous way.

By defining
Sik :{] € N\ {1} D pij > 0 and w; + w; < Ck} (1 € N,k e M),‘ (3.37)
T ={j € N\ {i} : wi+w; > C} (i € N k€ M); (3.38)

Rx={j €N :j>ipj>0 andw;+w; <C} (ie N\{n}keM), (3.39

we get the Modified Decomposable Level 1 RLT model (MDRLT1)

nom nom
(MDRLT1) max Y Y pixat YV Y pijvis (3.40)
i=1k=1 i=1k=1 jGS,‘k
s.t. Yijk < Xk (Z eN,keM,je Sik) (3.41)
Yijk = Yjik (Z S N\ {Tl},k S M,j S Rik)
(3.42)
Y wiyik < (Ck —w;) xix (i € N,k € M) (3.43)
JESik
Yijk >0 (Z € N,k e M,j € Sik) (3.44)
Xix + Xjk <1 (l eEN,keM,je Tik) (3.45)

(3.9), (3.10), (3.11).

3.3 Surrogate relaxation of the quadratic model

A classical relaxation technique for the (linear) MKP is obtained by surrogating the
capacity constraints (3.9) with multipliers 7ty > 0 (k € M). Its popularity comes
from the fact that, as proved by [113], the optimal choice for the surrogate multipliers
is to have them all equal to any positive number. We next show that such property
carries through to the quadratic case.

For the QMKRP, the surrogate relaxation of the quadratic model (3.8)-(3.11) is:

nom n-1 n m
S(Tl’) = max E Z piXix + Z Z Z PijXikXjk (3.46)
i=1k=1 i=1 j=i+1k=1
m n m
s.t. Z T) wixip < Z 1. Cy (3.47)
k=1 i=1 k=1
m
Y xp <1 (i € N) (3.48)
k=1
x e {0, 1}, (3.49)

Lemma 2 There always exists an optimal solution to (3.46)-(3.49) that assigns all the se-
lected items to the knapsack with smallest surrogate multiplier.

52 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

Proof. Let k* = argmin{r; : k € M} and let x be a feasible solution to (3.46)-(3.49).
Another feasible solution ¥, not worse than x, can be obtained by setting %;; = 0 and
X~ = 1 for each i € N such that x;; = 1 and k # k*. O

Proposition 4 The optimal vector of multipliers for (3.46)-(3.49) is mty, = 7 (where 7 is
any positive constant) for all k € M.

Proof. Using Lemma 2, (3.46)-(3.49) is equivalent to the (single) QKP

S(7t) = max szx,k* —l—Z Z PijXik- Xji+

i=1 j=i+1
n m nk
s.t. Y wixpe < | Y —Ck (3.50)
i=1 k=1 Tt
xipe € {0,1} (i € N).

where k* is the (knapsack) index corresponding to the smallest surrogate multiplier.

Since [E,’f:l 77;(’1 CkJ > Y 1L, Cy, the choice my = 7 (any positive constant) for all

k € M produces the minimum capacity and hence the minimum value of S(7r). [

3.4 Decomposable Lagrangian relaxations

In this section we study the Lagrangian relaxation when applied to the quadratic
formulation (3.8)-(3.11) of Section 3.1, and to the DRLT1 formulation of Section 3.1.

3.4.1 Relaxing the Quadratic Model

A classical relaxation of the MKP is obtained by relaxing in a Lagrangian fashion the
cardinality constraints (3.10) with multipliers A; > 0 (i € N). For the QMKP, such
relaxation becomes:

LO(A) = i/\i —i—maxi

i=1 i=1k

n—-1 n m
—Aixi+ Y Y) pirax

1 i=1 j=i+1k=1

Ms

n

s.t. Zwixik < Cx (k S M) (3.51)
i=1
x € {0, 1}

As the objective function does not contain terms involving items assigned to dif-
ferent knapsacks, the problem decomposes into m independent QKPs (one for each
knapsack k € M).

It is worth mentioning that, if the knapsack set M is partitioned into t subsets
Mj, ..., My, such that all knapsacks in Mj, (h = 1,...,t) have the same capacity Cy,
the optimal solution to the above Lagrangian relaxation can be obtained by solving
t independent QKPs. Indeed, for each subset My, it is enough to solve one single
QKP and to sum up the optimal values. Such situation occurs, e.g., in the benchmark
instances by [101], where all knapsacks have the same capacity.

3.4. Decomposable Lagrangian relaxations 53

In order to solve the Lagrangian dual problem, i.e., to find the best possible set
of multipliers, A*, in our computational experiments we adopted the proximal bun-
dle method, as implemented by [114]. The corresponding software is freely available
at https://gitlab.com/frangio68/ndosolver_fioracle_project (as a part of the
NDOSolver/FiOracle suite of C++ solvers for NonDifferentiable Optimization, devel-
oped by the Department of Computer Science of the University of Pisa).

3.4.2 Relaxing DRLT1

A different Lagrangian relaxation can be obtained by the DRLT1 model introduced
in Section 3.1. Let us dualize the symmetry equations (3.26) with multipliers A; § 0.
We get:

LR()\) = max Z Z PiXik + Z Z Z 5 Pij +)\z]k Yijk (3.52)
i=1k=1 i=1]; k=1
s.t. Yijk < Xj (ZGN,]EN\{I},’CGM) (3.53)
Y wiyik < (Cx—w;) x (i € N,k € M) (3.54)
jEN\{i}
vix € {0,1} (ieN,je N\{i}, ke M) (3.55)

(3.9),(3.10), (3.11).

Since the multipliers A for the symmetry constraints (3.26) are only defined for
Jj > i, we assume, for notational convenience, that Ajx = —A;j in (3.52).

The main reason for relaxing (3.26) is that the resulting model has a decomposable
structure. Observe indeed that constraints (3.53) allow a variable y;j to be 1 only if
xjx is 1. Moreover, for each pair i,k (i € N,k € M), variables y;j (j € N\ {i}) only
appear in capacity constraints (3.54) and in the objective function. Hence, if all x;;
variables are fixed, the relaxed problem consists of nm independent sub-problems,
one for each pair i, k. More precisely, the relaxed problem decomposes into nm + 1
sub-problems, that can be cascaded as follows:

(i) first we solve nm (linear) KPs, one for each pair i, k (i € N,k € M), of the form:

max Y (5 pij+ Aije) Vi
o
s.t. Z Zijl']'k < (Ck — w,-)xik (356)
jEN\{i}
vijk € {0,1} (j € N\{i})
Xix € {0, 1}.

having only one x; variable and its associated n — 1 auxiliary variables y;jx
(j € N\ {i}) subject to a single capacity constraint (3.56) associated with the
pair (i, k). We denote by vj; the optimal solution value when x; = 1, while the
optimal solution value is clearly 0 when x;; = 0.

https://gitlab.com/frangio68/ndosolver_fioracle_project

54 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

(ii) then we solve a unique (linear) pseudo-MKP with all the original x;; variables
subject to constraints (3.9)-(3.11):

m
max Z ﬁikxik (357)
k=1

s.t. (59»(310x(311x

™=

—_

where Py = p; + vy (i € N,k € M).

Observe that, as it is known that the polyhedron of the 0-1 knapsack problem KP
is not integral (see, e.g., [108]), our Lagrangian problem does not have the integral-
ity property. Therefore, the Lagrangian bound, corresponding to the optimal dual
multipliers A*, is not dominated by the standard continuous relaxation of DRLT1.

In this case too we performed our computational experiments by solving the
Lagrangian dual problem by means of the proximal bundle method, as implemented
by [114].

3.5 Meta-heuristic Approach: The Multi-Start Iterated Local
Search

Several large size benchmark instances have been presented for the QMKEP. Billion-
net and Soutif originally proposed these instances for testing algorithms for QKP
[83]. However, for the QMKD, a set of knapsacks with homogeneous capacities is
defined, and the corresponding instances are very difficult to solve with exact meth-
ods. For solving larger instances, meta-heuristics have been the most used tech-
nique. Evolutionary Algorithms [89, 90, 115], Tabu Search [94, 97], Path Relinking
[96],and heuristics based on thresholding [93, 96].

Large instances of QMKP remain a challenge for the state of the art algorithms.
The current instances for the QMKP, based on the single QKP have been randomly
generated, with number of items 100 and 200 and can be found http://cedric.
cnam. fr/soutif /QKP/QKP.html. The latest results about these instances are based
on time limit stopping criteria, so possibly the best results for the considered in-
stances have not been explored yet. This section presents the Multi-Start Iterated
Local Search (MS-ILS) algorithm for the solution of large instances of the problem.

The MS-ILS is based on the classic ILS described in the previous chapter. For
an ILS, four essential processes must be defined: initial solution, perturbation, local
search, and acceptance criteria. An initial solution can be generated randomly or by
executing a constructive heuristic for the problem. A perturbation allows to diver-
sify the search space by making random moves to a current solution; perturbation
must control this process since a very aggressive move can generate a solution that
does not help in the search as it is far from the optimum of the problem, while a less
aggressive move can stall the process at a local optimum. The local search allows
to intensify the search based on a candidate solution or current solution and deter-
mines if it is possible to change the neighborhood. For this, the local search strategy
can be determined based on how the neighborhoods are applied (first improvement
or best improvement) and the order in which they are applied (one neighborhood

http://cedric.cnam.fr/soutif/QKP/QKP. html
http://cedric.cnam.fr/soutif/QKP/QKP. html

3.5. Meta-heuristic Approach: The Multi-Start Iterated Local Search 55

first or all simultaneously). Finally, the acceptance criterion allows to accept solu-
tions no better than the current solution with a defined threshold to "navigate" in a
larger problem-solution space.

The MS-ILS performs an ILS using more than one initial solution. The initial
solution for the ILS can be changed during the execution and allows to diversify
the search for the meta-heuristics. Generally, random processes based on properties
of the problem or deterministic methods that allow to give stability to the algorithm
considering the final result are used. In the following subsections, the meta-heuristic
for QMKP is presented in detail, considering the critical ILS processes and initial
solutions for multiple executions.

3.5.1 MS-ILS: Main Scheme

The MS-ILS approach generates initial solutions using different algorithms and ap-
plies Perturbations and local searches for the QMKP. The details of this metaheuristic
are described in Algorithm 11. The algorithm receives as input parameters: maxStart
corresponding to the number of ILS executions with different initial solutions; maxIter
corresponding to the maximum number of iterations within the ILS; 71, r2 and r3
are numbers between 0 and 1 that allow to define in which iteration to use a specific
initial solution; maxPI corresponding to the maximum number of iterations; A and
maxTry are parameters for the perturbation (see the details later in Algorithm 13);
tabuTenure;,y and tabuTenurey,, corresponding to the length of different tabu lists
used by the MS-ILS; M and B are parameters for the infeasible local search (see the
details in Algorithm 14). Initially, we define the variable s to control the number of
times the ILS is executed; we also define an empty list of tabu solutions that the al-
gorithm will use during the execution of the MS-ILS. Finally, the Quad — GreedyH ()
algorithm is executed (see the details in the following subsection).

Depending on the current value of s, an initial solution is generated and stored
in Xjpitig (lines 5 to 15), and a local search procedure is applied (linel6). The first it-
eration of the MS-ILS allows to define x4, corresponding to the best solution found
by the metaheuristic.

The executions of a single ILS are carried out with the input parameters of the al-
gorithm. The internal while-loop of the MS-ILS (lines 22-36) allows for a generation
of perturbations based on thresholds and local searches in the feasible space of the
problem. The tabu list solutions is also updated to avoid to run procedure FealLS re-
dundantly. Also, if an improvement is found during the execution of the while-loop,
the variables concerning the termination condition are reset (lines 29 and 30).

Finally, an infeasible local search process is executed. First, the list of tabu so-
lutions is checked to avoid redundant executions of the algorithm (line 37). Subse-
quently, infeasible local search and repair algorithms are implemented. The global
variables are updated before closing the main while-loop (lines 49-52).

56 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

Algorithm 11 MS-ILS: Main Scheme

Input: maxStart, maxIter,r1,r2,r3, maxPl, A, maxTry, tabuTenuremf, tubuTenurefm, M, B
Output: BestProfit, xp.s
1:s=1

. tabuList =@

: Xguad = Quad — GreedyH ()

: while s < maxStart do

if 0 <(s/maxStart) < rl then
Xinitial = Xquad

end if

if rl <(s/maxStart) < r2 then
Xinitial = Random — FeasibleH ()

end if

if r2 <(s/maxStart) < r3 then

o PN @ N

[
I

Xinitial = Greedy — RandomH ()
13: else
14: Xinitial = XInfLS
15: end if
16: (x5, tabuList, tabuCond) = FeaL.S(x;yjsiq1, tabuList, tabuTenures,,)
17: if s==1 then
18: Xpest = Xls
19: end if
20 f=1
21: pertLength =1
22: while f < maxIter and pertLength < maxPl do
23: xp = Perturbation(xs, pertLength,A,maxTry,0.5,0.5)
24: (Xfears, tabuList, tabuCond)=FealS(xp, tabuList, tabuTenurey,)
25: if tabuCond ==1 then
26: pertLength = pertLength + 1
27: else
28: if f(xfears) > f(xjs) then
29: Xis = XfealS
30: =
31 pertLength =1
32: else
33: f=f+1
34: end if
35: end if

36: end while
37: if Xfeqs ¢ tabulList then

38: (xFeasible, xIn feasible)=InfLS(x rq15, M, tabuTenure;, s, B)
39: X feasivlez = Repair(xIn feasible, xFeasible, 10)
40: XinfLs = Best(xFeasible, X fegsipie2)

41: if f(xlnfLs) > f(x;;) then

42: if xy,f15 ¢ tabuList then

43: Xis = XInfLS

44: =

45: pertLength =1

46: end if

47: end if

48: end if

49: if £(x;5)> f(xpest) then

50: Xpest = Xls

51: end if

52: s=s+1

53: end while
54: return f(xbest)rxbest

Initial Solutions

Four ways to obtain initial solutions are used in the MS-ILS:

* Quad-GreedyH consists of optimally solving the QKP with the available items
and the capacity of the homogeneous knapsack (i.e. Ci). This last process

3.5. Meta-heuristic Approach: The Multi-Start Iterated Local Search 57

must be carried out m times always using the remaining available items that
the algorithm did not select in the previous iterations. In order to solve each
QKEP, the quadknap algorithm was used.

* Random-FeasibleH consists of randomly selecting an item and assigning ran-
domly it to a knapsack whenever the latter has available capacity.

* Greedy-RandomH consists of randomly selecting an item and assigning it to the
best knapsack, improving the objective function for the QMKP.

* Use the best feasible solution found by the last MS-ILS run.

In Algorithm 11 (line 3), the Quad-GreedyH function is called only once, since it
always generates a deterministic solution, while the remaining functions are called
within the main loop since they use random processes and/or depend on past exe-
cutions.

Feasible Local Search

The feasible local search works by considering on the Relocate and Exchange neigh-
borhoods. BestRelocateSolution relocates each (available and unavailable) item be-
tween the different knapsacks, returning the best solution from the search neigh-
borhood. BestExchangeSolution exchanges each pair of (available and unavailable)
items between the different knapsacks (available and unavailable items), returning
the best solution from the search neighborhood. All neighborhoods work based on
the best improvement.

Another essential point of the feasible local search is how the neighborhoods are
applied. Algorithm 12 receives as parameters: x.. the current solution, TabuList the
list of the best solutions found, and tabuTenurey,, the size of the tabu list. The al-
gorithm begins by checking if the initial solution (x.) is in the tabu list, in order to
avoid to perform a redundant execution in the local search. Subsequently, a VND is
executed: first, a neighborhood is applied; if this move does not improve the solu-
tion or if the solution found is tabu, it is changed to the second neighborhood. If the
second neighborhood generates an improvement, it returns to the previous neigh-
borhood (line 20). The above steps are done iteratively until no neighborhood can
improve the solution. Finally, a list of local tabu solutions is considered for the FeaLS
process, which stores all the solutions found (line 21) and updates the global tabu
list tabuList at the end of the local search.

58 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

Algorithm 12 FealS

Input: x..,tabuList, tabuTenurey,,
Output: xj,, tabuList, tabuCond

1 Xjg = Xxx

2. if x5 € tabuList then

3 tabuCond =1

4 return xj,, fabulList, tabuCond
5. end if
6
7
8:
9

k=1
. tabuCond = 0
. tabuListSolution = @
. while k <= 2do
10: if k == 1 then

11: xm = BestExchangeSolution(x;s, f (x;5))
12: else

13: xm = BestRelocateSolution(xys, f (x;5))
14: end if

15: if x,;, € tabuList then

16: k=k+1

17: else

18: iff(xm) > f(xls) then

19: Xis = Xm

20: k=1

21: tabuListSolution.add(x;s)

22: else

23: k=k+1

24: end if

25: end if

26: end while

27: for solution € tabuListSolution do

28 tabuList.update(solution, tabuTenures,,)
29: end for

30: return xj, fabuList, tabuCond

Perturbation

The perturbation for the MS-ILS is based on the perturbation process defined in [116]
for the VRP and [117] for the Generalized-QMKP. This perturbation is defined based
on the concept of perturbation length (pertLength), the number of moves performed
in the input solution; and a threshold (y)that allows to control the impact of each
move. In the perturbation process described in Algorithm 13, the variables of the
process are initialized in the first lines; later, within the main loop, a random neigh-
borhood is selected with probability Neighborhoodl for Exchange and Neighborhood?2
for Relocate, and this move is iteratively applied.

Finally, if the solution is accepted with respect to f(xp) * v (Where xp is the per-
turbed solution and, f(xp) is profit of xp.), the search variables are replaced. Also,
note that if the solution is not accepted, the counter variable try is used in order to
update 7.

3.5. Meta-heuristic Approach: The Multi-Start Iterated Local Search 59

Algorithm 13 Perturbation
Input: x5, pertLength,A,maxTry,Neighborhood1,Neighborhood2

Output: xp
L p= 1
2 y=1-A
3 Xp = X5
4 try=20
5. while p <= pertLength do
6. neighRandom = RandomNeighborhoodSelect(Neighborhood1,Neighborhood?2)
7. xpw =applySingleRandomMove(neighRandom, xp)
8 if f(xpw) > f(xp) *y then
9: xXp = xpw
10: Y=7—A
11: p=p+1
12: try=20
13 else
14: try =try+1
15: if try > maxTry then
16: y=7—-A
17: try=20
18: end if

19: end if
20: end while
21: return xp

Infeasible local Search and the Repair procedure

The infeasible local search is based on the procedure presented by [97]. This search
method is based on two major processes:

¢ The first process applies the BestExchangeSolution and BestRelocateSolution algo-
rithms by respecting the capacity of each knapsack (we always assume homo-
geneous capacities). When the first process falls into a local optimum, i.e., the
method cannot continue to improve the current feasible solution, the second
process is executed.

* The second process consists of the relaxation of the capacity restriction, and
the relocate neighborhood is used to explore infeasible areas. Generally, the
relocation move of this process moves items from a heavy knapsack to a light
knapsack.

The second process works stochastically, randomly choosing a knapsack and ap-
plying the relocation move. A function Relocate(item,k1,k2) is defined for the infeasi-
bility process, this function returns:

Relocate(item, k1,k2) = (A(item,k2) — A(item, kl))/wf (3.58)

where A(item, knapsack) = pijem + Y icknapsack Pitem,j- Algorithm 14 describes in
detail the method from the [97], where at lines 23 and 24 the selection of the knap-
sack, and the definition of the corresponding weight are performed:

* If Wiinput < Cinput, the algorithm selects the item i € k', and the knapsack =
{ky € K|Wk, > Wiinput} such that max; .- { Relocate(i, kK, kinput)} (procedure
RelocatelnfGain1).

60 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

e Otherwise, the algorithm selects the item i € kinput and the knapsack k' €
{ks € K|Wi, < Wiinput} such that maxiekinput{Relocate(i,kinput,k”)} is se-
lected (procedure RelocatelnfGain2).

Algorithm 14 InfLS

Input: x., M, tabuTenureinf, B
Output: xFeasible, xs (i.e. xs= the infeasible solution)

1:m=1

2. xFeasible = x.

3 Xs = X¢

4 tabuList Movements = @

5. localOptFlag = False

6: feasibleFlag = True

7. while m <= M do

8 if (localOptFlag == False) and (feasibleFlag == True) then
9: / / FirstProcess

10: (Xexc, 71) = BestExchangeSolution(xs, f (xs, TabuList)
11: (xre1, 72) = BestRelocateSolution(x;, f (x5, TabuList)
12: (xS/ 'Yhest) = SelectBest(Xexc,Xre1,71,72)

13: tabuList Movements.update(Ypest, tabuTenure;,f)

14: if f(x5) > f(xFeasible) then

15: xFeasible = x;

16: localOptFlag = False

17: feasibleFlag = True

18: else

19: localOptFlag = True

20: end if

21: else

22: / /SecondProcess

23: kinput = RandomKnapsack(1,K,0)

24: Wrinput = KnapsackWeight(kinput)

25: if Wkinput < Ckinput then

26: (xs,7) = RelocatelnfGainl(xs,ﬁ,kinput,wk,-npu,, TabulList)
27: else

28: (xs,7) = RelocatelnfGainZ(xs,‘B,kinput,Wk,-npu,, TabulList)
29: end if

30: tabuList Movements.update(7y, tabuTenure;,,s)

31: if Feasible(x;)== True then

32: xFeasible = x;

33: feasibleFlag = True

34: localOptFlag = False

35: else

36: feasibleFlag = False

37: end if

38: end if

39: m=m+1

40: end while

41: return xFeasible, xs

All processes do not consider the capacity restriction, but consider the TabuList
received as an input parameter. Finally, a repair procedure is applied. Three neigh-
borhoods are used for this process: extraction, exchange, and relocation, that work
on the same the infeasible solution. The move that generates the least infeasibility is
selected, i.e., the move that produces the smallest overload with respect to the knap-
sack capacity. If there is a tie (i.e., more than one neighborhood generate the same
degree of infeasibility), the algorithm selects the move that produces the highest
profit (see Appendix A).

3.6. Matheuristics Approach 61

A second approach is presented in the next section. Previously described proce-
dures concerning the Lagrangian relaxation and the local search processes are con-
sidered.

3.6 Matheuristics Approach

An effective solution process arises when heuristics and exact techniques are used
in combination to solve a problem. This process gives rise to a solution approach
known as Matheuristic, a field responsible for generating approaches that use math-
ematical programming and heuristics and/or metaheuristics, one within the other
or both executed sequentially [118]. Consider the QKP described above: a Greedy
heuristic can quickly find feasible solutions but of poor quality. On the other hand,
an integer programming (IP) approach can find high-quality solutions in intractable
computing times [51]. However, the combination of a pre-processing heuristic that
allows to identify the items that are not part of a good solution for the QKP with the
solution of the resulting subproblem by using an IP approach, can generate high-
quality solutions. This process can be iterative, and the heuristics can deliver small
subproblems to the IP model until a defined stop criterion is reached. Matheuristics
have been studied in great depth in the field of operations research, and have been
shown to be effective for various combinatorial optimization problems.

The Lagrangian relaxation of the quadratic model proposed for the QMKP pro-
cess (see section 3.4.1) can generate reasonable solutions. Observe that a valid QKP
solution and a valid upper bound UB are obtained at each iteration the bundle pro-
cedure. Thus, to solve the QMKRP effectively, a new matheuristic algorithm can be
considered. This approach is based on the methods previously described:

¢ The bundle procedure used to get the optimal multipliers for the Lagrangian
relaxation of the quadratic model.

¢ The local search neighborhoods to improve the solutions in the MS-ILS.

¢ The search process proposed by [97] that considers infeasible moves through-
out the thesis and that is also addressed in the MS-ILS.

This hybrid approach for the solution of QMKP is new and could be applied to
other optimization problems, depending on the quality of the Lagrangian relaxation
solutions determined during the executions of the bundle procedure. The following
subsections describe the proposed matheuristic in detail considering the processes
mentioned above.

Matheuristic: Main Scheme

Before executing the matheuristic, it is necessary to solve the Lagrangian relaxation
of the quadratic model. Let us assume that the Bundle procedure requires ¢ itera-
tions. In this way, at the end of the bundle procedure, we have ¢ solutions of the
single QKP and t upper bound values.

The matheuristic receives the solutions generated by the bundle procedure and
generates feasible solutions for the QMKP. Algorithm 15 details the input variables:

62 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

solQKP a set of solutions for the single QKP obtained by the bundle procedure, UB
a vector of upper bound values associated with each solution from solQKP, UBM
a threshold value to generate a subset from solQKP and a scalar used during the
matheuristic.

Algorithm 15 Matheuristic 1

Input: solQKP,UB,UBM, o
Output: bestSolution
1. (A*,s*) = selectThreshold(solQKP, UB, UBM)
2: (A,s) = DeleteRedundanceSolutions(A*)
3: b = GetNumberO fElements(A)
4: bestSolution = @
5. forr =1,2.m do

6 if r > s then

7 break

8: end if

9: fori =1,2..sdo

10: 8i = bi)

11: end for

12: StopCriteria = False

13 YY=0

14 it=1

15: while StopCriteria == False do

16: y = SolveCCSP(A,g,r)

17: if y € YY then

18: StopCriteria = True

19: else

20: YY.add(y)

21: fori=1..sdo

22: g,:g,fy,*(10+lt+1)

23: end for

24: currentSolution = GetSolutions(A,y)

25: nKnap = GetNomberO fKnapsack(currentSolution)
26: while nKnap < m do

27: availableltems = Get AvailableItems(currentSolution)
28: SolutionQKP = Quadknap(availableltems, C)
29: currentSolution.add(SolutionQKP)

30: nknap = nknap + 1

31: end while

32 LocalSearchSol = FeaLS(currentSolution)

33: InfLocalSearchSol = InfLS(LocalSearchSol)

34: if f(bestSolution) < f(InfLocalSearchSol) then
35: bestSolution = InfLocalSearchSol

36: end if

37: it =it+1

38: end if

39: end while

40: end for

41: return bestSolution

The first phase of the matheuristic consists of selecting the QKP solutions that
can be part of the final QMKP solution. Lines 1-3 of Algorithm 15 deletes the QKP
solutions that are not "promising". First, selectThreshold is executed and returns a set
A* = {A7|Af € solQKP NUB; <= UBM ;Vi € {1,2..t}} and also a value s* = |A*|.
Then, DeleteRedundanceSolutions deletes identical solutions from the subset of solu-
tions in A*, returning the set of solutions A and s = |A|. Finally, GetNumberOfEle-
ments returns a vector b = {b;|b; = L' A;; Vi € {1,2..5}}.

The matheuristic explores various combinations of the matrix A and generates a
feasible solution for the QMKP using hybrid approaches. Lines 5-40 define the main

3.6. Matheuristics Approach 63

loop based on the number of knapsacks m. The value of r represents the maximum
number of QKP solutions chosen by the matheuristic. Then, a vector g; is defined
using the number of selected items (b;) and the parameter J.

The matheuristic iteratively solves an IP model in order to identify the best QKP
solutions that are part of the final QMKP solution. The model solves the Cardinality
Constrained Set Packing Problem (CCSP, line 16) described in the following:

S
max Z 8hYn (3.59)
h=1
S
st Y Apyp <1 (i€ N) (3.60)
h=1
S
Yyi<r (3.61)
h=1
v, € {0,1}. h=1,..,s (3.62)

For the h-th QKP solution (h = 1, ...,s), the binary decision variable y;, takes the
value 1 iff the solution is selected, and gj represents the corresponding "gain". The
objective function (3.59) maximizes the global "gain" of the selected solutions (i.e.,
the global number of items). The constraints (3.60) forbid each selected item to be
repeated among the solutions (no overlap). Finally, the constraint (3.61) ensures that
the model selects no more than r solutions (with » < m). In this way, the SolveCCSP
function returns the (at most) r selected QKP solutions belonging to the QMKP so-
lution.

A list YY of "tabu selections” is defined. Line 13 initializes the YY list. If the
model generates a selection that has already been made (i.e., it is found in the tabu
list), the external while-loop (lines 15-39) ends and the main loop continues (lines
5-40). The vector g is also updated allowing the model to explore new selections.

The selection of the QKP solutions performed by the model may be incomplete,
since the model can choose at most r QKP solutions for the QMKP. Lines 26-31 fill
the remaining knapsacks using the available items (returned on line 27) using for
each knapsack the quadknap algorithm.

Improvement algorithms are applied until a local optimum is found. First, the
FeaL$ algorithm (Algorithm 12), and then InfLS algorithm (Algorithm 14) are ap-
plied. Each local search process does not use the input tabu list; it only uses the local
tabu list defined internally in each algorithm. Also, consider that the knapsack se-
lection process for the infeasible relocation phase is carried out by examining all the
knapsacks and selecting the move that generates the largest profit. Finally, the best
solution found is returned.

A variation of the previous matheuristic (Matheuristic 2) is described in Algo-
rithm 16. In this second matheuristic, the vector g is defined by considering the
original profit of each QKP solution. In this way, line 2 calculates the profit for
each QKP solution from the matrix A. The following steps are the same as those
of Matheuristic 1, but in this case, there is no inner loop that updates the vector g.

64 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

Algorithm 16 Matheuristic 2

Input: solQKP,UB,UBM

Output: bestSolution

: (A*,s*) = selectThreshold(sol QKP, UB, UBM)

: (A,s) = DeleteRedundanceSolutions(A*,s*)

. § = GetSingleProfit(A)

. bestSolution = @

: forr =1,2..m do

if r > s then
break

end if

Y = SolveCCSP(A,g,r)

currentSolution = GetSolutions(A,Y)

nKnap = GetNomberO fKnapsack(currentSolution)

while nKnap < m do
availableItems = Get AvailableItems(currentSolution)
SolutionQKP = Quadknap(availableItems, C)
currentSolution.add(SolutionQKP)
nknap = nknap +1

end while

LocalSearchSol = FeaLS(currentSolution)

InfLocalSearchSol = InfLS(LocalSearchSol)

if f(bestSolution) < f(InfLocalSearchSol) then
bestSolution = InfLocalSearchSol

22 end if

23: end for

24: return bestSolution

O N U W N

LT T St G
220 @ N @k ey

3.7 Computational experiments

3.7.1 Formulations and the Relaxations

The formulations and the relaxations introduced in the previous sections were im-
plemented in C++ language. In the present section, we report the outcome of compu-
tational experiments aimed at evaluating the quality of the upper bounds produced
by the polynomial-size models and the relaxations we have introduced. All the ex-
periments were performed on a single thread of an AMD Ryzen 7 2700X Eight-Core
Processor running at 3.7 GHz with 64 GB RAM. In order to evaluate our models and
relaxations, we used benchmark instances adopted by [101], for most of which his
Branch-and-Price algorithm could find the optimal solution (available online, see
below). For the sake of completeness, in the next section we describe the way in
which the instances were generated. The solution of our mathematical models was
obtained using different codes:

¢ the general purpose solver CPLEX 12.10;

¢ the open source C code quadknap, that implements the algorithm for the QKP
developed by [109] and is available at the home page of D. Pisinger, http://
hjemmesider.diku.dk/“pisinger/codes.html. This code works with integer
parameters and non-negative pairwise profits p;;: in Section 3.7.1 we detail
how we handled this feature to solve Lagrangian subproblems;

¢ the open source Fortran code MT1R, that implements a variant of the KP algo-
rithm MT1 by [79] (adapted to non-integer parameters), available at the home
page of S. Martello, http://www.or.deis.unibo.it/knapsack.html.

http://hjemmesider.diku.dk/~pisinger/codes.html
http://hjemmesider.diku.dk/~pisinger/codes.html
http://www.or.deis.unibo.it/knapsack.html

3.7. Computational experiments 65

Benchmark instances

[101] presented two sets of random instances, called HJ and SS, based on the gen-
eration schemes proposed, respectively, by [89] for the QMKP and by [115] for a
generalization of the problem. However, as reported by [95], the known optimality
gap for even the easiest of the HJ instances (n = 100) is enormous, so smaller in-
stances were generated by [101] (with n € {20,25,30,35}) to test his exact approach.
For our experiments, we considered the HJ instances, both because they have been
specifically designed for the QMKP and because all the involved pairwise profits are
non-negative.

All the instances can be downloaded from the INFORMS page as a zipfile at the
address https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2018.0840/
suppl_file/ijoc.2018.0840-1instances.sm2.zip. The knapsacks have a common
integer capacity C, with n ranging in {20,25,30,35} and m in {3,5,10}. Three dif-
ferent values d € (0,1] were used for the density of the non-zero quadratic terms:
d € {0.25,0.50,0.75}. For each triple (1, m,d), 5 random instances were produced as
follows. Linear profits p; were generated as uniformly random integers from [0, 100].
For every pair i, j € N, quadratic profits p;; were set with probability d to a random
integer value uniformly drawn from [0, 100], and to 0 with probability 1 — d.

The weights w; were generated as uniformly random integers from [1,50], while
the capacities C were all set to |0.8Y ;cy w;/m|. In total, 180 instances were thus
generated.

In addition, in order to analyze how the most promising reformulations and
relaxations scale for larger values of 1, we generated new HJ instances, using the
instance generator provided by [101], that is available for download. The gen-
erator produces instances according to the scheme described above. In this case,
we considered instances with n ranging in {40,45,50,55,60}, m in {3,5,10}, and
d € {0.25,0.50,0.75}.

Experiments

We first evaluate the polynomial-size formulations discussed in Sections 3.1 and 3.2,
for what concerns both their performance on the computation of the optimal solu-
tion and the quality of the LP relaxation of the linear ones. Table 3.1 reports on the
different formulations of the QMKDP, when solved through CPLEX, with one hour
time limit. The six groups, of three columns each, refer to the models we have ob-
tained for the QMKP:

* CPLEX-QF: 0-1 quadratic formulation (Section 3.1);
* CPLEX-FGW: 0-1 linear formulation by Fortet, Glover, and Woolsey (Section 3.2);
* CPLEX-GLOV: mixed-integer linear formulation by Glover (Section 3.2);

* CPLEX-RLT1: Level 1 reformulation linearization by Sherali and Adams (Sec-
tion 3.2.2);

* CPLEX-DRLT1: decomposable Level 1 reformulation (Section 3.1).

* CPLEX-MDRLT1: modified decomposable Level 1 reformulation (Section 3.1).

https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2018.0840/suppl_file/ijoc.2018.0840-instances.sm2.zip
https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2018.0840/suppl_file/ijoc.2018.0840-instances.sm2.zip

Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

66

TABLE 3.1: CPLEX solution of the polynomial formulations within one hour. Average percentage optimality gap, number

of instances solved to proven optimality, average number of nodes and CPU time over five instances. Time limit: 1 hour.

instance CPLEX-QF CPLEX-FGW CPLEX-GLOV CPLEX-RLT1 CPLEX-DRLT1 CPLEX-MDRLT1
n m d %gap (#) nodes t(s) %gap (#) nodes t(s) %gap (#) nodes t(s) %gap (#) nodes t(s) %gap (#) nodes t(s) %gap (#) nodes t(s)
20 3 025 0.00 (5) 712 0.2 0.00 (5) 692 1.7 0.00 (5) 2091 0.8 0.00 (5) 209 4.8 0.00 (5) 411 0.2 0.00 (5) 448 0.2
20 5 025 0.00 (5) 1282 1.1 0.00 (5) 1698 9.5 0.00 (5) 4188 33 0.00 (5) 73 41 0.00 (5) 380 0.7 0.00 (5) 1877 2.5
20 10 0.25 0.00 (5) 58 0.2 0.00 (5) 43 1.2 0.00 (5) 127 0.2 0.00 (5) 3 0.4 0.00 (5) 12 0.0 0.00 (5) 682 0.3
20 3 050 0.00 (5) 6762 47 0.00 (5) 12958 42.5 0.00 (5) 9893 5.9 0.00 (5) 413 6.0 0.00 (5) 1062 1.6 0.00 (5) 1475 1.8
20 5 050 0.00 (5) 9263 135 0.00 (5) 43682 253.8 0.00 (5) 33478 25.6 0.00 (5) 123 49 0.00 (5) 453 14 0.00 (5) 1936 4.4
20 10 0.50 0.00 (5) 112 0.5 0.00 (5) 80 2.2 0.00 (5) 440 0.4 0.00 (5) 5 1.6 0.00 (5) 15 0.3 0.00 (5) 217 0.3
20 3 075 0.00 (5) 23199 25.4 0.00 (5) 32420 88.2 0.00 (5) 55320 28.2 0.00 (5) 895 10.0 0.00 (5) 2333 6.1 0.00 (5) 4230 5.3
20 5 075 0.00 (5) 76629 157.5 0.00 (5) 30042 127.2 0.00 (5) 242127 233.9 0.00 (5) 138 47 0.00 (5) 661 32 0.00 (5) 1175 3.8
20 10 0.75 0.00 (5) 229 1.1 0.00 (5) 199 3.3 0.00 (5) 1995 2.5 0.00 (5) 9 1.7 0.00 (5) 10 0.5 0.00 (5) 47 0.2
Avg (#tot) 0.00 (45) 13138 22.7 0.00 (45) 13535 58.8 0.00 (45) 38851 33.4 0.00 (45) 208 42 0.00 (45) 593 1.6 0.00 (45) 1343 2.1
25 3 025 0.00 (5) 2898 15 0.00 (5) 3183 18.2 0.00 (5) 5416 2.4 0.00 (5) 1328 327 0.00 (5) 2805 1.9 0.00 (5) 2346 15
25 5 025 0.00 (5) 5243 6.4 1.12 (4) 69566 1028.8 0.00 (5) 13960 141 0.00 (5) 790 444 0.00 (5) 2727 6.7 0.00 (5) 7103 12.0
25 10 0.25 0.00 (5) 900 2.0 0.00 (5) 812 14.7 0.00 (5) 2938 49 0.00 (5) 78 8.0 0.00 (5) 190 0.8 0.00 (5) 558918 641.9
25 3 050 0.00 (5) 39882 37.8 0.00 (5) 62716 320.6 0.00 (5) 161340 168.8 0.00 (5) 3480 849 0.00 (5) 10403 26.6 0.00 (5) 8912 19.2
25 5 050 0.00 (5) 286271 813.6 24.71 (1) 210054 3540.8 0.00 (5) 1966676 26769 0.00 (5) 1486 47.7 0.00 (5) 4907 39.3 0.00 (5) 14344 65.1
25 10 0.50 0.00 (5) 1776 6.9 0.00 (5) 41219 509.4 0.00 (5) 17082 39.6 0.00 (5) 35 8.9 0.00 (5) 83 1.7 0.00 (5) 4956 17.9
25 3 075 0.00 (5) 553050 1157.6 4.07 (3) 343601 2256.5 5.39 (2) 1671387 2430.5 0.00 (5) 5507 154.8 0.00 (5) 24292 163.4 0.00 (5) 18290 60.1
25 5 075 14.16(2) 735365 3117.2 47.11(0) 253386 3600.0 31.83(0) 1417607 3600.0 0.00 (5) 4148 167.9 0.00 (5) 24286 295.2 0.00 (5) 32127 201.2
25 10 0.75 0.00 (5) 10690 56.1 10.05(1) 189176 2907.7 1.78 (4) 323526 965.3 0.00 (5) 63 9.9 0.00 (5) 279 4.1 0.00 (5) 11074 61.4
Avg(#tot) 1.57 (42) 181786 577.7 9.67 (29) 130412 15774 4.33(36) 619992 1100.3 0.00 (45) 1879 62.1 0.00 (45) 7775 60.0 0.00 (45) 73119 120.0
30 3 025 0.00 (5) 6935 5.6 0.00 (5) 12680 116.0 0.00 (5) 45366 39.0 0.00 (5) 2546 165.4 0.00 (5) 6301 6.5 0.00 (5) 5057 5.4
30 5 025 0.00 (5) 78649 162.3 16.36 (1) 142000 2988.1 0.00 (5) 548528 991.7 0.59 (4) 11848 1046.0 0.00 (5) 17744 69.6 0.00 (5) 33281 90.7
30 10 0.25 1.14 (4) 162474 745.5 9.03 (3) 39804 1637.6 0.00 (5) 67015 2232 0.00 (5) 242 29.9 0.00 (5) 675 49 0.63(4) 225539 12264
30 3 050 0.00 (5) 599912 1409.6 7.20 (2) 341303 3134.3 1.71 (4) 1706468 22679 0.00 (5) 12057 577.8 0.00 (5) 126844 4644 0.00 (5) 73760 254.5
30 5 050 21.42(0) 785381 3600.0 69.75(0) 158100 3600.0 26.73 (0) 1294407 3600.0 3.63 (1) 32286 2949.1 0.00 (5) 70244 845.2 0.00 (5) 95814 776.9
30 10 050 @ 20.04(1) 360085 30134 50.21(0) 80619 3600.0 15.28 (0) 711346 3600.0 0.00 (5) 612 64.2 0.00 (5) 1620 354 0.00 (5) 11446 185.5
30 3 075 2045(0) 1043048 3600.0 31.10 (0) 425252 3600.0 22.80 (0) 1845088 3600.0 0.00 (5) 14281 789.1 1.17 (3) 127112 2061.4 0.00 (5) 135415 816.1
30 5 075 65.62(0) 419412 3600.0 84.78(0) 207738 3600.0 51.48 (0) 922215 3600.0 0.00 (5) 10027 884.7 0.00 (5) 46904 1038.0 0.00 (5) 56323 657.6
30 10 075 5240(1) 204383 30509 77.71(0) 73858 3600.0 61.36(0) 622603 3600.0 0.00 (5) 230 39.4 0.00 (5) 7222 196.4 0.00 (5) 4525 148.5
Avg(#tot) 20.12 (21) 406698 21319 3846 (11) 164595 28751 19.93(19) 862560 2391.3 0.47 (40) 9348 7273 013 (43) 44963 524.7 0.07 (44) 71240 4624
3 3 025 0.00 (5) 49383 48.2 0.17 (4) 82912 1322.0 0.00 (5) 195385 282.0 0.00 (5) 8045 815.9 0.00 (5) 41148 514 0.00 (5) 30827 414
3% 5 025 1.50 (4) 638998 21240 21.63(0) 104089 3600.0 7.80 (0) 1181369 3600.0 0.00 (5) 12511 2029.2 0.39(4) 206468 13448 0.00(5) 241679 1109.0
35 10 0.25 4.64 (3) 223228 1771.7 42.40(0) 39541 3600.0 8.83(2) 456966 2882.6 0.00 (5) 970 201.3 0.00 (5) 6786 96.8 1.63 (3) 116274 2015.3
3% 3 050 10.02(1) 1641493 32555 26.09 (0) 224323 3600.0 15.65 (0) 1239528 3600.0 2.45(2) 29491 2816.6 519(1) 542010 3358.3 2.86(2) 489435 29245
35 5 050 49.95(0) 523292 3600.0 78.72(0) 111527 3600.0 46.77 (0) 703265 3600.0 10.61(0) 21284 3600.0 8.96 (0) 168929 3600.0 7.90(0) 229339 3600.0
35 10 050 32.74(0) 211563 3600.0 105.18 (0) 35657 3600.0 65.90 (0) 379695 3600.0 0.00 (5) 2946 713.2 1.59 (2) 46683 22833 0.67 (4) 47960 2161.0
3 3 075 3051(0) 927451 3600.0 40.86(0) 237571 3600.0 25.66 (0) 1128057 3600.0 0.00 (4) 21997 19804 5.06 (1) 187245 3081.6 1.97(2) 197177 2437.0
35 5 075 86.50(0) 277265 3600.0 108.75(0) 111032 3600.0 60.77 (0) 625095 3600.0 4.90 (0) 15068 3600.0 6.24 (0) 98240 3600.0 5.19 (0) 139215 3600.0
35 10 075 135.39(0) 112848 3600.0 155.78(0) 34545 3600.0 119.48(0) 319078 3600.0 1.43 (3) 7874 2011.1 5.33 (1) 29577 29654 1.90(2) 43900 3126.7
Avg(#tot) 39.03 (13) 459759 2799.9 64.40 (4) 92953 3346.9 38.99 (7) 637548 3151.6 2.15(29) 12274 19742 3.64 (19) 142480 2264.6 2.46(23) 167329 2335.0
Ov.Avg(#tot) 15.18(121) 278337 1383.1 28.13(89) 104391 1964.6 15.81(107) 553363 1669.2 0.66(159) 6197 692.0 0.94(152) 50196 7127 0.63(157) 79087 729.9

3.7. Computational experiments 67

Each line refers to a triple (1, m,d). For each formulation, the three entries in the
table report (over the corresponding 5 instances),

* ’igap = average percentage optimality gap of the best solution value z obtained
by CPLEX within one CPU hour with respect to its best found upper bound u,
computed as 100 (# — z) /z. In parentheses #, total number of instances solved
to proven optimality;

* nodes = average number of nodes of the CPLEX branch-decision tree;

* t(s) =average CPU time expressed in seconds.

The average values of %gap, nodes, t (s) and the total value of # for each value of
n (45 instances) are also reported, as well as the overall values over the 180 instances.

The table shows that the direct use of the models to provide solutions to the
QMKTP through a general purpose solver like CPLEX (we also tried Gurobi 9, with
similar results) can only be effective for small size instances. We observe that the
quadratic formulation QF and the two linear formulations FGW and GLOV obtain
worse results than those obtained by the three Level 1 RLT formulations.

Forn < 25,RLT1, DRLT1, and MDRLT1 could solve all 90 instances to optimality.
DRLT1 turned out to be the fastest method, although it requires a higher number
of CPLEX decision nodes than RLT1. For n = 30, the same models could solve,
respectively, 40, 43, and 44 instances out of 45, with CPU times of few hundred
seconds. The models look instead inadequate for instances with n = 35.

As previously mentioned, all the considered instances but two were efficiently
solved to optimality by [101] Branch-and-Price algorithm, referred to as BBP in the
following. (He used Gurobi 7.5.1 with one hour time limit on a computer similar to
ours, namely an Intel Core i7-4770 running at 3.40 GHz with 32 GB RAM.) Although
a direct comparison between the CPLEX solution of polynomial-size models and a
specialized Branch-and-Price algorithm may be questionable, we can observe that
the Level 1 RLT models appear to perform better for n = 20 and n = 25, while BBP
is more effective for n = 30, and much better for n = 35. More specifically,

e for n = 20, the three Level 1 reformulations and BBP solved all instances, with
DRLT1 and MDRLT1 taking smaller times (on average, 1.6 and 2.1 seconds,
respectively, versus 4.2 seconds of RLT1 and 3.6 seconds of BBP);

¢ for n = 25, RLT1 and DRLT1 solved all 45 instances (with average times 62.1
and 60.0 seconds, respectively) while BBP solved one instance less with av-
erage time 95.8 seconds. MDRLT1 solved all instances, but required a much
higher, anomalous, time;

¢ forn = 30, MDRLT1 solved 44 instances with an average time of 462.4 seconds,
while BBP solved all 45 instances with an average time of 151.2 seconds;

¢ for n = 35, RLT1 solved 29 instances with an average time of 1974.2 seconds,
while BBP solved 44 instances with an average time of 455.2 seconds.

Table 3.2 examines the quality of the upper bounds computed through the LP
relaxations of the linear models considered in Table 3.1. The five groups, of two
columns each, refer to:

Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

TABLE 3.2: Upper bounds computed through LP relaxation of the lin-
ear formulations. Average percentage optimality gap and CPU time
over 5 instances. Time limit: 1 hour.

instance LP-FGW LP-GLOV LP-RLT1 LP-DRLT1 LP-MDRLT1

nom d %gap t(s) %gap t(s) wgap t(s) %gap t(s) %gap t(s)

20 3 025 37.75 0.01 3921 000 2983 0.01 2983 000 29.83 0.00
20 5 025 6450 0.01 6631 0.00 2947 0.01 2948 0.00 2930 0.00
20 10 025 16312 0.01 166.21 0.00 1931 0.02 1932 0.01 1194 0.00
20 3 050 68.66 0.01 7094 000 3159 001 31.63 0.00 31.63 0.00
20 5 050 12635 001 12941 000 2931 0.01 2932 0.01 28.05 0.00
20 10 050 26574 0.01 27076 0.01 2472 0.02 2472 0.01 16.72 0.00
20 3 075 90.80 0.01 9575 0.00 2876 0.01 2877 0.01 2877 0.00
20 5 075 15659 0.01 16341 000 2426 0.02 2426 001 23.67 0.01
20 10 075 31087 0.01 32210 0.01 1936 0.02 1937 0.01 1206 0.01

Avg 142,71 0.01 14712 0.00 2629 0.01 2630 0.01 2355 0.00

25 3 025 41.19 0.01 4297 0.00 3628 0.02 3628 0.00 3628 0.00
25 5 025 65.55 0.01 67.69 0.00 3327 0.02 3327 0.01 3327 0.00
25 10 025 13813 0.02 14135 0.01 2482 0.04 248 0.01 1986 0.01
25 3 050 7855 0.01 8190 0.00 4042 0.02 4049 0.01 4049 0.01
25 5 050 13264 001 13710 0.01 3333 0.03 3334 0.01 3334 0.01
25 10 050 26346 0.02 27041 0.01 2769 0.04 2774 0.02 2017 0.01
25 3 075 93.43 0.01 9798 0.00 3457 0.02 3459 0.01 3459 0.01
25 5 075 16396 0.01 17019 0.01 3060 0.03 3060 0.01 30.60 0.01
25 10 0.75 31082 0.02 32075 0.01 2395 0.05 2398 0.02 2003 0.01

Avg 143.08 0.01 14781 0.00 31.66 0.03 31.68 0.01 29.85 0.01

30 3 025 4353 0.01 4556 0.00 3937 0.02 3937 0.01 3937 0.00
30 5 025 69.84 0.02 7227 000 3987 003 3991 0.01 3991 0.01
30 10 025 13577 0.03 13928 0.01 2845 0.07 2853 0.02 2419 0.01
30 3 050 77.83 0.01 8243 0.00 47.04 0.03 4710 0.01 47.10 0.01
30 5 050 12558 0.02 13149 001 3788 0.04 378 0.01 37.88 0.01
30 10 050 250.12 0.03 259.62 0.01 2997 0.07 30.01 0.02 2612 0.02
30 3 075 10483 0.02 11095 0.00 36.65 0.04 36.65 0.01 36.65 0.01
30 5 075 175.09 0.02 18345 0.01 2854 0.05 2854 0.02 2854 0.01
30 10 0.75 34885 0.04 362.68 0.01 2620 0.08 2620 0.03 2071 0.02

Avg 14794 0.02 15419 0.01 3489 0.05 3491 0.02 3339 0.01

35 3 025 50.01 0.02 5332 0.00 4319 0.04 4319 0.01 4319 0.01
35 5 025 7738 0.02 8128 0.01 4489 0.05 4490 0.02 4490 0.01
35 10 025 13754 0.04 14289 0.01 31.79 0.09 3179 0.03 2981 0.01
35 3 050 82.83 0.02 8735 0.00 49.75 0.04 4979 0.02 49.79 0.1
35 5 050 13569 0.03 14155 0.01 4282 0.05 4285 0.02 4285 0.01
35 10 050 24847 0.05 25714 0.01 3051 0.09 3051 0.03 2835 0.02
35 3 075 101.86 0.02 10836 0.01 3615 0.06 3616 0.02 36.16 0.02
35 5 075 17830 0.03 18729 0.01 3210 0.07 3210 0.02 3210 0.02
35 10 0.75 34525 005 360.17 0.01 2495 011 2495 0.04 2337 0.04

Avg 150.81 0.03 15770 0.01 3735 0.07 3736 0.02 36.72 0.02

Ov.Avg 146.14 0.02 151.71 0.01 3255 0.04 3256 0.01 30.88 0.01

LP-FGW: LP relaxation of FGW (Section 3.2.1);
LP-GLQV: LP relaxation of GLOV (Section 3.2.1);
LP-RLT1: LP relaxation of RLT1 (Section 3.2.2);
LP-DRLT1: LP relaxation of DRLT1 (Section 3.1);

LP-MDRLT1: LP relaxation of MDRLT1 (Section 3.1);

3.7. Computational experiments 69

The LP relaxations were solved through CPLEX. Each line refers to a triple (1, m, d).
For each formulation, the two entries in the table report the values (over the corre-
sponding 5 instances) of:

* Jgap = average percentage gap of the upper bound u obtained within one CPU
hour with respect to the best known solution value z, computed as 100 (1 —
z)/z. The value of z is optimal for 179 instances out of 180: 178 were provided
by Bergman [101], one more was found by the Level 1 RLT models (see the
comments on Table 3.1);

* t(s) = average CPU time expressed in seconds.

We have seen in Table 3.1 that the linear models (DRLT1 in particular) can pro-
vide good solutions for instances of limited size. Table 3.2 shows that the CPU
times for computing their LP relaxations are very small, but the quality of the up-
per bounds they provide is poor, especially for what concerns GLOV and FGW. The
performances of RLT1 and DRLT1 are very similar to each other. Although the con-
tinuous relaxation of DRLT1 is weaker than that of RLT1 (as observed in Section
3.1), the quality of the bounds they produce is practically the same, while DRLT1
is faster. The best performance was obtained by MDRLT1. In particular: (i) for
m = 10, MDRLT1 produced the smallest percentage gaps, thanks to the addition of
constraints (3.45); (ii) MDRLT1 was slightly faster than DRLT1, probably due to the
use of sets R;; and S;;.

In any case, the results of Table 3.2 indicate that the LP relaxations are inadequate
to be embedded in an enumerative approach. We next show that much better results
can be obtained from Lagrangian relaxations.

In Table 3.3 we analyze the quality of the upper bounds obtained by the surro-
gate and Lagrangian relaxations studied in Sections 3.3-3.4. For the surrogate relax-
ations, the optimal multipliers are known (see Proposition 4). For the Lagrangian
relaxations, the search of the best multipliers was always performed via the proxi-
mal bundle method [114]. The columns provide information on the different ways
we solved the relaxed subproblems (either CPLEX, or Quadknap [109], or MT1R
[79]). We also consider both the case where separability due to equal capacities is
exploited (see Section 3.4.1) and where it is not. The eight groups, of two columns
each, refer to:

e Srg CPLEX: surrogate bound S(7t) (Section 3.3) solved through CPLEX;
e Srg Qknap: surrogate bound S(77) (Section 3.3) solved through quadknap [109];
e Lgr QP CPLEX: Lagrangian bound L9(A) (Section 3.4.1) solved through CPLEX;

e S-Lgr QP CPLEX: Lagrangian bound L2(A) exploiting separability, with the
single QKP solved through CPLEX;

e S-Lgr QP Qknap: Lagrangian bound L2()) exploiting separability, with the
single QKP solved through quadknap [109]. Note that quadknap works with
non-negative pairwise profits p;; (which holds in our formulation) and integer
coefficients. Since our Lagrangian linear profits p; — A; (i € N) can assume
non-integer values, we multiplied all profits by 100, rounded each resulting

TABLE 3.3: Upper bounds computed through surrogate and Lagrangian relaxations. Average percentage gap and CPU
time over 5 instances. Time limit: 1 hour.

Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

70

instance Srg CPLEX Srg Qknap Lgr QP CPLEX S-Lgr QP CPLEX S-Lgr QP Qknap S-Lgr QPLCPLEX D-Lgr DRLT1CPLEX D-Lgr DRLT1MT1R
n m d %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s) %gap t(s)
20 3 25 3445 001 3445 000 0.24 1.37 0.24 0.71 0.24 0.38 0.24 0.64 26.04 5.29 26.04 1.58
20 5 25 5980 0.01 59.80 0.00 0.09 2.11 0.09 112 0.09 0.45 0.09 1.05 18.90 13.09 18.90 2.46
20 10 25 15618 0.01 15618 0.00 0.00 1.78 0.00 0.81 0.00 0.43 0.00 0.74 3.89 4.35 3.89 1.50
20 3 50 6253 0.03 6253 000 044 5.80 0.44 1.73 0.44 0.45 0.44 1.81 25.24 33.06 25.24 6.67
20 5 50 11977 0.02 11977 0.00 0.02 13.90 0.02 1.73 0.02 0.46 0.02 1.77 18.18 34.55 18.18 7.27
20 10 50 25345 0.02 25345 0.00 047 2.43 0.47 1.24 0.47 0.40 0.47 0.90 8.74 16.02 8.74 2.61
20 3 75 8.14 004 8514 000 1.07 7.20 1.07 3.14 1.07 0.49 1.07 2.86 22.51 48.52 2251 9.16
20 5 75 14976 0.02 14976 0.00 0.52 10.44 0.52 2.09 0.52 0.45 0.52 1.87 14.42 52.50 14.42 9.87
20 10 75 29779 0.04 29779 0.00 0.00 3.68 0.00 1.39 0.00 0.44 0.00 091 5.31 21.50 5.31 3.94
Avg 13543 0.02 13543 0.00 0.32 5.41 0.32 1.55 0.32 0.44 0.32 1.39 1591 25.43 1591 5.01
25 3 25 3884 0.01 3884 000 041 5.16 0.41 1.89 041 0.63 041 1.86 34.23 7.80 34.23 3.20
25 5 25 6301 001 63.01 000 024 791 0.24 1.62 0.24 0.73 0.24 1.68 23.59 35.99 23.59 7.24
25 10 25 13429 0.01 13429 000 0.19 4.49 0.19 1.42 0.19 0.66 0.19 1.15 10.66 20.27 10.66 4.00
25 3 50 7439 003 7439 000 045 12.67 0.45 6.58 0.45 0.81 0.45 7.18 35.72 52.57 35.71 14.37
25 5 50 12788 0.02 127.88 0.00 0.31 12.38 0.31 3.51 0.31 0.71 0.31 3.60 25.06 85.20 25.08 20.13
25 10 50 25645 0.02 25645 0.00 0.00 11.24 0.00 1.75 0.00 0.73 0.00 1.23 10.98 60.98 10.99 17.12
25 3 75 8719 007 8719 0.00 046 54.57 0.46 42.07 0.46 0.88 0.46 21.49 30.31 80.56 30.31 22.51
25 5 75 15537 0.06 15537 0.00 0.86 2297 0.86 7.86 0.86 0.70 0.86 6.98 2293 122.87 2293 31.31
25 10 75 29884 0.05 298.84 0.00 0.28 42.17 0.28 1.93 0.28 0.78 0.28 1.61 11.07 91.47 11.12 31.12
Avg 13736 0.03 13736 0.00 0.36 19.29 0.36 7.63 0.36 0.74 0.36 5.20 22.73 61.97 22.74 16.78
30 3 25 4191 003 4191 0.00 0.19 12.16 0.19 413 0.19 1.23 0.19 4.50 37.40 16.90 37.40 7.46
30 5 25 6810 004 6810 0.00 0.20 20.86 0.20 3.31 0.20 1.01 0.20 3.49 33.05 55.19 33.04 15.61
30 10 25 133.05 0.04 133.05 0.00 0.16 20.25 0.16 1.75 0.16 1.01 0.16 1.53 14.09 65.79 14.10 17.79
30 3 50 739 004 7390 001 0.73 64.11 0.73 50.42 0.74 1.75 0.73 39.86 43.55 83.00 43.56 30.48
30 5 50 12064 0.05 120.64 0.00 0.04 27.11 0.04 11.32 0.04 117 0.04 10.93 31.42 163.19 31.38 60.97
30 10 50 24259 0.05 24259 0.00 0.05 47.13 0.05 3.28 0.06 1.05 0.05 2.70 17.37 179.19 17.30 87.92
30 3 75 9886 012 9886 0.01 1.07 496.64 1.07 456.88 1.11 1.96 1.07 13898 33.45 143.83 33.44 53.25
30 5 75 16751 0.08 16751 0.00 0.25 74.82 0.25 58.34 0.26 1.05 0.25 17.79 23.53 223.65 23.53 79.20
30 10 75 33706 0.09 337.06 0.01 0.23 32.14 0.23 4.56 0.23 0.84 0.23 3.09 13.53 221.99 13.56 104.73
Avg 14263 0.06 142.63 0.00 0.32 88.36 0.32 66.00 0.33 1.23 0.32 24.76 27.49 128.08 27.48 50.82
35 3 25 4794 0.09 4794 001 051 20.84 0.51 10.30 0.51 3.30 0.51 11.41 41.86 32.58 41.86 17.53
35 5 25 7542 006 7542 001 023 23.08 0.23 7.07 0.24 1.40 0.23 8.05 39.50 87.92 39.50 31.58
35 10 25 13516 0.03 13516 0.01 0.16 54.57 0.16 2.86 0.16 111 0.16 2.93 18.14 144.62 18.13 57.52
35 3 50 8115 004 8115 0.01 049 37756 049 34235 049 4.61 0.49 261.28 46.65 143.11 46.66 67.96
35 5 50 13357 0.04 13357 001 0.36 149.04 036 11959 036 1.59 0.36 63.66 37.17 266.52 37.16 125.57
35 10 50 24530 0.04 24530 0.01 0.15 47.62 0.15 6.74 0.15 1.02 0.15 5.73 21.11 331.66 21.10 167.77
3% 3 75 9813 016 9813 001 054 219290 050 202331 0.50 3.97 0.50 381.58 33.66 268.22 33.66 137.15
35 5 75 17340 014 17340 001 0.30 79243 030 689.64 0.31 1.93 0.30 13480 28.10 401.31 28.07 182.57
35 10 75 33582 0.3 33582 0.01 0.36 103.01 0.36 21.78 0.36 1.25 0.36 13.03 17.41 495.15 17.24 293.53
Avg 14732 0.08 14732 001 035 417.89 034 358.18 0.34 2.24 0.34 98.05 31.51 241.23 31.49 120.13
Ov.Avg 140.68 0.05 140.68 0.00 0.34 132.74 033 10834 0.34 1.16 0.33 32.35 24.41 114.18 24.40 48.18

3.7. Computational experiments 71

value a to [a], and correspondingly divided the solution value by 100 (thus
obtaining a valid upper bound on the optimal QKP solution);

e S-Lgr QPL CPLEX: Lagrangian bound L9(A) exploiting separability, with the
single QKP linearized through the MDRLT1 formulation with m = 1 and
solved through CPLEX;

e D-Lgr DRLT1 CPLEX: Lagrangian bound L®()) exploiting the decomposable
structure (see (i)-(ii) of Section 3.4.2) with single KPs solved through CPLEX;

e D-Lgr DRLT1 MT1R: Lagrangianbound LR(A) exploiting the decomposable struc-
ture (see (i)-(ii) of Section 3.4.2) with single KPs solved through MT1R [79].

Preliminary computational experiments showed that the exact solution of the linear
pseudo-MKP (point (ii) in Section 3.4.2), performed at each iteration of the bundle
procedure, takes a large computing time, so we replaced it with its LP relaxation
(solved through CPLEX). The entries in the table are the same as for Table 3.2. The
results indicate that:

* despite using optimal multipliers, the surrogate relaxation is very weak: it
takes very short CPU times, but the upper bounds are extremely loose;

¢ all Lagrangian relaxations provide much better bounds, although LR () is con-
siderably weaker than L9(A) (with D-Lgr DRLT1 MT1R requiring much smaller
CPU times than D-Lgr DRLT1 CPLEX);

e all versions of L9(A) are by far the best approaches:

- they produce an average gap of 0.34%, with individual gaps rarely ex-
ceeding 1%;

— their gaps are identical, with the only exception of S-Lgr QP Qknap due
to the non-optimal solution of the Lagrangian subproblems imposed by
quadknap, which can result in a suboptimal Lagrangian dual (for 7 in-
stances out of 180, its value is higher by one unit);

— Lgr QP CPLEX, which does not exploit separability, has the highest CPU
times;

— the second highest times are those of S-Lgr QP CPLEX, which solves the
single QKP Lagrangian subproblem through CPLEX on the standard quadratic
formulation. By linearizing the QKP through the MDRLT1 formulation,
S-Lgr QPL CPLEX reduces the computational effort by two thirds;

— the best approach is by far S-Lgr QP Qknap, which directly solves the
QKP through quadknap. It provides very tight upper bounds in short
CPU times, with a much smaller growth rate with respect to n than that
of the other L2(A) methods;

- by comparing the obtained upper bounds with the optimal solution val-
ues, it turns out that they are frequently identical: it happens for 94 in-
stances out of 180 (92 instances for S-Lgr QP Qknap).

72 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

Finally, Table 3.4 shows how the two best performing reformulations RLT1 and
MDRLT1, as well as three of our relaxations scale for larger values of n, up to 60. The
five groups, of two columns each, refer to:

TABLE 3.4: CPLEX solution and upper bounds for larger instances.
Average percentage gap and CPU time over 5 instances. Time limit: 1
hour (3 hours for CPLEX runs).

instance CPLEX-RLT1 CPLEX-MDRLT1 LP-MDRLT1 S-Lgr QP Qknap D-Lgr DRLT1MT1R

n m d %gap %gapL %gapU t(s) <%gap %gapL %gapU t(s) %gap t(s) %gap t(s) %gap t(s)

40 3 25 0.00 0.00 0.00 24762 0.00 0.00 000 191.6 4526 0.01 011 11.47 4423 34.24
40 5 25 472 027 443 95772 265 012 253 83681 4891 0.01 0.55 1.81 44.14 71.77
40 10 25 549 029 518 93086 0.00 000 000 20102 3523 0.02 043 059 2522 156.48
40 50 218 0.01 217 91540 832 0.04 828 10559.8 54.21 0.02 1.05 2530 51.79 129.77

50 11.12 224 8.67 107932 11.12 0.00 11.11 10800.0 46.99 0.02 1.03 339 4273 247.10
955 022 931 107929 6.60 0.04 6.56 93354 3212 0.03 0.83 071 2486 428.60
75 171 0.05 1.65 92652 881 020 859 10795.0 40.76 0.03 045 26.12 38.88 233.18
75 1113 0.66 10.41 10793.2 10.82 029 1049 107942 37.36 0.03 1.76 379 3384 310.38
75 823 131 6.84 10792.8 6.96 0.00 6.96 10794.8 25.19 0.05 0.70 0.67 19.53 43495

'S
o

= =

oW W
a1
o

Avg 601 056 541 92170 6.14 0.08 6.06 8183.2 40.67 0.02 0.77 821 36.14 227.39
45 3 25 391 062 325 8889.6 000 000 000 15488 5035 0.01 023 8392 49.53 61.97
45 5 25 11.78 189 9.69 10792.8 12.27 0.00 1227 10800.0 5536 0.01 0.68 10.12 5130 138.89
45 10 25 14.03 239 1135 10792.7 10.27 0.00 10.28 10800.0 38.67 0.02 0.45 091 2974 342.53
45 3 50 726 0.81 6.39 10117.3 16.17 0.00 16.17 10800.0 56.59 0.03 1.25 151.94 5457 236.79
45 5 50 17.64 277 1445 107929 19.00 0.00 19.00 10800.0 50.84 0.03 1.59 12.01 4734 413.74
45 10 50 1530 262 1237 107925 11.23 0.00 11.23 10800.0 35.22 0.04 1.31 1.27 2929 701.21
45 3 75 491 0.02 489 93548 12.09 0.13 11.95 10800.0 42.57 0.04 098 12574 41.00 395.29
45 5 75 1542 263 1243 107927 1293 0.00 1294 10800.0 38.83 0.04 1.84 1248 3621 533.15
45 10 75 13.81 2.02 1155 107923 11.16 0.00 11.16 10800.0 30.06 0.06 1.72 148 2464 854.63

Avg 1156 175 9.60 103464 11.68 0.01 11.67 97721 4428 0.03 112 4443 4040 408.69
50 3 25 10.05 1.98 791 107923 391 000 391 79778 5329 0.01 0.57 70210 52.61 172.38
50 5 25 1844 256 1552 10792.1 21.03 0.00 21.03 10800.0 62.60 0.02 2.00 4453 59.12 411.04
50 10 25 19.87 2.02 1751 10792.2 1551 0.00 1551 10800.0 46.75 0.03 1.48 261 37.67 977.58
50 3 50 13.94 1.81 11.92 107925 2423 0.00 2423 10800.0 59.71 0.04 1.24 1459.54 58.13 390.89
50 5 50 2433 265 21.16 107924 2886 0.12 28.70 10800.0 56.69 0.04 3.09 58.10 53.61 610.32
50 10 50 21.84 436 16.73 107923 17.82 0.00 17.82 10800.0 37.30 0.05 1.98 266 31.87 91993
50 3 75 1047 240 7.88 107924 1720 0.00 1720 10800.0 44.24 0.05 0.84 113435 4295 873.14
50 5 75 16.60 252 1370 107925 19.73 0.00 19.73 10800.0 42.59 0.06 259 7635 4038 1455.24
50 10 75 17.85 214 1541 10792.6 17.10 035 16.69 10800.0 35.77 0.08 3.94 432 31.11 2317.03

Avg 17.04 249 1419 107924 1838 0.05 1831 10486.4 48.77 0.04 197 387.17 4527 903.06
55 3 25 1291 213 1054 10796.4 9.29 0.08 921 10800.0 57.31 0.01 0.79 2527.69 57.13 169.40
55 5 25 2326 3.66 1889 10795.7 2892 0.00 2892 10800.0 69.31 0.02 137 183.96 66.30 389.81
55 10 25 2692 3.03 2321 10793.7 23.66 0.00 23.66 10800.0 51.07 0.03 2.52 327 4372 79373
55 3 50 19.81 215 1729 107964 35.11 0.11 3496 10800.0 67.15 0.05 3.88 3659.88 65.70 656.78
55 5 50 31.03 4.54 2534 10795.6 36.68 0.00 36.68 10800.0 62.47 0.05 3.52 33496 59.98 1019.73
55 10 50 27.17 287 23.61 10793.6 25,52 0.26 2520 10800.0 44.25 0.06 491 631 39.04 142240
55 3 75 1353 255 1070 10796.3 23.18 0.00 23.17 10800.0 46.56 0.07 1.15 3570.32 4546 1049.39
55 5 75 1638 1.67 1444 10795.6 2328 0.07 23.19 10800.0 42.76 0.07 226 207.63 40.89 1237.25
55 10 75 20.57 1.64 18.61 10793.5 21.29 023 21.02 10800.0 36.90 0.08 5.35 854 33.14 1581.45

Avg 2129 269 18.07 107952 2521 0.08 2511 10800.0 53.09 0.05 2.86 1166.95 50.15 924.44
60 3 25 1819 3.64 14.04 10795.7 18.67 0.00 18.67 10800.0 62.73 0.02 3.43 3682.17 62.54 415.61
60 5 25 33.09 733 2399 10794.7 3830 0.00 38.30 10800.0 76.75 0.03 1.73 1791.48 7411 1056.09
60 10 25 38.17 7.80 2816 10793.7 31.99 0.00 31.99 10800.0 58.47 0.05 329 1237 5191 228478
60 3 50 23.04 410 1820 10795.8 37.20 0.00 37.20 10800.0 67.25 0.06 593 3841.32 66.00 1033.00
60 5 50 3326 4.59 2742 107947 42.16 0.28 41.76 10800.0 65.77 0.06 4.01 1259.54 63.47 1798.34
60 10 50 32.69 3.60 2817 107935 31.13 0.01 31.11 10800.0 51.20 0.07 6.92 2376 46.63 1795.76
60 3 75 15.06 3.60 11.09 10795.6 25.10 0.00 25.10 10800.0 46.46 0.10 294 3735.64 4555 1990.74
60 5 75 2042 3.16 16.80 107949 2721 0.07 27.12 10800.0 44.87 0.09 3.48 1211.01 43.47 2031.27
60 10 75 2093 1.34 1932 10793.3 23.82 031 2344 10800.0 3825 0.13 6.66 1991 35.09 2214.12

Avg 26.10 435 20.80 10794.7 30.62 0.07 30.52 10800.0 56.86 0.07 4.26 1730.80 54.31 1624.41

Ov.Avg 1640 237 1361 10389.1 1841 0.06 18.33 10008.3 48.73 0.04 220 66751 4525 817.60

3.7. Computational experiments 73

* CPLEX-RLT1: Level 1 reformulation linearization by Sherali and Adams (Sec-
tion 3.2.2);

* CPLEX-MDRLT1: modified decomposable Level 1 reformulation (Section 3.1);
e LP-MDRLT1: LP relaxation of MDRLT1 (Section 3.1);

e S-Lgr QP Qknap: Lagrangian bound LY(A) exploiting separability, with the
single QKP solved through quadknap [109];

e D-Lgr DRLT1 MT1R: Lagrangianbound LR(A) exploiting the decomposable struc-
ture (see (i)-(ii) of Section 3.4.2) with single KPs solved through MT1R [79].

Since for most of these instances the optimal value is unknown, we ran CPLEX,
both for RLT1 and MDRLT1, with a time limit of three hours (instead of one our, as
for all other runs): the percentage gaps of the relaxations were thus computed with
respect to the best solution value z obtained by the two CPLEX executions. The %gap
and t(s) values have the same meaning as in the previous tables. For CPLEX-RLT1
and CPLEX-MDRLT1, two additional columns provide:

* ’gapL = average percentage gap of the lower bound L obtained within three
hours with respect to z, computed as 100 (z — L) /L;

* ’gapU = average percentage gap of the upper bound U obtained within three
hours with respect to z, computed as 100 (U — z) /z.

The table shows that the computing time for the three relaxations was generally
below one hour, apart from a few cases that took slightly longer for the Lagrangian
relaxation S-Lgr QP Qknap. The Lagrangian relaxation of the quadratic model still
provides fairly good bounds, if compared to the others. Yet, the computing time
of the bundle procedure may be rather large for n > 50. The bounds provided by
D-Lgr DRLT1 MT1R are pretty close to those found by LP-MDRLT1 despite a consider-
ably larger computational effort required by the bundle method. Considering the
size of gaps for the LP relaxation, it comes as no surprise that CPLEX cannot find
an optimal solution for most of the instances. The %gapL values confirm that the
MDRLT1 reformulation leads to a better CPLEX performance.

We finally mention that it turned out to be impossible to execute the experiments
with even larger instances, as already for n = 60 CPLEX required more than 30 GB of
memory to solve an instance. Observe that, in any case, the %gap values in the table
are still likely to overestimate the real gaps.

74 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

3.7.2 Multi-Start Iterated Local Search

General descriptions and Parameter Setting

TABLE 3.5: Best sets of parameters from Irace for MS-ILS

ID | maxPl | maxIter | maxStart | rl 2 r3 A | maxTry | tabuTenurey,s | M | tabuTenurese, | P
1 60 90 20 0.03 1 0.19 | 0.36 | 0.8 150 100 80 80 0.97
2 60 90 20 0.07 | 0.1 | 0.19 | 0.79 200 100 80 60 0.92
3 60 90 20 0.04 | 0.09 | 0.14 | 0.72 200 100 80 60 0.85
4 60 90 20 0.04 | 0.05 | 0.09 | 0.62 200 100 80 60 0.81
5 60 90 20 0.03 | 0.28 | 0.38 | 0.81 200 100 80 80 0.99

All the experiments were performed on a single thread of an AMD Ryzen 7 2700X
Eight-Core Processor running at 3.7 GHz with 64 GB RAM. The meta-heuristic was
programmed in C ++ using the code quadknap that was programmed in C in [109].
Finally, we used the classic instances of the literature available in http://cedric.
cnam.fr/soutif/QKP/QKP.html with size n = {100,200}, d = {25,75} and m =
{3,5,10}. Each group has five instances, globally obtaining 60 instances.

The MS-ILS was calibrated using Irace [78]. This framework iteratively and elitis-
tically searches for the best parameters using a predefined range (or set) for each MS-
ILS parameter. Each iteration of Irace updates the parameters, thus obtaining high
quality parameters. An instance was used for each group (globally 12 instances).
The details of the obtained parameters are shown in Table 3.5. The set of parameters
corresponding to ID = 1 has been used since it is the one that empirically obtained
the best results. The total duration of the calibration was 163944 seconds.

Comparison of results without time limit

The proposed algorithm is compared with four metaheuristics from the literature.
The first approach is an Iterated Responsive Threshold search (IRTS) presented by
[96]; also a Tabu-Enhanced Iterated Greedy Algorithm (TIG) presented by [94], a
Strategic Oscillation (SO) presented by [93], and finally a Hybridization of Tabu
Search (HTS) presented by [97] are considered. The results for the different meta-
heuristic presented in the Tables 3.6 and 3.7 are taken from [97]. However, a scale
factor was used with respect to the original computing times since the reported re-
sults are obtained in 15 seconds for n = 100 and 90 seconds for n = 200, but using a
computer with less computing power. The reported computing times (expressed in
seconds) are scaled with respect to our computer. The results of CPLEX 12.4, which
will not be analyzed due to their poor performance, are also added.

The MS-ILS metaheuristic approach is not compared with the matheuristic de-
scribed in section 3.6, because the latter requires (as shown in Tables 3.4 and 3.9)
long computing time to execute the bundle procedure for the instances with n > 50
(mainly when the number of knapsacks is small).

Tables 3.6 and 3.7 report, for each instance, the value of the best known solution
(BKS) and, for each metaheuristic algorithm, the following values:

* Max: value of the best solution found by executing 40 runs;

http://cedric.cnam.fr/soutif/QKP/QKP. html
http://cedric.cnam.fr/soutif/QKP/QKP. html

3.7. Computational experiments 75

* % Gap: percentage gap between BKS and Max;
e Avg: average value of the solutions found by executing 40 runs;
* Time: average computing time for each run.

MS-ILS appears to be competitive for the instances with n = 100. Our approach
is not better in solution quality (considering the maximum and average values)
than HTS and IRTS, which are the current best approaches in the literature, and are
extremely stable despite the stochastic component: HTS obtains an average value
equal to the best solution value in 20 of the 30 instances, and IRTS gets an average
value equal to the best solution value in 11 of the 30 instances. With respect to the
SO and TIG metaheuristics, MS-ILS finds a better maximum value for 5 instances;
it seems to be more competitive for the remaining instances, not having significant
gaps. Regarding the execution times, our algorithm does not manage to use the time
limit specified by the state-of-the-art algorithms, being competitive with all the ap-
proaches in the literature. Indeed, in the best case, MS-ILS uses an average of 2.03
seconds (for the 100.75.3 group), and in the worst case, it uses an average of 5.94
seconds (for the 100.25.3 group).

MIS-ILS obtains encouraging results for the largest instances of the literature
with n = 200 (see Table 3.7). The proposed algorithm is not able to obtain compet-
itive results with respect to HTS and IRTS. However, both algorithms lose stability
for this group of instances; HTS obtains an average value equal to the best solution
value in 8 of the 30 instances, while IRTS obtains an average value equal to the best
solution value in 2 of the 30 instances. Regarding SO and TIG metaheuristics, MS-
ILS finds a better maximum value for 2 instances. Regarding the computation time,
MS-ILS is three times faster in the best case (for group 200,75,3) and uses a similar
computation time in the worst-case (group 200,25,10).

A statistical comparison is performed between MS-ILS and the other metaheuris-
tics. Wilcoxon signed-rand test was applied to check the average performance of
each algorithm; the details are reported in Appendix B. Using two groups of in-
stances per number of items (n = {100,200}) to perform the analysis, MS-ILS fails
to have competitive performance, and in all hypothesis tests, the algorithm does
not prove to be better than any of the algorithms of the literature. Figures B.1 and
B.2 show two box plots for the average performance of each metaheuristic (see Ap-
pendix B).

3.7.3 Matheuristic Experiments

General descriptions and Parameter Setting

The thresholds for the proposed matheuristic were defined based on their perfor-
mance. The procedures executed after bundle procedure are fast, so the matheuris-
tic process is executed with different thresholds and the best value is selected. The
thresholds considered (i.e. selectThreshold for the Algorithms 15 and 16) are the fol-
lowing;:

e UBM: (1 +0.001) * UB

Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

76

TABLE 3.6: Computacional Results for the MS-ILS with the instances from [83] with n = 100

n d m 1] BKS MSLS HTS [97] TIG SO [93] IRTS [96] CPLEX 124
Max_ %Gap Avg. Time(s) Max_ %Gap Avg. Time(s) Max_ %Gap Avg. Time(s) Max_ %Gap Avg. Time(s) Max_ %Gap Avg. Time(s) LB UB_ Gap% Time(s)
100 25 3 129286 | 29286 0.00 29006.6 206 | 29286 0.0 29286.0 779 | 29286 0.00 29027.90 779 | 29286 0.00 29201.70 779 | 29286 0.00 29286.00 779 | 28077 5396323 922 1868.85
100 25 3 228491 28491 0.00 28087.0 794 | 28491 000 28491.0 779 | 28491 0.00 28470.70 779 | 28491 0.00 28488.32 779 | 28491 0.00 28491.00 779 | 28169 5294222 879 1868.85
100 25 3 3[27179 | 27164 0.06 268944 564 | 27179 0.00 27179.0 779 | 27095 031 27015.90 779 | 27179 0.00 2717520 779 | 27179 0.00 27179.00 779 | 26492 5101072 926 1868.85
100 25 3 428593 | 28556 0.3 282585 733 | 28593 0.00 28593.0 779 | 28593 0.00 28593.00 779 | 28593 0.00 28580.75 779 | 28593 0.00 28593.00 779 | 27793 5338260 92.1 1868.85
100 25 3 527892 | 27830 022 277219 671 | 27892 0.00 27892.0 779 | 27892 0.00 27885.33 779 | 27892 0.00 27821.98 779 | 27892 0.00 27892.00 779 | 27058 5308361 96.2 1868.85
Avergage 2826540 0.08 27993.65 5.94 | 2828820 0.00 28288.20 7.79 | 2827140 0.06 2819857 7.79 | 2828820 0.00 28253.59 7.79 | 2828820 0.00 28288.20 7.79 | 27517.80 5287648 92.19 1868.85
100 25 5 122581 | 22581 0.00 223463 251 | 22581 000 225792 779 | 22413 074 2227398 779 22509 032 2240350 779 22581 0.00 22530.68 779 | 21194 5578457 1632 1868.85
100 25 5 2[21704 | 21566 0.64 214049 491| 21704 0.00 21687.9 779 | 21678 012 21648.00 779 | 21678 012 2162243 779 | 21704 0.00 21667.00 779 | 20725 54647.80 1637 1868.85
100 25 5 321239 21101 0.65 21003.1 444 | 21239 000 21239.0 779 | 21181 027 21099.30 779 | 21188 024 21153.00 779 | 21239 000 2123595 779 | 19674 5261427 1674 1868.85
100 25 5 422181 | 22003 0.80 219194 736| 22181 0.00 221810 779 | 22181 0.00 2218042 779 | 22181 0.00 22164.32 779 | 22181 0.00 22180.90 779 | 20644 55098.88 1669 1868.85
100 25 5 5[21669 | 21562 049 213058 429 | 21669 0.00 21669.0 779 | 21669 0.00 21663.85 779 | 21669 0.00 21567.00 779 | 21669 0.00 2165642 7.79 | 20054 54887.58 1737 1868.85
Avergage 2176260 052 21595.88 470 | 2187480 0.00 2187122 7.79 | 2182440 023 217731 7.79 | 2184500 0.4 21782.05 7.79 | 2187480 0.00 2185419 7.79 | 2045820 54606.62 16698 1868.85
100 25 10 116221 16187 021 160145 306 | 16221 0.00 162018 779 16157 039 16057.60 779 16065 096 15996.83 779 16221 000 1620053 779 | 14804 5771044 289.8 1868.85
100 25 10 2[15700 | 15612 0.56 154752 348 | 15700 0.00 15700.0 779 | 15700 0.00 15557.68 779 | 15617 0.53 15446.40 779 | 15700 0.00 15665.65 779 | 14191 5629400 296.7 1868.85
100 25 10 3| 14927 | 14798 0.86 1461438 319 | 14927 0.00 14892.0 779 | 14832 0.64 14736.23 779 | 14760 112 14648.43 779 | 14927 0.00 14852.00 779 | 13560 5427415 3003 1868.85
100 25 10 4| 16181 | 16145 022 15967.8 331| 16181 0.00 16181.0 779 | 16181 0.00 16168.50 779 | 16159 014 16082.68 779 | 16181 0.00 16181.00 7.79 | 14630 5687167 2887 1868.85
100 25 10 5[15326 | 15182 094 15066.7 349 | 15326 0.00 15326.0 779 | 15280 0.24 15189.45 779 | 15196 0.85 15094.89 779 | 15326 0.00 15293.00 779 | 14142 56609.11 300.3 1868.85
Avergage 15584.80 056 15427.78 331 15671.00 0.00 15660.16 7.79 | 15631.80 0.25 15541.89 7.79 | 1555940 0.72° 15453.85 7.79 | 15671.00 0.00 15638.44 7.79 | 1426540 56351.87 29516 1868.85
100 75 3 169977 | 69977 000 697368 139 69977 000 69977.0 779 69935 006 69935.00 779 69935 006 69935.00 779 69977 000 69977.00 779 | 69010 15754351 12829 1868.85
100 75 3 2[69504 | 69462 0.06 692074 223 | 69504 0.00 69504.0 779 | 69504 0.00 69504.00 779 | 69504 0.00 69497.40 779 | 69504 0.00 69499.60 7.79 | 68157 158390.17 132.39 1868.85
100 75 3 3[68832| 68832 0.00 687429 117 | 68832 0.00 68832.0 779 | 68832 0.00 68816.20 779 | 68832 0.00 68813.00 779 | 68832 0.00 68832.00 779 | 67681 15739507 132.55 1868.85
100 75 3 470028 | 69879 021 69725.1 346 | 70028 0.00 70028.0 7.79 | 70028 0.00 70028.00 7.79 | 70028 0.00 70028.00 7.79 | 70028 0.00 70028.00 779 | 69717 154667.08 121.85 1868.85
100 75 3 5|69692 | 69596 0.4 694743 191 | 69692 0.00 69692.0 779 | 69692 0.00 69681.30 779 | 69692 0.00 69652.22 779 | 69692 0.00 69692.00 779 | 68638 16039328 133.68 1868.85
Avergage 6954920 008 69377.29 2.03 | 69606.60 0.0 69606.60 7.79 | 6959820 0.01 69592.90 7.79 | 6959820 0.01 69585.12 7.79 | 69606.60 0.00 69605.72 7.79 | 68640.60 15767782 129.75 1868.85
100 75 5 149421 | 49240 037 491739 184 49421 000 494210 779 | 49421 000 49295.60 779 49363 012 4923883 779 | 49421 000 4936598 779 | 48270 161306.19 23417 1868.85
100 75 5 2[49400 | 49315 017 491337 203 | 49400 0.00 49386.0 779 | 49360 0.08 49266.80 779 | 49320 016 49226.60 779 | 49365 0.07 49350.60 779 | 48643 16265444 23438 1868.85
100 75 5 3[48495| 48495 0.00 483585 203 | 48495 0.00 48495.0 7.79 | 48495 0.00 48474.20 7.79 | 48495 0.00 48360.85 779 | 48495 0.00 48495.00 779 | 44474 16140385 26292 1868.85
100 75 5 450246 | 50084 0.32 49979.0 224 | 50246 0.00 50246.0 779 | 50246 0.00 49966.60 779 | 50246 0.00 50124.20 779 | 50246 0.00 50141.50 779 | 48756 159342.88 22682 1868.85
100 75 5 5|48753 | 48650 0.21 483882 228 | 48753 0.0 48753.0 779 | 48752 0.00 48735.20 7.79 | 48752 0.00 48718.38 7.79 | 48753 0.00 48749.10 779 | 47286 16470144 24831 1868.85
Avergage 49156.80 021 49006.62 2.08 | 49263.00 0.00 49260.20 7.79 | 4925480 0.02 49147.68 7.79 | 4923520 0.06 49133.77 7.79 | 49256.00 0.01 49220.44 7.79 | 4748580 161881.76 241.32 1868.85
100 75 10 130296 | 29980 1.04 297914 354| 30296 0.00 302324 779 | 30138 052 29900.84 779 30018 092 29897.80 779 30296 0.00 30240.20 779 | 28124 16578237 48947 1868.85
100 75 10 2 [31207 | 31009 0.63 30879.4 316 | 31207 000 31056.7 779 | 31092 037 30969.15 779 | 30973 075 30914.00 779 | 31207 0.00 3109580 779 | 29436 167227.44 468.11 1868.85
100 75 10 3[29908 | 29657 0.84 294932 320 | 29908 0.00 29896.3 779 | 29812 032 29662.00 779 | 29765 048 29638.80 7.79 | 29908 0.00 29894.75 7.79 | 27340 165637.23 50584 1868.85
100 75 10 431762 | 31476 090 313035 332| 31762 0.00 317109 779 | 31672 028 31491.82 779 | 31634 040 31481.30 779 | 31762 0.00 31706.50 779 | 27916 16375949 486.62 1868.85
100 75 10 530507 | 30165 112 300042 3.32| 30507 0.00 30450.9 779 | 30188 1.05 30046.10 779 | 30348 052 3005542 7.79 | 30507 0.00 30458.50 7.79 | 27003 16899247 52583 1868.85
Avergage 30457.40 091 3029430 3313073600 0.00 30669.44 7.79 | 3058040 051 30413.98 7.79 | 30547.60 0.61 30397.46 7.7930736.00 0.00 3067915 7.79 | 27963.80 16627980 49517 1868.85

77

3.7. Computational experiments

U9 6€°419 947101499 08°€CIE6 UL 1€7789601 S1°0 07 166601 | TL IV 64496801 1870 0% 192601 | TLIY. 66191601 1970 0T 187601 | TL IV 9008601 €00, OFTII0LL | I€°€T $9°44€801 60°T 097256801 a8eSioay
WY TTS8S SOTHRIL 88786 LY 00LFE9TL 000 60ELIL | TL9F O0'IE09TL 980 S6T9LL | <L9% 00'9929LL 0S0 Ses9LL | TZ9% OF69LL LI'0 OLLZIL | OE9T '8SSSIL PI'T S/6SIT | 60EZIT | OL SL 00T
w9 ST8EY PRIFEESY 08588 Wy S5IS886 0T0 90166 WY S6688L6 €0T S8T86 w9 €661286 9L0 9586 w9 £05886 000 60€66 9U9z L6 FPL SL8L6 60666 | ¥ OL SL 00C
w9y SE609 F86£CTLY 89LF6 L9 00°£9€PIT €20 96SP1L TwL9Y 00°Z1LETT ¥L°0 LOOPIT w9t 00°0€6€TT - ¥S0 LETPIT UL 66SF1T 000 098¥11 09°0T T9S0ETT wl €SPELT 098FIT | € 0L SZ 00T
LI SSPS9 €O9PSLI9 69788 TL9Y O0LEPSOL FL'O LOSSOL | TL9F O0ZP6FOL 990 09TS0L | TZ9F O0F90SOT 290 L6ZSOL | TZ9% 00890 000 6601 | €6T€ P'IIEWOL 80 T90SOT | 6G6SOT [T OL SZ 00T
TLIY 65968 90'6E£6999 FISS6 TL9Y 00'608TIL 910 6EIETL | T/9% O0'8STTIL /L0 LSWTLL | Tl9% O00EETIT €90 T6TIL | TZ9% T90ELT 000 BTEETl | /GTc TSTSUIL T80 86ETll | WTEEIT |1 OL SL 00T
U9 €TY6C LP'1SE9599 08804991 | TL9Y 009%2I8L 200 09087181 | TLIY 00706081 8T°0 00 ISTISL | TLI9Y. 07280181 210 0CFOCI8L | TLIY 0F'8CFISL 0070, 09°TISISL | T8'ST TUFL96L1 S9°0 09°€7€08T a3eSoay
G8'9981 €C'EST 00FE8S99 SG9ELL | TL9F 00LITE6L 000 OLEE6L | TL9F 00'9E8T6L 60°0 SELE6L | cL9F 007TO0S6L €00 SSTe6l | TL9% €976l 000 OLEE6l | 89T LTLLI6L THO 86¥e6L | OIES6L |[§ S SL 00T
SY'9981 LE'COE SCTILEVY LOSSSL | TL9Y O0LPL99L 600 066991 | TL9F 009KT99L €E0 F8S99T | TL9F 00SP99L 610 TE899L | TL9F 16991 000 THILOL | 6T0S FSLWIL 860 00S9T | THILIL [S SL 00T
689981 88°G/T SLOSEI99 EF6SLL | TL9F O0'PL998L 000 PL9SL | TL9F 00TSE98L 800 619981 |29y 00L0S9SL SO0 ¥Z998L | TZ9% TEL981 000 T8L98L | L0P T'SIISSL 0S0 6€8S8T | PZ/981 |€ S SL 00T
G8'9981 9G'80E SO'9P09S9 LZSO9T | TL9F 00'SS9PLL 000 9E8PLL | TLOF OOSPVRLL 60°0 TBORLL | TL9Y O0THOVLL €00 9LLWLL | TL9F 9ESRLT 000 9€8PLI | ILST €6FEELL TS0 SE6ELT | 9€SWLL [T S SL 00T
S8'9981 86T SLFSLPS9 6ISKIL | TL9 O0'BOGYSL 000 €6VSSL | T49F O0'TROFST €E0 T8SKST | TL9F O0WLLYSL LTO ¥86YSL | TL9F €PPSST 000 €6FSSL | TH9c T'OSEEBL €80 9v6E8T | €6VS8I |1 S G4 00T
G8'9981 THSSL00'689P9 OV IZSEST | 2£9% 0T998P9T 000 OTEE6VIT | T49% 08'19/F9C 1000 08'S06FIT | L9 09'€ESYIT 100 OO'LI6WIT | 2£9% OFE06PIC_ 000 OTEE6YIT | T9SL 6V FEvede 0£0 000EIFIT 28y
G8'9981 SLTPL 99860559 6L60LT | TL9F 000LS6/C 000 8696/ | TL9F 00'86S6LC 000 86S6/T | TL9F 00'86S6/C 000 86S6/C | TL9F 86S6/C 000 8696/ | V6L SOE9LLZ 6S0 6S6LLT | 8656/Z | S € SL 00T
S8'9981 68'8L1 OCLI9EEY €61LCT | TL9Y O00LL89VT 000 €669¥C | TL9F 00'SSS9%C P00 T889%T | TL9F O0S99FT FO0 T889FT | TL9F I889T 000 €669¥C | [T9L SVEISKT S0 OEI9T | €669%C | ¥ € SL 00T
G8'998L 6TLPL TGOS86V9 908T9T | TL9F 009T669T 000 6900 | TL9F 00'ST00LC 000 69004 | TL9F 00°6900C 000 6900ZC | TLIF 69004 000 69004 | OLSL L€9989T STO 6I€69T | 6900/ | € € SL 00T
689981 80091 SE'BPESH9 6EISHT | TL9P O0'ELTLST 000 88TLST | TL9F O0TE69ST 000 LLTLST | TL9Y 00'660/SC 000 — 88TLST | TL9F $8TLST 000 8STLST | B'ST ST8P9ST 000 LLTLST | $8ULST|T € SL 00T
S8'9981 60'6VL /8'66VPY9 OF/8ST | T9% 00'S890/2 000 8I/0/ | TL9F 0046904 000 SI/0/T | TL9% 00'IZ0/T 000 81/0/T | TL9% 1890/C 000 8IZ0/T | 66T ST9T69T 8TO €96697 | 810/T |1 € SL 00T
88981 68'€Th $9'C048CT 00F69¢€y | TL Y 69700€S 100 0F0F1ES | TLIY 1€1S61S 49T 08'65TCS | TLIY. 1T 192Ts. It 0299528 | TL9Y TF0662S 0070 08FF1ES | €6°0F 9LF561S 05T 0205€29 a3eSoay
G8'9981 GSIF I8SHO9TC LFSER WY FTTESES 000 TT9ES WY OUS6ETS 16T 9658 W9y 8E9S8TS €50 LEEES T TS09ES 000 TT9ES 90V T89S S60 OLIES 12966 | S 01 Sc 00C
S8'9981 T8PF TL'80ISTC S09TH WY 0TSLIS 100 L6TIS w9y T8TO00S I8T L1LE0S w9y 0978208 ¥ LLS08 W 9L60IS 000 TOEIS VESH GTHO6Y 68T 0£E0S 20EIE | ¥ 0L ST 00C
6988981 8'GIF PLIL6LIC LSIFF U9 878855 €00 199¢S TwUL9Y 8T €8¥CS 99T 1¥8Cs g 6¥'16428 6T1 98629 U9 8T65ES 000 8L9¢€S L9LE §91¥TS v 1628 849¢€S € 0L ST 00T
S8'9981 80V 19'6SOIEC PLLSH LY ST99HS 000 0E8HS Ty 0TTESES €ET TOTHS LY OELLOVS 860 06THS T L6ESKS 000 0€8FS 1666 S9T8€s TET SOTFS 0€8¥S | T 0L ST 00T
S8'9981 T'SEV TE/SEOET PSOEK TL9 0G'8SIZS 000 €62CS TLY E6EROIS ELT 68EIS TL9Y OV'S6TIS FE'L T6SIS L9 SPIIS 000 €62CS ¥PSY T8IS0S 16T ¥6CIS €67¢6 |1 0L ST 00T
SS'9981 L9'STT 1GLSSFTC OVTI069 | 249% L0'€S89L 000 08'6889Z | TL9F 66009, €80 00'SST9L | ¢L9% 619809 080 OVISCOL | 249% SV/€89Z 000 08'6889L | €06 LO'SE6SL TLO OSFEEIL 280y
S8'9981 61T SI'9S0CTC £0569 W TILESIL 000 O199L WY 066C8SL SLO LE09L WY PUS06SL T90 LETIL W LL099L 000 O199Z 18ST 69LSL L80 FH6SL 01992 | & € ST 00C
S8'9981 GGET 9L'6SSETT 0169 WY 6TI0PL 000 OFIFL TwIY O0'SO0EL 660 SOFEL Wy OvEserL STl 68IEL WY THWORL 000 OFIFL 667¢ L1€8TL 60T SEEEL oFIFL | ¥ S ST 00C
G8'8981 L'8IT S0T88ETT 6STOL U9 S6'8208Z 000 €P08L TUL9Y T80LSLL Sto S69LL g 8G°0TLLL €0 S6LLL U9 0°¢P08L 000 €F08L G8°9C 6T9TLL 06°0 TVELL €F084 € 9§ 9T 00T
689981 SSIT OET6/9TC 9L8IL LY OVETO08 000 €008 WY OVIREL 0L0 ELF6L LIy EE6SVEL TS0 B096L LY 0EE008 000 €008 V69T L6606 SSO 96S6L €6008 |T € ST 00T
S8'9981 €'GET 0E'8619TC 9PL9 TL9Y OU'BSSSL 000 €795L TL9Y TR6SEVL LTL S99%L L9y TEI9ERL FTL T89%L T G6LFSL 000 €T95L L6T€ €T08h. TTO_ 8SWSL €954 |1 € ST 00t
S8'8981 I¥'9TL S9°0SF0CT 00°6£5L6 UL 0T°€£TE0T 1070, 0F°'S8TE0T | TLIY 0€°€5£201 TTO 0F TZ0€0T | TL9Y. 96'5£9201 TS0 00'994201 | TL9Y 0F'692€01 000, 00°€62E0T | €£4T 08'80¥201 €70 00°€5820T a3eSay
S8'9981 L6IL 06F6LLIC 8I8H6 TL9% 000IEZOL 000 TIECOL | TL9% 00T6LIOL O #80COL | ¢L9% 00°ZZ8TOL OE0 666101 |29 OTIECOL 000 LIECOL | €641 S6IZIOL 920 [FOCOL | LIECOL [§ € ST 00T
S8'9981 SFEL LO'SLI6IT €69€6 L9 00860001 FO'O 860001 | TL9F 0S0LI66 8GO 65566 L9y 089886 €Il 00066 9% 0'€0I00L 000 9SI00L | T6FC ¥'88€86 €Il 20066 9€100L | ¥ € ST 00C
G8'8981 €Tl 8076461C F1T86 UL 006SSF0T - 000 68SF0T TwUL9Y 00°99€70T SO0 8ESFOT g 00°sHFPOT SO0 TESHOT U9 0645701 000 68SF0T €961 es6£0T eral 62€F0T 68SF0T | € € ST 00T
G8'9981 FOLL €6LE6TCC 8L6SOL | TL9F 00'BS6L0L 000 8S6/0L | TL9F 00°€99Z0T 000 $S6/0T | TL9Y O0FISLOL €00 LT6LOL | TL9F 0'8S6/0T 000 8S6/01 | 06T P09l SO0 T06Z0T | 89601 [T € ST 00T
S8'9981 S'EET 9TISOTTT T66Y6 TL9% O0TFPIOL 000 IZPIOL | T/9% 00'9/£00L STO _ SITIOL | T/9% 00Z0ZOOL 80T TZE00L | TZ9% 0'96EI0T 000 IZFIOL | 0641 ¥'9/€00L Z¥'O T6600L | IZPIOT |1 € ST 00T
(s)pung, %den gn a1 (s)ouny, Say deny, xey (s)owry, Bay deny, xey (s)owny, Bay deoy, xew (s)ouny, Say deny, xey (s)owny, Bay deoy, xey

PTLXATID [96] SI¥T [g6] 08 OIL Iz6] S1H SIS s |1 w p u

00T = ¥ YIIm [g]] W1y sadueIsur sy} Ym SI[-SIA 943 10§ sinsay Teuonendwo)) :/°¢ 319V]

78 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

UBM: (1 + 0.01) * UB

UBM: (1 + 0.02) * UB

UBM: UB + 1.0

UBM: UB + 2.0

Where UB is the Upper Bound associated with the candidate QKP solution used
within the matheuristic process.

Variants of the presented algorithms arise when the processes are executed us-
ing different time limits. First, the quadknap function is bounded with a QTL time
limit for the execution of the Lagrangian process; that is, each iteration of the bun-
dle procedure can take a maximum time equal to QTL. Second, the global time for
the execution of the bundle procedure can be limited with a time limit equal to BTL.
From this perspective, we define QTL={3,5} seconds and BTL={100,300,500} sec-
onds.

A variant of Algorithm 15 is presented. The current stopping criterion of the
matheuristic is satisfied when the generated solution is inside the tabu list. How-
ever, an alternative execution is presented with a new stopping criterion. Specifi-
cally, at line 18, the matheuristic is stopped if all the values in g are negative and if
the algorithm has been executed a specific number of iterations. The results of this
variant are shown in the tables 3.8 and 3.9 with the suffix scit (stop criteria using
iterations).

The experiments were performed on a single thread of Intel(R) Core(TM) i7-
8700K CPU @ 3.70GHz with 32 GB RAM (characteristics similar to those of the sys-
tem used for the BP algorithm by [101]).

Two groups of instances were used. The first group considers the instances
presented by [101], with the number of items n = {20,25,30,35}, densities d =
{25,50,75} and m = {3,5,10}; each triple (n, d, m) has five instances. The second
group was described in the previous sections and published in [59], with the number
of items n = {40,45,50,55,60}, densities d = {25,50,75} and m = {3,5,10}, each
triple (n,d, m) has five instances.

Comparison

Tables 3.8 and 3.9 show a comparison of the proposed matheuristic with the Branch
& Bound (B&B) algorithm presented in [119]. This algorithm is available at https://
sites.google.com/view/kfleszar/research and was executed for all the instances
with a time limit of one hour. The considered versions of the proposed matheuristic
correspond to the pairs (BTL,QTL)= (100,3), (100,5), (300,3), (300,5), (500,3), (500,5),
and to the variant of Algorithm 15 denoted as scit (with BTL=500). The values of
BTL and QTL are expressed in second.

Tables 3.8 and 3.9 report, for each triple (m,m,d) and for each algorithm, the
averages (computed with respect to the five instances of the triple) of the following
values;

¢ Value: value of the best solution found (or value of the upper bound for the
bundle procedure);

https://sites.google.com/view/kfleszar/research
https://sites.google.com/view/kfleszar/research

3.7. Computational experiments 79

¢ Time: computing time (expressed in seconds);

e Gap %: percentage gap between the solution value of the Branch & Bound
(B&B) algorithm and the best solution value found by the matheuristic.

For the Bergman instances (with n < 35), the matheuristic is competitive in terms
of solution values and computing time with respect to B&B. There are no significant
differences in time and quality of solution for the different versions of the matheuris-
tic for this group of instances, indeed, the matheuristics find the optimal solution for
13 out of 36 triples of instances regardless of the time limit used. The matheuristic
(5600,scit) finds optimal solution in 21 out of 36 triples in much shorter times than
B&B. For example, for the triple (35,50, 5), B&B finds the optimal solutions with an
average time 1412.79 seconds, while the matheuristic (500,scit) takes on average 4
seconds.

For the instances in [59] (n > 40), the matheuristic is competitive in result quality
and vastly superior in computational time. Table 3.9 shows that B&B reaches the
time limit of 1 hour for most of the instance triples. The versions of the matheuristic
with smaller time limits worsen their solution quality in many instances, but not
in a significant way. For specific instance triples, the matheuristic versions with
smaller time limits may have large % gaps with respect to B&B (4.06 % gap for triple
(60.25.5)), but the average & gap of the total set of instances (that is, the average of
the average gaps) does not reach 1% in any case. The matheuristic version (500,5)
found the average best known solution (BKS) on 8 out of 45 triples. The matheuristic
version (500,scit) finds good results in this set of instances, but with a longer time
than the other versions. This metaheuristic version finds the average best known
solution in 14 out of 45 triples in much shorter times than B&B.

A comparison with the metaheuristics proposed in the literature is not performed,
since no computational results obtained by these metaheuristics are reported for in-
stances (having values of n in the range {20, ..60}) considered in this section.

Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

80

TABLE 3.8: Average values over the 5 instances of each triple (n,m,d) for the Bergman Instances.

Branch & Bound | Bundle BTL=3600sg | Matheuristic (100,3) Matheuristic (100,5) Matheuristic (300,3) Matheuristic (300,5) Matheuristic (500,3) Matheuristic (500,5) i Matheuristic (500,scit)

n d m | Value Time | Value Time | Value Gap % Time | Value Gap % Time | Value Gap % Time | Value Gap % Time | Value Gap % Time | Value Gap % Time | Value Gap % Time
20 25 3 22892 0.03 | 22955 0.04 || 2282.8 031 0.10 | 2283 031 0.10 | 2282.8 031 0.10 | 2282.8 031 0.11 | 2282.8 031 0.10 | 2282.8 031 0.10 || 2289.2 0.00 1.08
20 25 5| 19162 0.07 | 1918.31 0.04 || 1905.4 048 0.08 | 1905 048 0.08 | 1905.4 048 0.08 | 1905.4 048 0.08 | 1905.4 048 0.08 | 1905.4 048 0.08 1911 023 046
20 25 10 1199 0.01 | 1199.09 0.04 1199 0.00 0.07 | 1199 0.00 0.07 1199 0.00 0.07 1199 0.00 0.07 1199 0.00 0.07 1199 0.00 0.07 1199 0.00 0.82
20 50 3 3079.8 0.09 | 3093.8 0.05 || 3079.8 0.00 0.08 | 3080 0.00 0.08 | 3079.8 0.00 0.08 | 3079.8 0.00 0.08 | 3079.8 0.00 0.08 | 3079.8 0.00 0.08 | 3079.8 0.00 0.30
20 50 5 2296.6 0.21 | 2297.21 0.05 || 2296.6 0.00 0.12 | 2297 0.00 0.12 | 2296.6 0.00 0.12 | 2296.6 0.00 0.12 | 2296.6 0.00 0.12 | 2296.6 0.00 0.2 | 2296.6 0.00 0.88
20 50 10 1427 0.01 | 1433.68 0.04 1427 0.00 0.08 | 1427 0.00 008 | 1427 0.00 008 | 1427 0.00 008 | 1427 0.00 0.08 | 1427 0.00 0.08 1427 0.00 1.06
20 75 3| 3553.8 0.17 | 3592.79 0.05 || 3522.8 0.84 0.08 | 3523 084 0.08 | 3522.8 0.84 0.08 | 3522.8 0.84 0.08 | 3522.8 0.84 0.09 | 3522.8 0.84 0.09 | 3543.8 027 031
20 75 5| 2640.6 0.16 | 2654.26 0.05 || 2640.6 0.00 011 | 2641 0.00 0.11 | 2640.6 0.00 0.11 | 2640.6 0.00 0.11 | 2640.6 0.00 0.11 | 2640.6 0.00 0.11 | 2640.6 0.00 091
20 75 10| 1639.6 0.02 | 1639.6 0.04 || 1639.6 0.00 0.07 | 1640 0.00 0.07 | 1639.6 0.00 0.07 | 1639.6 0.00 0.07 | 1639.6 0.00 0.07 | 1639.6 0.00 0.07 | 1639.6 0.00 0.80
25 25 3| 30024 0.20 | 3014.6 0.11 || 2999.4 0.10 0.6 | 2999 010 0.17 | 2999.4 010 0.16 | 2999.4 010 0.17 | 2999.4 0.10 0.16 | 2999.4 0.10 0.7 | 2999.4 010 0.69
25 25 5 2559 0.67 2566 0.09 2559 0.00 0.14 | 2559 0.00 0.15| 2559 0.00 0.14 | 2559 0.00 015 | 2559 0.00 015 | 2559 0.00 0.15 2559 0.00 092
25 25 10| 1781.2 0.08 | 1784.4 0.08 || 1773.8 044 023 | 1774 044 023 | 17738 044 023 | 1773.8 044 0.23 | 1773.8 044 023 | 1773.8 044 023 | 17738 044 1.30
25 50 3 4275 1.07 | 42952 0.15 || 4267.8 017 023 | 4268 017 0.22 | 4267.8 017 0.22 | 4267.8 017 0.22 | 4267.8 0.17 0.22 | 4267.8 017 022 4275 0.00 0.79
25 50 5| 32728 2.49 3283 0.10 || 3272.8 0.00 015 | 3273 0.00 0.5 | 3272.8 0.00 0.16 | 3272.8 0.00 0.15 | 3272.8 0.00 0.6 | 3272.8 0.00 0.16 | 3272.8 0.00 1.06
25 50 10 | 2093.2 0.14 | 2093.2 0.07 || 2093.2 0.00 0.13 | 2093 0.00 0.12 | 2093.2 0.00 0.13 | 2093.2 0.00 0.13 | 2093.2 0.00 0.13 | 2093.2 0.00 0.2 | 2093.2 0.00 1.36
25 75 3 5155 346 | 5178.8 0.22 || 5126.2 057 031 | 5126 057 031 | 5126.2 057 031 | 5126.2 057 031 | 5126.2 057 031 | 5126.2 0.57 031 | 5151.6 0.07 0.89
25 75 5| 37748 599 | 3807.6 0.14 || 3728.8 122 023 | 3729 122 02337288 122 02337288 122 02337288 122 0.24 | 3728.8 122 023 || 37748 0.00 1.38
25 75 10 | 24202 0.16 2427 0.11 || 2416.2 017 0.17 | 2416 017 0.17 | 2416.2 017 0.17 | 2416.2 017 0.17 | 2416.2 017 0.17 | 2416.2 017 017 | 24174 012 1.61
30 25 3| 41948 0.73 | 4203.4 0.32 | 4162.4 0.79 047 | 4162 0.79 047 | 41624 0.79 047 | 4162.4 0.79 046 | 4162.4 0.79 046 | 4162.4 0.79 046 | 4194.8 0.00 140
30 25 5| 35504 6.51 3558 0.18 | 3537.6 038 028 | 3538 0.38 028 | 3537.6 0.38 028 | 3537.6 0.38 028 | 3537.6 0.38 0.29 | 3537.6 0.38 0.29 || 3550.4 0.00 1.66
30 25 10 || 25584 10.86 | 2562.4 0.15 || 2558.4 0.00 026 | 2558 0.00 026 | 2558.4 0.00 0.26 | 2558.4 0.00 026 | 2558.4 0.00 026 | 2558.4 0.00 0.26 | 2558.4 0.00 244
30 50 3| 5858.6 19.10 | 5903.4 0.69 || 5819.4 0.67 094 | 5819 0.67 094 | 5819.4 0.67 095 | 5819.4 0.67 095 | 5819.4 0.67 095 | 5819.4 0.67 095 | 5850.8 013 197
30 50 5| 4609.4 21.39 | 4611.2 0.23 || 4609.4 0.00 0.34 | 4609 0.00 0.34 | 4609.4 0.00 0.34 | 4609.4 0.00 0.34 | 4609.4 0.00 0.34 | 4609.4 0.00 033 | 4609.4 0.00 158
30 50 10 | 2963.2 6.35 2965 0.16 || 2963.2 0.00 027 | 2963 0.00 0.27 | 2963.2 0.00 0.27 | 2963.2 0.00 0.27 | 2963.2 0.00 0.27 | 2963.2 0.00 0.27 | 2963.2 0.00 2.34
30 75 3| 7210.2 42.82 | 72912 0.83 || 7209.4 001 115| 7209 0.01 116 | 7209.4 0.01 116 | 7209.4 0.01 115 | 7209.4 0.01 116 | 7209.4 0.01 116 || 7209.4 001 243
30 75 5 5362 30.57 5376 0.22 5362 0.00 033 | 5362 000 033 | 5362 0.00 033 | 5362 000 033 | 5362 0.00 033 | 5362 0.00 033 5362 0.00 158
30 75 10 | 32834 216 | 32922 0.12 || 3264.2 0.62 023 | 3264 0.62 0.22 | 3264.2 0.62 0.23 | 3264.2 0.62 0.22 | 3264.2 0.62 0.23 | 3264.2 062 0.22 3281 0.08 1.70
35 25 3| 52778 10.74 | 5304.4 1.98 || 5259.2 037 272 | 5259 037 271 | 5259.2 037 271 | 5259.2 037 271 | 5259.2 037 271 | 5259.2 037 271 | 5272.4 011 416
35 25 5 4463 87.35 | 4473.4 0.44 | 4453.2 0.23 0.66 | 4453 023 0.67 | 4453.2 0.23 0.67 | 4453.2 0.23 0.66 | 4453.2 0.23 0.67 | 4453.2 0.23 0.66 | 4462.8 0.00 442
35 25 10 | 3318.6 4529 | 3324.2 0.23 || 3313.6 015 0.44 | 3314 0.15 043 | 3313.6 0.15 043 | 3313.6 0.15 043 | 3313.6 0.15 043 | 3313.6 0.15 043 || 3317.6 0.03 468
35 50 3| 7730.6 443.02 | 77682 3.06 || 7715.8 019 416 | 7716 019 418 | 77158 019 417 | 77158 019 417 | 77158 019 417 | 77158 019 419 || 77214 012 575
35 50 5| 60002 1412.79 6021 0.68 || 5982.6 031 102 | 5983 031 101 | 5982.6 031 101 | 5982.6 031 1.02 | 5982.6 031 103 | 5982.6 031 1.02 6000 0.00 3.90
35 50 10 | 4062.2 86.65 | 4068.6 0.21 || 4021.6 1.03 042 | 4022 1.03 042 | 4021.6 1.03 042 | 4021.6 1.03 042 | 4021.6 1.03 042 | 4021.6 1.03 042 | 4056.2 014 523
35 75 3| 99444 271.80 | 9994.4 2.62 | 9906.2 042 353 | 9906 042 3.53 | 9906.2 0.42 3.55 | 9906.2 0.42 3.53 | 9906.2 0.42 3.54 | 9906.2 042 354 || 99444 0.00 5.08
35 75 5| 72042 73179 | 72272 0.89 7149 075 134 | 7149 075 135| 7149 075 134 | 7149 075 135 | 7149 075 135 | 7149 0.75 1.35 || 7194.6 013 471
35 75 10 | 44826 260.15 | 44984 0.34 4478 010 0.69 | 4478 010 0.69 | 4478 010 0.69 | 4478 010 0.69 | 4478 0.10 0.70 | 4478 0.10 0.69 | 4478.8 0.08 579

81

3.7. Computational experiments

9¢'86 800 9'8EECT || 66'9C SF0 9'¢6Cel | ¥0LT SFO 9'¢6CCl | TOLT SFO 9'¢6CCl | 604 SFO 9'¢6CCl | 004 SFO ¥6CCl | L69T SFO 9°€6TCL || 0€FT T69YCL | T6'009¢ 9'9¥¢TT || 0T SZ 09
608L5 TI'0 706261 || 68°£0F 091 ¥'¥e061 | FO'ICC 681 9'L¥681 | 80'I6C 0T 999061 | 60TLL SI'T 700681 | 96C0T L6'1 L8681 | 09'18 1¥'C 897881 || 65°0FET TYIr6L | 08°009¢ CTOIC6L | S SL 09
6V9¥8 LV'L 9'66€9¢ || 18105 490 ¥¥199C | 6€9SF S8°0 $'9999¢ | 00°C0E CI'L ¥'96¥9C | L1'68C T80 87499C | 0S'IOL 1ST GCI9C | 69101 ¥IT 9°88%9C || 99F69¢ 8'CIVLT | 87°009¢ 81649 | € G4 09
9918 €00 ¥'T6C0T || 050 60°0 9'68¢€0T | IS°0€ 600 9'68¢€01 | 87'0€ 600 9'68¢€0T | 89°0€ 600 9'68¢€0T | IS°0€ 600 98¢0T | ¥5°0€ 60°0 9°G8€0T || CI'8T 864701 | 00'T09€ S6€0T 0L 0s 09
a8'669 FE0 T'S00ST || £5'86F LO'T 96871 869FF L9'T 9'908%1 | CT'C0E 08T 9'98/%1 | T6'T0E €61 L9L¥T 9T'e0T 19°¢ €ISPT | 99°'T0T 0F'€ 9'GPSPL || 69 FSTL 9I6IST | 0£°009€ 9S0ST S 08 09
86'S1L €IV 68681 60’109 8€0 8'0€L61 | TT6VY LEO 6cl6l | PPI0E SO'T 0961 SF10€ 970 TSIL6T | 69901 €0°€ 8IC6L | G8°C0T ¢€€1T TSPS6L || TE98LE 'I180C | 19°009¢ ¥£0861 | € 05 09
IS%S €€0- 76864 16%1 ¥00 T6S6L | 98FL ¥00 T6S6L | S8FL ¥00 T6S6L | €6FL F00 ¢6s6L | 1671 ¥00 6S6L | ¥8FL ¥00 T656L SLEL 80408 | 69665¢ 9996 || 0L ST 09
¥9°209 <990 1201 96'¢0S CI'L TeLE0T | 08'88€ 0S'T TTEE0L | 96'€0E SL'T C90€0T | 99'T0E 90°T 8'84E0T | 65°€0T 90°F €900T | 18C0T LT 986101 || 664841 T'86S0T | 89°009¢ 9'68%0L | & ST 09
LT16S S8T 9°6LETT || 9T'C0S 1T 8'G/STI | T60CF 890 T999C1 | sT'e0e OT'T 7'€09¢CT | 89'T0E LE'T T69SCL | 80°€0T 9%'C 6CFCT | 89'TOT 98'T 80SCT PI'89LE P'E0CET | ¥9°009€ TEPLCL | € ST 09
9¢Le €V 0 8'81C0T || £ZFOT SO0~ 708101 | SF'0T SO0~ 708101 | €5°0T SO0~ 708101 | 0S0T SO0~ 708101 | 0S0T SO0~ 08T0T | €5°0T SO0~ 708101 || 98°2 £620T ££009€ ¥'GLI0T | OT G4 <99
£999C T1°0 861091 || 07'92C 00 868691 | L5941 €80 790681 | 8€'9TC 0€0 868691 | 85°9LT 640 9TI6ST | ¥SCOT S¥0 996ST | 08201 90T 9'898¢T || €C'T6L 96191 €9°009¢ ¥6C09T | S SL <S
LET9S 180 T8LICT || 1T9¢e S8°0 8'¢01CT | €€¥8C FI'L CI¥0CC | 1191C 1¥1 T°0861C | 08°€0C 080 9€CLICT | 9T'L6 96T 8C9IC | 1T€8 8L1 8'8681C || 98'1CSE ¥'9Tvee | 06°009¢ 9's6ceT | € SL SS
€Ly €10 0588 or's €L0 79648 | 9T'8 €L0 79648 | ST'8 €L0 79648 | 90'8 €L0 79648 | ¥1'8 €L0 9648 | T1'8 €L0 Y9648 96's 7'9¢68 | 64009 0988 0L 0s ¢S
11107 ¢TI0 ¥'L68TT || €F'T0E 690 PIC8CL | LSTLT TFT 9'TELTL | 88°ELT 690 P7'1C8Cl | 6745 €8T 6£9CT €8°°0T €91 20421 | TTT0T ¥1'C 8'€EICI || €8°01€ T686CL | T9°009€ €16CT g 08 99
96'569 69T 99%91 €0°LLF 960 09491 | LS9FF TIT'T 89€91 | LOEOE 90T TSPLIT | 9L'T0E 890 60891 | T6'COT 9€T 02991 | SL'T0T LT 92991 99°£29¢ 9°00TLT | $S°009¢ €T69T € 0§ €S
98LF 600~ 86869 || 967 69°0 7169 | 867 69°0 7169 | 6T 69°0 7169 | L6 69°0 7169 | 867 69°0 1€69 | 6% 690 7169 || 08T TEP0L | ¥8°009¢ 9'8469 || OT ST <SS
88'CGC 970 99026 || €¥'0IC ¥9°0 0416 | 20961 €90 90416 | 0€F0C ¥9°0 T0L16 | 18961 €90 90416 | 06'T0L ¥€'T L016 | €6'10T 89'L T¥806 || 8L°0ZL 9'01€6 | 69°009¢ 0€C6 g 9 <9
0€'16S SO'T 8'860IT || T££L9% ¥E€0 7'6LITL | 08'F0€ 690 9°LETTL | 06C0€ 6%0 T9T1T Svvec €S0 8'GCTTL | LZT'€0T FET TZ0LT | €9°'T0T TE'T 0Z0TT 6S9T¥C 999CIT | 89°009¢ 9'SICIL | € ST 99
gg'6c 900~ TEIss 00’ 0¥'0 €LL8 667 0¥'0 €LL8 10 0¥'0 €LL8 667 0¥'0 €LL8 867 0¥'0 €LL8 | 66'F 0¥'0 €LL8 €ee 8888 £9°009¢ 84088 0T S 0s
8F'€8 00~ T998ET || €8°€L €90 LLLET 0072 €S0 LLLET 107L €S0 LLLET ¥8'€L €90 LLLET 8699 970 88/ET | 0099 9¥0 F'88LET || 67°65 7'E66ET | TI009¢ 9TE8EL | S 9L 0§
897TIS 6£0- 8TET6L || ¥8'90€ 0£0 €061 €09¢C 00 96061 €25 120 CICI6L | LLL0T €T0 ¥'80161 | 00°€0T TE0 €0T61 | 9CT6 120 702061 || 6C010T TTFE6L | SF009¢ 9T9T6L | € SL 0§
o¥0e 190~ 9094 8¢ 90~ ¥209L | 8L°€ 90~ ¥209L | ¥8°¢C 90~ ¥209L | 98¢ 90~ ¥209L | L8€C 90~ 09L | €8¢ 9¥°0- 2094 et 9L §GS°009¢ T89SL || 0L 0S 09
¥T8L 600 Y'SOTIT || £L699 ¥S°0 LSOTT 8029 ¥S0 LSOTT ST’Z9 ¥90 LSOTT 6029 ¥S0 LSOTT 9T'L9 ¥S0 LSOTT | €T°Z9 ¥9°0 £LS0TT 18'cS T6ECIT | 99°009€ 9TTILT S 0s 09
82825 810 90191 || L9F9F% 670 8'G9SF1 | G8'T0E SS0 8'GeCF1 | €€°€0€ 180 LISPT €€'69C 890 7'LESTT | 6F°C0T 8E'T €EFPL | 69°00T 090 9°08SFT || €6'F0ET €U 6g’009¢ F9€9¥L || € 08 09
w09t 070 1€19 €6C L0~ 99119 | ¥6C LT°0- 99119 | T6T L0~ 99119 | €6C L0~ 99119 | ¥6C LT°0- LIT9 | €6T LT0- 99119 || S8'T 99919 | €9°009¢ TS0T9 | 0T SC 0§
0€6s CI0 99808 || 89'TF 810 81808 | 64 TF 810 81808 | 06'TF 810 81808 | ILT¥F 810 81808 | 99'TF 810 7808 | 8L'TF 810 8'1808 18'¢¢ L118 657009 G608 || S ST 09
6€91F 000 77896 le'gee 810 £996 6L€lC 8€0 /%96 | 84'8LC L1O 98996 | 81'Z0C 8€0 8/¥96 | €6'€0L 6TT 996 | 61°L6 FSL 8'4£96 || 60°'LES 8€696 | SI'009¢ ¥¥89% || € ST 09
€LLT 980~ TSLIL 18T 940~ 691Z (s 940~ 6912 18T 940~ 6912 €8'T 940~ 6912 08'T 940~ 691Z | 18°T 940~ 6914 Tt 0€TL 0S'665€ ¥'8I1Z 0L S ¢<F
9TsC 980 8€8CIT || PEFT TS0~ 9FETT aevr T90- 9FETT YL TS0 9FETT aevr C90- 9FETT LEFL TS0 9FETL | FEFT TGO 9PETT 65°0T TLYPIT | 80°009€ T88CIL | § 92 SF
88'9%L 000 TTTLST || 06'8ET 000 TTUST | 99601 F0°0 TITLST | 0L'8ET 000 TTULST | FL60T F00 TITLST | 1€06 LT0 969ST | 7688 F10 T669ST || T6'90T 9'GLLST | G€°009€ TTTLSL | € 8L S
€911 010~ 86579 || €81 £00- T8St9 | T8'1 L070- T8St9 | T8'1 L0°0- T8G9 | €81 L00- T8G9 | €81 L0°0- 8SY9 | I8'L L070- T8sH9 || 960 7e6r9 | T009¢ 9'€St9 || 01 0SSP
LT'61 000 €¥r6 vLEL 10 ¥'qove | 1L€T 1F0 ¥'q0v6 | 89C€L I¥F0 7eor6 | 99°€T 1¥F0 veore | IZ€T 1F0 Qo0¥6 | TLET 1¥O0 ¥'s0v6 oL P'€1S6 | ¥S°009¢ ¥evve g 08 ¢SF
80FLT ¥00 ¥'84CCT || 06'99T T0°0- T'G8TCI | 9T'9ST 900 94TTT €8°¢LT ST0 9°69TCT | S09ST 100 (4 1448 8¥'¢6 8C0 6¥CCI | €€€6 600 8'CLTCL || ¥0'6CT TLLETT | 0F'009€ ¥7T8CCL | € 08 SF
11'1e 200 T9gcs 91 o 9'0€cs | 791 o 9'0€cs | 791 o 9'0€cs | 791 o 90€Ts | 791 o T€cS | €91 wo 90€Cs 490 968G | 65°009€ 9'CSTS 0l 9T <7
4961 SS0- €669 0TIl T€0- 94169 | ¥TIT TE0- 94169 | TTIT TE0- 94169 | €CTIT TE0- 94169 | STIT TE0- 8169 | 6I'IT TE0- 9°L169 1€8 79969 | ¥P009¢ 9689 || ST SP
¥946 T10 70878 || ¥I'¥6 810 G428 SS¥0T 810 G428 wye 810 G428 SS¥0T 810 G428 896 810 S8 | S¥eL 610 YvLe8 || LVOL 7'60€8 | ¥S'680€ 06C8 € ST 9
Ie¥L 920 7899 20T €0 8299 <0'T €0 8299 90T €0 8299 90T €0 8299 90T €0 89S | SO'T €0 8499 670 7'6CLS | 9F°088T 9'S69S 0L S 0oF
<L 110 €988 a4 ST’ 768 | Y ST’ 76948 | 8T ST'T 7esl8 | TFY ST'T 76948 | 6€F ST’ 6548 | TF¥ ST'T Y6a/8 0ze 92168 | ¥0°009€ T'€988 S o 0oF
80T <00~ 941C1T 1262 T00 891¢CT 04'6c 200 891¢CT 7w96C W00 891¢CT 1262 T00 891¢CT 696C T00 891CT | L96C T00 891¢CT 0€'cT el 0€009¢ 80LICL | € SZ OF
1€°4 800 T6e91S || €60 LV0 78719 | 960 LV0 78719 | 60 LV0 78719 | 60 LV0 78719 | 60 LYo 8F1S | €60 V0 ¥8¥IS || 050 74028 | L0€L6C TELIS || OT 0S5 OF
€69 S0°0 999L L9°¢ 80 8'€6SL | 89C G80 8€6SL | L9C 80 8'€6SL | 99°¢C G8°0 8'€6EL | L9C 80 69L | 89°¢C <80 8'€64L 99C TY89L | 9T°009¢ 9'699L || S 05 OF
10T€ ¥1°0 9986 60'8C LSO 7186 ¥¥'8C LSO 7186 ¥e'8C LSO 7186 608C LSO 7186 8€'8C LSO PI86 | 8T8C LSO Y186 01T 86966 | ¥€'009¢ ¥'6986 € 08 0OF
66'L 120 vaLey €80 080 LYEY 780 080 LYEY €80 080 LYEY 780 080 LYEY 80 080 LYY | ¥8°0 080 LVEY 70 9007F | L6'CTCE 9'I8EY 0L ST 0oF
119 o TIPLS 61°C °wo TTILS | 81T °wo TTILS | 61T °wo TTILS | 61T °wo TTILS | 61T °wo CILS | 81T o TTLLS i 9°LLLS | LT'S0TE T'9ELS S ST 0oF
€¥sl 100 88849 ¥8CL ST0 ¥cL9 | 18T STO ¥TLL9 | €8T STO ¥TLL9 | 68CL STO ¥TLL9 | 64T STO L9 | 98T STO ¥'2LL9 856 TL6L9 | 0T8LE 8'68L9 € ST 0oF
awil 9, den anjep awry o, den oanpey | owr 9, den anjep |awny o, den onpey | owr 9, den anjep |awnp o, den anpep [aunp o, den anpep i, anfep | awip anjep w p u
(s°005) oustmayeN [(§005) dHSHNIyE (£°008) dusLmayzeA (§°00€) dusLmayzeA (€°00€) dusLmayzejA (g’001) dnsLmayIeA (€001) dusumaAYIe 3s009¢=7.4 2[pung | punog % youeig

[65] £q seoue)sur oy 10§ (P wrur) S[dLI) YoEa JO S9dURISUI G 9} I9AO San[eA d3eIoAY :6°¢C AT1dV]

82 Chapter 3. Formulations, Relaxations and Heuristics for the QMKP

3.8 Conclusions

3.8.1 Formulations and Relaxations

Over the last 15 years, the quadratic multiple knapsack problem has received in-
creasing attention from the literature, dealing almost exclusively with meta-heuristics.
Although in 2019 Bergman [101] and in 2021 Fleszar [119] presented the first special-
ized exact algorithms, the problem has never been studied from a broader math-
ematical perspective. We attempted to fill this gap, by focusing on classical refor-
mulations and relaxations and analyzing their properties, in order to gain insight
into the strengths and weaknesses of such methods. Currently, exact algorithms
can solve instances up to 10 knapsacks and 35 items. Yet, the original benchmark
instances considered in the literature (for heuristic solutions) are one order of mag-
nitude larger, involving up to 30 knapsacks and 300 items. We believe our results
have implications for the development of future exact algorithms capable of tackling
larger instances. Indeed, in an enumerative algorithm, a trade-off must be made be-
tween the quality of the upper bound and the time taken to compute it. Our results
suggest that, among the different possible approaches, the most promising is the one
based on the Lagrangian relaxation of the cardinality constraints of the 0-1 quadratic
model, both in terms of bound quality and CPU time. In particular, the convergence
of the proximal bundle method to solve the Lagrangian dual problem appears to be
very fast. Another interesting observation is that the adoption of non-optimal so-
lutions of the Lagrangian subproblems speeds up the computation of each bundle
iteration without deteriorating the bounds significantly. This turns out to be true for
both Lagrangian relaxations we have considered. Our experiments also show that
the use of specialized methods to solve the subproblems can be crucial to reduce the
computing time, and should always be preferred, when possible, to general purpose
MIP solvers.

3.8.2 Multi-Start Iterated Local Search

This chapter presented an MS-ILS for the QMKP that successfully solved different
groups of instances. We defined four initial solution approaches based on stochastic
and deterministic processes. In addition, a perturbation used in the literature and
two local searches that consider feasible and infeasible moves were used. Finally,
a repair function is applied to the infeasible solution based on its infeasibility with
respect to the capacity. The proposed metaheuristic has a good performance regard-
ing the CPU time but obtains solution of lower quality than those obtained by the
metaheuristics from the literature.

Different future works can be defined in this line of research. An Adaptive Large
Neighborhood Search (ALNS, [66]) can consider additional destruction and repair
moves for the problem, use specific defined local search procedures and update the
corresponding weights associated with each move. Infeasible moves should be con-
sidered for the considered instances, since the literature results suggest to use these
moves due to the quality of the obtained solutions [96, 97].

3.8. Conclusions 83

3.8.3 Matheuristic

We presented a matheuristic approach to QMKP based on the Lagrangian relaxation
of the quadratic model presented in [59]. We used candidate solutions obtained
through the bundle procedure and which are subsequently subjected to a hybrid
process using a mathematical model and then heuristic refinements. Two variants of
the matheuristic are generated based on a gain vector for the mathematical model.
In addition, for each variant, new approaches are presented by imposing time lim-
its on the execution of the Lagrangian relaxation and of the code used to solve the
QKP at each iteration of the bundle procedure. The proposed matheuristics prove
to be highly efficient in quality of result and much faster than the other approaches
presented in the literature for the solution of the considered instances.

Different future works can be defined in this line of research. We can improve
the local search methods, changing the VND for some other process, or improve the
infeasible local search, specifically, the selection of the relocation move.

85

Chapter 4

A parallel genetic algorithm for
strategic mine planning

4.1 Introduction

Scheduling mineralized material extraction from an open-pit mine is a critical stage
in the optimization of mining production. In a deposit, the ore grade is not homo-
geneous, therefore the order in which the ore and waste must be explored to obtain
the maximum economic profit should be planned. A solution to the optimization
problem must specify the part of the mineral deposit that must be extracted and
processed in each period to obtain the maximum profit. Thus, the solution to the
problem must specify spatial and temporal dimensions for the extraction. This com-
plex problem has received attention in the literature, however it is still a computa-
tional challenge due to the number of resources required when planning real-world
solutions [120]. Extraction schedule must identify the period for each part of the
mineral deposit considering the mining capacity, which defines the amount of ma-
terial that can be excavated in a specific period, as well as the capacity of the plant,
which limits the amount of material that can be processed.

The standard model in mine production scheduling consists of a discretization
scheme of the ground in cubic extraction blocks [121]. Each block is identified using
geostatistical techniques and is denoted by a set of coordinates, a grade and ton-
nage. Thus, a block model composed of a three-dimensional array of blocks that
represents the entire deposit, is the standard tool used to search for the optimal so-
lution. A block model may consist of a few thousand blocks and, for large open-pit
operations, this number can reach millions. Then, given the block model, the com-
mon way to define the mine production schedule is to find the period in which each
block should be mined and the best possible treatment for that block, giving rise to
a complex optimization problem. A block schedule must comply with technical and
economic considerations. First, the extraction must be compatible with the slope an-
gles that keep the open pit from collapsing. In fact, the slope constraints consider
the maximum slope angles to be satisfied at any given period and can be repre-
sented as the precedence between the blocks. When only geometrical constraints
are considered, an optimal solution for this problem gives the ultimate pit limit con-
tours, and the problem is known as the ultimate pit limit problem (UPIT, [122, 123]).

86 Chapter 4. A parallel genetic algorithm for strategic mine planning

Second, a set of constraints related to mining capacity involves the extraction equip-
ment capacity. Third, the processing capacities consider the capacity of the available
facilities, which also limits some characteristics of the orebody that is sent to each
destination at each period. The net present value (NPV) is the measure for evaluat-
ing a schedule and the optimal solution is the one with the maximum NPV. NPV was
referenced in the objective function of the OPMPSP mathematical model (see section
1.1.3), where for practical study purposes, the value of NPV per block is precalcu-
lated before solving any optimization problem associated with the Open Pit Mine.
Of course, the NPV depends on factors associated with planning, such as the time
in which the block is extracted and a discount ratio « (defined later) associated with
the study mine.

A variant of the problem arises when each block must be mined entirely in a
single period considering a limit in the number of available resources. This variant
is known as the constrained pit limit problem (CPIT) and has been formulated as
an integer programming problem [124-126] . To solve the CPIT, the economic value
of each block, the minimum and maximum operational capacities per period and
a set of precedences per block are required. The optimal solution is obtained by
maximizing the NPV for the life of the mine.

In practice, the mining process occurs through extraction phases with access
roads and sufficient spaces for the loading of the vehicles that must transport the
orebody to some of the predefined destinations. An extraction phase is defined by
a subset of blocks that must be extracted during a time interval of the planning pe-
riod. An extraction phase allows the definition of a set of operating periods by con-
sidering the spatial geometry of the mine. To consider this geometry, we propose
truncated instead of complete cones. Each truncated cone has: a centroid block of
the basal face, a radial basal face and a slope lateral angle. Thus, truncated cones are
staggered by cuts or benches with two uncovered faces: a flat top face and a lateral
vertical side inner face. Figure 4.1a) shows a cone generated from a block model,
while Figure 4.1b) shows benches and ramps generated from such block model. The
extraction scheduling requires a design of the benches at each period.

An extraction phase is composed of one or more truncated cones with a common
base that contains basal blocks. Each truncated cone is identified by its centroid
block in the base. Thus, we define a base by clustering a set of centroids accord-
ing to the distance. Consequently, each extraction phase is carried out in one or
more periods considering the mine capacity. An example of the extraction phases is
shown in Figure 4.2. The example is composed of 10 truncated cones with centroid
blocks in set A = {3,27,43,48,55,61,68,70,75,93}. To generate bases that corre-
spond to the extraction phases the set A is clustered with respect to the distance.
The clustering process produces three bases: f1 = {3,43,48}, f2 = {27,55,61,68}
and f3 = {70,75,93}. At the top of the figure are depicted the periods that in turns
define the extraction phases. For this example: the first extraction phase requires
period 1 and part of period 2; the second extraction phase requires part of period
2, period 3, and part of period 4; and the third extraction phase requires part of pe-
riod 4, period 5 and part of period 6. The period length is limited by the mine and
processing capacities.

The mine production schedule identifies the order in which the extraction phases

4.1. Introduction 87

:Centm :

| 1Y

Radial base

Center

b \ x T
Lt = H Radial base

FIGURE 4.1: Truncated cone (Image from [127])

should be mined. Similar to the CPIT, in this variant of the problem that we call
CPIT-P, the mine production scheduling grouped by extraction phases must satisfy
the operational capacities. Thus, CPIT-P considers three additional aspects related
to the CPIT: extraction phases, operational periods in which the extractions phases
take place and geometrical conditions to ensure enough space to handle equipment
and trucks during the operations.

Formally, let B = {01,102, ...,by } be the set of blocks belonging to the initial cube
containing the entire mine with M blocks, and R be a set of resources necessary to
extract blocks in B. A feasible solution for CPIT-P is identified by a set of extraction
phases F = {f1, f2,..., fy}. Inturn, each phase f; € FVj € {1,2,..., p} is characterized
by a set of truncated cones and the set of blocks belonging to a truncated cone is
individualized from the centroid of its base, the basal radius and the slope angle.
Thus, the precedence set of a block corresponds to the set of blocks that are at the next
higher level and that satisfy the inclination defined by the slope angle. Furthermore,
the processing capacity CP and the mining capacity CM are known parameters. The
objective is to maximize the NPV for the life cycle of the mine.

This problem was presented in Navarro, 2015, where a parallel genetic algorithm
(PGA) that solves a sub-set of instances from the literature and the first results for
the problem are presented. However, not all the instances were considered, and
new experiments need to be run. In addition, internal parallelism processes must be
improved, to obtain better results.

This chapter presents an approach to CPIT-P based on a parallel genetic algo-
rithm improving vital processes to obtain quality results. This chapter is based on
an internship in Santiago de Chile for three months. The proposed model follows a
genotype-phenotype scheme. The genotype is represented by a structure that iden-
tifies the centroid blocks that compose the phases, whereas the phenotype is con-
structed by truncated cones, which allow adequate space and properly handle the
order precedence constraints. The PGA is based on a master-slave configuration, in
which a single computer node is used as the master to coordinate several slaves to

88 Chapter 4. A parallel genetic algorithm for strategic mine planning

Period I Period IT Period ITT Period IV Period V Period VI
| o 2 3 B —]

v

Phase I Phase II Phase ITI

nx

FIGURE 4.2: Examples about the phases

evaluate the fitness of an individual, which is part of the same unique population. A
set of instances available in the literature are considered for a numerical experiment
aiming to identify the performance of the PGA.

The remainder of this chapter is structured as follows. A general description of
the Parallel Genetic Algorithm is presented in the next section. The representation
of the problem for the parallel genetic algorithm is presented in Section 4.3 in which,
both the representation of a solution and the evaluation function are described. In
Section 4.5, a discussion on the results obtained from the computer experiment is
given, and the conclusions are described in the last section.

4.2. General description of the Parallel Genetic Algorithm 89

4.2 General description of the Parallel Genetic Algorithm

Initial Population p(x)

/ [Individuall] [IndividuaIZ] [IndividuaIS] /

Return Best
Individual

Yes

Computate
Fitnessf(x)

v

Selection
the best

v

/ ((naividuai 1] [individual 2 | [individuai3] ... [individuar k]/
;

Crossover with prob cx

Individual cx2

Mutation with prob mx

Individual mx1

Individual mx2

New Population

/ (ndividuar 1) [Individualz] [lndividuals] Individual n /L

II

FIGURE 4.3: FlowChart of the Simple Genetic Algorithm

A Genetic Algorithm with its elementary properties was defined to solve the CPIT-
P. A genetic algorithm is a population metaheuristic that works with individuals
that represent solutions to the combinatorial optimization problem. Each individ-
ual is subjected to a set of operators, generating new individuals for the following
generations. The logic behind this algorithm is that, as generations advance, the best
individuals survive, following the Darwinian logic of human evolution [128]. Figure
4.3 shows the flow diagram of the algorithm:

1. Individuals with population size n are defined randomly.

90 Chapter 4. A parallel genetic algorithm for strategic mine planning

2. A fitness function should evaluate the current population. This function de-
pends on the problem to be addressed; for this case, a fitness function must be
defined for CPIT-P.

3. A selection process of the evaluated individuals must be applied to obtain a
candidate population with size k with k < 7 (i.e., a subpopulation defined as a
subset from the main population).

4. A crossover operator is applied with probability cx to the subpopulation from
the previous selection step. This process is binary, and the content of two indi-
viduals must be exchanged with each other. In this way, we have two parent
individuals and two child individuals.

5. A mutation operator is applied with probability 1-cx to the individuals result-
ing from the previous step (child individuals). This operator is unary, so only
the content of an individual is changed.

6. A new population is generated that is subjected again to the fitness function
(Step 2). The stopping criterion of the genetic algorithm must be checked; for
the presented problem, the number of generations will be used.

Generated Initial

Random
Population

|

SGA NUumSGA

SGA3

SGA1]

SGA2]

|

Get Best
Individual

Paralell

Get Best
Individual
SGA1

Get Best
Individual
SGA2

Get Best
Individual
SGA3

Get Best
Individual
NumSGA

Best Individuals
Num
Generation? i Return Best

FIGURE 4.4: FlowChart of the Parallel Genetic Algorithm

The genetic algorithm described above can be run in parallel. For this end, a
classic form of asynchronous parallelization can be applied to execute the genetic
algorithm in different computer cores. Figure 4.4 presents a flow chart for the paral-
lel genetic algorithm. Like the simple genetic algorithm, the parallel algorithm starts

4.3. Representation of CPIT-P for PGA 91

with an initial population that is considered for each of the simple genetic algorithms
that run in parallel. Subsequently, each algorithm returns the best individual which
is stored in a repository of the best individuals. Finally, the termination criterion
based on the number of generations of the main scheme is checked and the best
solution is returned.

4.3 Representation of CPIT-P for PGA

To search the space of CPIT-P by means of a GA it is necessary to define an indi-
vidual, the fitness function and the operators. A GA is a search method that allows
to find good solutions for optimization problems by imitating the laws of natural
evolution [128, 129]. Each individual in the population encodes a point in the search
space of a given problem, and the offspring are generated by a random process that
emulates natural selection and works with selection, crossover and mutation oper-
ators. We propose a genotype-phenotype scheme to represent the CPIT-P solution
space [130]. This means that a solution for CPIT-P is only partially coded as a geno-
type solution and the complete solution is constructed from such partial solution
composing the phenotype.

4.3.1 Representing a feasible solution for the CPIT-P

A genotype solution is a set centroids represented by integer numbers. Conse-
quently, the length of the genotype solution is variable and the result is not affected
by the order of the elements in the set. The use of a set of integer numbers instead
of lists ensures that elements of the individual are not duplicated. To generate the
extraction phases from the genotype solution, we generate clusters with those cen-
troids that are close among them. This process is carried out by the clustering tech-
nique: corresponding to the K-Means algorithm [131]. An example of the genotype
representation is shown in Figure 4.5, which shows a genotype solution composed
of four bases of truncated cones with a constant radius r = 2. In such case, the model
of blocks, defined by nx = 10 and ny = 8§, is framed in a concentric circle. To the
left of the figure, the precedences that define the individual structures are shown.
A phenotype solution that considers the geotechnical and operational constraints, is
constructed from a clustered genotype solution. The phenotype solution specifies
the complete mine scheduling, i.e. extraction phases, periods and the blocks to be
extracted. Thus, all blocks that belong to an extraction phase are identified by a con-
structive algorithm that considers the feasibility of a solution. Specifically, given a
centroid, the radial base and the slope angle, both blocks belonging to the base and
the precedent blocks are, identified.

92 Chapter 4. A parallel genetic algorithm for strategic mine planning

i ={3,46,54,79} D
3:(2,4,13) A
54|, ™~
46 : (36, 45, 47, 56) I ny
54 : (44, 53, 55, 64) AN
79 : (69, 78, 80, 89) EN
~—

FIGURE 4.5: Representing a feasible solution (Image from [127])

™\
79
54 /'\ N\ - . : 54 .
/|46 NN \
132|33 38
38 \/‘/3/ 7 T
- . N
p1 = {3,46,54, 79} p2 = {3,7,32,33, 38, 54)
: 79
TN
54 7 N
\ /| AN N 46|~ N
132|133] |\ /138] |
N NNV AN 4
3 7
N / \\'/,/
hy = {3,54} hy = {7,32,33,38,46,79}

FIGURE 4.6: Crossover operator (Image from [127])

4.3.2 Definition of the PGA operators

Selection, crossover and mutation operators were defined for this particular algo-
rithm PGA. To select the appropriate genotype solution for the PGA population, a
standard roulette operator is used, whereas the variation operators are designed to
operate on the set of integer numbers. In fact, weighed roulette selection assigns
a proportional part of their fitness to each of the solutions in the population [129].
Besides, the crossover operator combines two sets, p1 and p2, and two offspring are
generated. The first offspring h1 is defined by the intersection, which contains com-
mon elements of pl and p2, whereas the second offspring h2 is obtained from the
symmetrical difference of the parents. The example in Figure 4.6 considers parents
pl and p2 of length four and six, respectively, that generate two offspring (41 and
h2) with lengths of two and five. The mutation operator randomly adds or removes
an element according to a determined probability. In Figure 4.7 a single mutation is
shown by applying the probability of removing or adding an element by randomly
selecting a position in p1.

4.3. Representation of CPIT-P for PGA 93

p1 = {3,46,54,79} hy = {46,54,79}

FIGURE 4.7: Mutation operator (Image from [127])

4.3.3 Fitness evaluation

Each solution evaluated by the NPV considers the blocks scheduled for each extrac-
tion phase. Because each block has an associated economic value, considering the
capacities it is possible to identify an extraction period for each block. The value of
each period is corrected with the discount rate. The procedure to evaluate a geno-
type solution is presented in Algorithm 17. The function receives the following in-
put parameters: I the individual from the PGA; G: geometry of the block models; r:
basal radius; J: slope angle; CP: processing capacity; CM: mining capacity; and «:
discount rate. From lines 1 to 3, the algorithm variables are initialized, where ¢ is the
number of periods and S is the set of blocks extracted. In line 4, the clustering func-
tion produces a set of extraction phases F, each of which contains centroids c. Then,
in both cycles, each extraction phase is reviewed and a set of blocks to be scheduled
is identified. In variable B (line 7) the total of the blocks of the truncated cone is
obtained; this solid cone is built based on the center ¢ for the block model G, with
radius r and angle J. Subsequently, a difference of sets is performed (line 8) between
the blocks belonging to the truncated cone of phase f with base c and the blocks that
have already been extracted in the previous processes. Finally, the Scheduling func-
tion returns the NPV generated by the extracted blocks and the number of periods
used (9, t). Lines 10 and 11 updates the extracted blocks and the total NPV of the
process.

94 Chapter 4. A parallel genetic algorithm for strategic mine planning

Algorithm 17 Fitness Function

Input:
I: the individual from the PGA;
G: geometry of the block models;
r: basal radius;
¢: slope angle;
CP: processing capacity;
CM: mining capacity;
«: discount rate.

Output: NPV: The net present value.

t=0

: NPV =0

S=0

F = KMeans(I)

. for f € Fdo

forc e fdo
B = Precedence(c, G, 1,5)
B=B\S
(y,t) = Scheduling(B,G,CP,CM, «, t)
S=SUB
NPV = NPV + v

end for

. end for

: return NPV

RN R U S o A

T
LRI A

4.4 Computational Experiments

4.4.1 Set of instances

To study the performance of the PGA, a set of instances from Minelib (presented in
Table 17) were used [57]). Each instance is a block model and specifies the amount of
ore contained per block, the total tonnage of the block, and the minimum and max-
imum limits of operational resources for extraction and processing. A cut-off grade
that determines if a material is an ore or waste is also considered. There are costs as-
sociated with sending these blocks either to processing or to the mine. Considering
the extraction plan, an ad hoc discount rate («) is used for each instance.

The PGA was implemented in Python 3.4.3 programming language and exper-
iments have been performed on a computer with 32 Intel Xeon Haswell 2.30 GHz
and 28.8 GB RAM (by using 32 threads) and a Debian GNU/Linux 9 (stretch), 64-bit
operating system.

4.4.2 Tuning of the parameters

The iterated racing for automatic algorithm configuration (Irace) method was used
[78]. At each iteration, the samples are updated, and the parameter values with
the best performance increase their probabilities of being selected. The instances
considered in order to use Irace were: Newman1, Zuck small and KD.

The parameters for PGA are given in the following;:

¢ Clusters: Number of clusters using k-means.

e Sjze Chrom: Size of Chromosome.

4.5. Results 95

Ngen: Number of generations.

Npop: Number of populations.

Cx: Crossover probability.

Mx: Mutation probability.

TABLE 4.1: Set of Instances for CPIT

Name Blocks | Precedences CM CP1 CP2 o
Newmanl 1,060 3,922 2,000,000 | 1,100,000 No 0.08
Zuck small 9,400 145,640 60,000,000 | 20,000,000 No 0.1

KD 14,153 219,778 00 10,000,000 No 0.15

Zuck Medium 29,277 1,271,207 18,000,000 | 8,000,000 No 0.1
P4HD 40,947 738,609 52,500,000 | 12,500,000 No 0.15
Marvin 53,271 650,631 60,000,000 | 20,000,000 No 0.1

W23 74,260 764,786 68,000,000 | 3,610,0007 | 1,000,000* | 0.1

Zuck Large 96,821 1,053,105 3,000,000 | 1,200,000 No 0.1
McLaughlin Limit || 112,687 | 3,035,483 3,300,000 No No 0.15

 : Multidimensional processing Capacity.

TABLE 4.2: Set of Parameters

N° | Clusters || Size Chrom | Ngen | Npop Cx Mx
1 50 80 60 70 | 09784 | 0.0216
2 20 80 80 70] 09670 | 0.0330
3 20 80 80 50 | 0,9670 | 0.0330
4 20 80 60 70 09670 | 0.0330

4.5 Results

The considered problem does not have algorithms in the literature that can be con-
sistently compared. However, we can consider the UPIT and CPIT problems to es-
tablish value comparisons and conclude methodological differences. Remember that
UPIT only considers the flow restriction (precedence), while CPIT considers the pe-
riod and resource restrictions (mine capacity and processing capacity). Table 4.3
shows the different values for the considered instances: the first column has the
best known solution value (BKS) for the UPIT problem; this value is a Valid Upper
Bound when the period and resource constraints are removed. The following three
columns contain information about the CPIT extracted from [57]. The upper bound
is obtained with LP relaxation of the decision variable. Column Per in Table 4.3 con-
tains the maximum number of periods (or time horizon) that the CPIT problem can
use. Finally, the PGA results are presented: the average number of increments, the
average number of periods, the best value of the different executions, the average
value, and the average time per run.

96 Chapter 4. A parallel genetic algorithm for strategic mine planning

The PGA has reasonable solutions regarding the CPIT values for small instances.
This is due to two reasons: first, the number of periods is not delimited in our algo-
rithm and neither in the CPIT-P, so that, as there are more periods to extract more
blocks, the higher the NPV value. Second, processing of the predecessor blocks is
performed to obtain nested truncated cones. In this way, we can get different val-
ues concerning the original CPIT problem. Quantitative examples of this are the
instances newmanl, Zuck small, KD, and Zuck medium, where the best value of the
PGA is always much better than the BKS of the CPIT.

The PGA does not get reasonable solutions for large instances. Even the perfor-
mance of the algorithm is worst than that of the CPIT using more periods. Analyzing
the geometric shape of the instances, the number of truncated cones does not always
respond to all the scenarios in the same way. Thus, a calibration must be performed
with all instances and not just with small instances.

The number of increments for the different instances seems to converge to the
same number. This is because K-Means is a parametric algorithm and all the in-
stances generate a similar number of clusters (increments) with respect to the gener-
ated chromosome.

The PGA is fast for some specific instances and very slow for two particular in-
stances. As we concluded in the previous paragraphs, the construction of the trun-
cated cones depends on the instance and its geometric shape. For two different in-
stances like Zuck Medium and McLaughlin Limit, the average PGA evolution time
exceeds 4 hours. However, for the instance Zuck Medium, good results are found,
while for the instance McLaughlin Limit it seems is not highly effective algorithm.

4.6 Conclusion

An approach supported by a parallel genetic algorithm is studied for the mining
scheduling problem, considering both geotechnical and operational constraints for
real-size instances. This new CPIT-P variant was addressed considering a set of in-
teger numbers as the representation. Such a representation, together with an ad
hoc constructive function to evaluate each feasible solution, facilitates the data man-
agement and the geometric and mathematical operations involved. The solutions
provided by PGA respect the criteria of the operational and geotechnical conditions
so that robust phases are produced in consideration of the location of both ore and
waste. The initial evaluation used provided a good starting point for the conver-
gence of the algorithm, although using a different form of phase extraction could
lead to better initial information for the genetic algorithm. Numerical tests demon-
strated the flexibility of the presented solution, because the proposed genetic algo-
rithm allows for solving small and large size instances, as well as providing feasible
solutions to real large-scale problems

97

4.6. Conclusion

108479 IUIPETO6'LLY €LTI9TI6'61S 8EFT 1181 a8vioay
L9 TTH91 LOETF'8IT'SE6 8F'ETICIN'696 0CT'TT 00°0¢ G 0046L°£TE'CL0'T 00°T0S'646'8L0°'T || 00FL¥'92L'S6Y'T | 41 urjySnv oW
0T°06¥'S 9/°810'699°£9 L0'6CLVLO'TL 0€'8¢ 00°0¢ 0 00%LLTHTSYI'T 00°€80°TSO'SY9'T || 00°08T°0CCCCL a8iv] yonz
LV Ser6’l 19709'G6T° 14T 61°6L5°T68°L8C 06'SC 0c6l ZL 00€90°9¢T’T6E 00°661°€S9°00F 00'866'€L6'01S com
17'8¢l €6'001'80S'€LE 998509679 0T0E 0421 0C 008%0'92£'0¢8 00'TET916°€98 00'9€¥'SS9'STH'T utadvul
SSYI'T 09'016'TL¥ 61 6€'L12°£L09°961 05°0¢ 00°0¢ 0L 001969'8€1°9%C 00°0€L'ST¥'LVC 00'952'€LE'€6C pipd
61°08G°2C T6'1L8'STE'e88 1%7'926'87C°568 01'9C 0€21 6L 00 SI¥FIIVSI9 00°0T¥' 1¥9°014 00'06%'%21'SL0T wnipaul yony
TET1E6T 16°TTYLL8'66E€ 68°610°COT0IF 00°6C 06'61 Z1 00°€61'858°96€ 00°9SS'86¥'60% 00°££0°961°C59 P
167220°C 99F69°CL6FST'T 8E8VILLSTLTT 0LLT 0481 0C 00°009CS9'88Z 00'96€°T8T'7S8 00'868'9TL'CTH'T 11vuls yonz
9898 68'C€8'199°EC TL'CTT'S68°EC 0501 0C01 9 00'TL9°€8¥%€C 00'781°987'¥¢C 00'668'980°9¢C Tuvuimou
(s)owiy, "3AV AIN'8AY AN "XeN TJ3AY WRDU[BAY || d SN LIdD 40 LIdO 9 LIdN 9oue)sul

$19S UM J-1IJD Y3 10J symsay Teuondeindwo)) ¢ § 214V]

98 Chapter 4. A parallel genetic algorithm for strategic mine planning

4.7 Current and future works

The problem does not have an integer programming mathematical formulation. It is
vital to obtain good upper and lower bounds for the problem to be able to perform
a better comparison of the proposed PGA.

Local search algorithms are being tested. To this end, three-dimensional vec-
tors will be used to find better bases for the truncated cones. In this way, random
crossovers and mutations can be complemented with intelligent operators either
within crossover or mutation processes or local searches via Memetic Algorithms
[25].

Finally, a machine learning algorithm can be used to improve the offline per-
formance of our PGA. First, images can be generated that allow to identify of win-
ning bases, and classification via Convolutional Neural Network [132] can catalog
whether worth while to change the base for the generation of a truncated cone.

99

Chapter 5

Conclusion

In this thesis, different combinatorial optimization problems have been addressed:

¢ The TSPPD-H was solved by means of different metaheuristics during the first
year of the PhD. (2019), and was compared with the algorithms proposed in
[63] and [65]. The first metaheuristic approach, called Iterated Local Search
with Frequency (ILS-F), is a fast method but does not get good quality solution.
The second approach, called the Granular Iterated Local Search, was executed
with four different configurations, and was shown to be competitive with the
most effective algorithm of the literature.

¢ Polynomial-size formulations and relaxations were presented for the QMKP
during the second year (2020). The different formulations are competitive with
the algorithms of the literature. Other approaches presented in the thesis are
the metaheuristic MS-ILS and matheuristics developed during the year 2021.

* A new open-pit mining problem called CPIT-P, is presented, and successfully
solved with a Parallel Genetic Algorithm (PGA) in the year 2021. This meta-
heuristic can solve large-scale instances in reasonable computational times.

For each problem, different future works that are being developed as of the date
of the presentation of this document have been proposed.

Although the general situation of the development of the Ph.D. activity was not
the best due to the pandemic, the objectives of each work were successfully met.
Each work was always supported by the supervisor of my Ph.D activity, indepen-
dently of the situation, and they all complied with the planning indicated in the pro-
cess (3 years). The knowledge acquired at the University of Bologna will represent a
contribution that will be transferred to the country of the PhD student.

101

Appendix A

GILS - Details for the Granular
parameters

A.1 Results

This section shows the detailed results of the GILS for each group of granular pa-
rameters. The results are reported in Tables A.1 to A.8 in order to corroborate the
non-dominance between the parameters. In each table, the first 4 columns show: n,
number of customers; [,instance index; BKS, the best value obtained by metaheuris-
tics proposed by [63] and [65]; and UBKS, corresponding to the best value found
by all metahueristics (including GILS). For each group of parameters, the following
values are reported:

* Min: minimum value for the experiment.
¢ %Gap : %Gap between Min and BKS with formula ((Min — BKS)/BKS) % 100.

e %Gap Hns: %Gap between Min and BKS with formula ((Min — BKS)/Min) *
100.

* Avg. Value : average value for the experiment.
e Avg. Time(s): : Average time for the experiment.

The tables A.1,A.2, A.3 and A.4 contain the values associated with the use of the
improved dynamic programming algorithm.

The tables A.5,A.6, A.7 and A.8 contain the values using the heuristics of [63] and
dynamic programming.

102 Appendix A. GILS - Details for the Granular parameters

A.2 Wilcoxon Test

Finally, a statistical test based on the best values of each instance is applied. For this,
the Best column values were obtained for each metaheuristic (4 columns in total).
For this test, two groups of instances were generated: G1, corresponding to instances
n = {20,40,60,120}; and G2, corresponding to the instances n = {140, 160,180, 200}.
Note that instances with n = {80,100} were discarded as ALNS results are not avail-
able. Subsequently. The Wilcoxon signed-rand test is applied using two hypotheses:

¢ HO: AverageCost (GILS) = AverageCost (X) (null hypothesis).
e H1: AverageCost (GILS) > AverageCost (X) (alternative hypothesis).

With X = { Erdogan Series, ALNS and ILS-F }. In this way, the p — values must
be contrasted for each test between GILS and X. a = 0.004166666 is considered and
the test is rejected when p-value > «. The following table summarizes the result of the
statistical test applied for each metaheuristic and each group. The accepted values
are black, and the final test result is in the last row.

TABLE A.9: p-values for the Wilcoxon Test for G1

Erdogan ILS-F ALNS
HO 0.000 0.002 0.005
H1 0.000 0.001 0.003
Better Better Similar

TABLE A.10: p-values for the Wilcoxon Test for G2

Erdogan ILS-F ALNS

HO 0.000 0.000 0.013
Hi1 0.000 0.000 0.994
Better Better Worse

The statistical analysis about the best values is different for G1 and G2. Indeed,
for G1, GILS proves to be better than the metaheuristics of [63] and the ILS-F and has
a similar performance to ALNS. However, for the G2 group, GILS is better than the
[63] series and ILS-F but performs worse than ALNS. Finally, boxplots are shown in
Figures A.1 and A.2.

103

A.2. Wilcoxon Test

1e9s Z8'eE0L 120 170 $995°0£01 6979 FETEOL 20 £20__¥esTisol 988 6L€E01 0 TC0__7999°0£0L 7808 TEeE0L 720 Y0 79980801 | Ev¥'SCOL _6¥ST0L 2Besony
7899 LTTe0L 000 000 98501 T€9 FTYS0L $T0 80 L9'1S01 619 LL0S0T 000 000 98701 7659 086701 000 000 98701 L9801 LSOl |0 09
957 15001 620 600 €EF00T) £ET00T 620 600 €EF00T L59% £EF00T 620 600 €EH00T 8578 67001 670 600 €EH00T SFI00L €FT00L [6 09
w9 £69€0L 260 260 1€0L 808 0TTE0L 260 260 1€0L sToL £9°€€01 260 ££0 1€01 PIES L6TE0L 80 ££0 1€01 60l 60l |8 09
985S 62001 610 610 €€£00T 8664 008001 610 610 €€200T 65°5S £9°£00T 610 610 €€200T £6°2001 610 610 €€200T €FS00L €FS00L | £ 09
6116 87201 000 000 292901 9T18 L8T80T 0 €60 €CEL0L w8 076201 000 000 292901 £9°601 900 900 €e'8901 L0901 L2901 9 0
€6'L€ 19686 820 STO 199686 orve 19686 $T0 STO 299686 UL 29686 820 ST0 £99686 29686 820 STO £99686 €698 £6986 s 0
0L 009901 €50 €0 9901 6628 009901 €50 70 9901 8568 009901 €50 0 9901 €Ty 00'990T €70 0 9901 SFIL SFIL [F 09
T £6°666 €60 €60 £99°€66 Tess 14666 €60 €60 £99°€66 £8°6¢ 29666 €60 €60 £99°€66 8ETY LL566 €60 €60 £99°€66 96066 9€066 € 09
1748 L6'$F0T 610 610 €E9F0T 09 006701 000 000 €EFFOT 9879 0€T90T 620 600 €ELROT 6t FLISOT o WO L98H0T POl £HH0L T 0
e 991901 000 000 1601 675t 991901 000 000 1901 0057 £50901 000 000 1901 Tree £60901 000 000 1901 150t 1901)

SSSI SL918 000 000 o918 96LL L8978 000 000 5598 85T 88978 000 000 55918 g€l £6978 000 000 55918 S59T8 698 8eroay
9091 052798 000 000 5298 821 05798 000 000 S98 9TSI 05798 000 000 <798 TS€L 05798 000 000 <298 €798 ST98 o or
6571 oz 000 000 98 '8t orLg 000 000 §98 1591 or'Lg 000 000 S98 ad 05928 000 000 98 <98 <98 6 OF
2661 09°¢6L 000 000 6L 8921 096 000 000 6L €e€l 0T96L 000 000 6L AR 0v's6L 000 000 6L 6L 6L s op
191 05'86L 000 000 S86L 100 05'86L 000 000 S86L 66'ST S0°66L 000 000 S86L 6821 <1008 000 000 S86L S86L SS6L L op
8461 000 000 ges8 w6l sTiss 000 000 ges8 8LLL seiss 000 000 <e88 I8t <9788 000 000 <e88 cess gess 9 ov
w9t 000 000 SR 2991 08°€PL 000 000 SeRL 6691 SOERL 000 000 SR [Asgs 087 000 000 SR SERL SERL < op
vIel 000 000 868 oL 00'868 000 000 868 oseL 00868 000 000 868 €201 00868 000 000 868 868 868 voooop
Srot 000 000 §<I8 981 sueig 000 000 §<I8 ST61 0518 000 000 ¢<I8 cest LS8 000 000 ¢<I8] € oF
7€l 000 000 €8 2891 00°€88 000 000 €8 81 00°€88 000 000 €88 1521 00°€88 000 000 €88 €8 €88 T op
srLl 000 000 5606 ss0e 05606 000 000 S606 6L 05606 000 000 S606 1041 05606 000 000 <606 <606 S606 roop

91 05268 000 €768 SET Trzes 000 €765 €1 0£T6S 000 000 €265 91 0£T68 000 €765 €765 €268 8erony
86T 00595 000 96 18T 00998 000 96 6T 009§ 000 000 ES 91T 00595 000 ES 96 ES o 0t
LET 00709 000 09 €91 00709 000 09 L2 00709 000 000 09 6€°T 00709 000 09 09 09 6 (4
80T 0029¢ 000 295 s 00295 000 295 €1 00296 000 000 295 60T 00296 000 296 295 295 8§ 0
€r'T 0019 000 719 60T 0019 000 719 STl 0019 000 000 719 451 00719 000 719 719 719 L
Pl 00828 000 88 [0088 000 88 il 0088 000 000 88 P 0088 000 8.8 88 88 9
Lt 00108 000 108 €T 00108 000 108 [00108 000 000 108 It 000§ 000 108 108 108 s
sl 00902 000 902 91 00902 000 902 0e't 00902 000 000 %02 It 0090 000 904 902 %04 o0
It 008 000 €18 L£1 00°€LS 000 L8 [238 0028 000 000 L8 9I't 0028 000 L8 L8 L8 € 0
9Tt 00785 000 7S 6TT 00785 000 7S 60T 00785 000 000 s T 00785 000 78S 7S s T 0w
LU1 00°€£9 000 £69 1 00°€€9 000 £69 €1 0069 000 000 £69 €I1 00°€€9 000 £69 £69 £69 L (e
(owiL Bay _an[ep Bay sug deo W (owiL Bay _aneA Bay sup deo % [y (9ounL Bay on[es Bay sugdeno, deoy, | wiy (9wl Bay on[ep Bay sug deo % W SN soe 1 u

so=Ltero=9dsro=v»

so=Ltero=9dsro=v»

L0=4g0=gdg0=»

go=tgo=dgo=v

[£9] woxy sadueysur a3 YIM - JS.L Y3 10§ synsay reuonendwo) 1y 414V,

Appendix A. GILS - Details for the Granular parameters

104

TABLE A.2: Computational Results for the TSPPD-H with the instances from [63]

—05p=057=05

*=05p=057=07

a=025p=0759=05

x=075=0257=05

n 1 BKS UBKS Min %Gap % Gap Hns Avg. Value. Avg. Time(s) Min %Gap % GapHns Avg. Value. Avg. Time(s) Min %Gap % Gap Hns _Avg. Value. Avg. Time(s) Min _ %Gap % Gap Hns Avg. Value. Avg. Time(s)
80 1 120725 119225 119275 -1.20 1201.13 239.98 1193 118 1205.35 21074 119275 -1.20 1200.10 213.45 119275 -1.20 1205.20 21297
80 2 11915 1186 1186 046 1189.48 236.16 1186 -046 1196.55 168.81 11875 -0.34 1193.10 249.75 1189 021 1194.08 211.72
80 3 117075 1170.75 117075 0.00 117145 136.09 117075 0.00 1173.00 127.97 117075 0.00 117210 166.35 117075 0.00 1170.75 185.52
80 4 12795 1274 12795 0.00 1281.45 163.65 1274 043 1282.63 178.70 12795 0.00 128273 188.73 127825 -0.10 1283.98 171.63
80 5 122875 12115 121325 -1.26 1222.83 265.24 1214 120 123178 215.19 121225 -1.34 122213 325.46 1220 071 1225.38 204.03
80 6 1278 126225 126225 -123 1282.30 281.78 126775 -0.80 1285.28 235.68 126425 -1.08 1285.43 267.33 1276 -0.16 1289.68 251.73
80 7 117075 1168.75 1170.75 0.00 1173.95 160.94 1170 -0.06 1173.43 183.83 117075 0.00 117330 170.65 117075 0.00 117455 159.11
80 8 1220 1220 12205 0.04 1231.03 172.79 1220 0.00 1229.90 166.69 1220 0.00 1227.73 232.85 1220 0.00 1228.75 21045
80 9 1205 119425 11955 -0.79 1199.48 210.14 119475 0.85 1199.63 165.75 119575 0.7 1200.15 243.02 119425 -0.89 1199.80 153.64
80 10| 119725 119725 119725 0.00 120553 179.94 119775 0.04 1208.08 150.45 119725 0.00 120675 195.68 119775 0.04 1201.80 21652
Average 1214875 12077 120885 049 121536 204.67 12088 049 121856 180.38 1209075 047 121635 27533 121095 0.32 1217.40 197.73
00 1 13164 1310 13114 -0.38 1322.92 514.50 13106 -0.44 132432 459.59 13168 0.03 1325.06 362.88 13206 032 1331.40 530.49
100 2 13544 13298 13298 -1.82 1342.78 416.86 1339 114 1348.98 382.73 1339 114 134622 391.95 13324 162 1346.82 498.00
100 3 13704 1326 1326 324 1332.40 392.28 1326 324 1333.76 41242 1326 324 134278 397.54 1326 324 1333.58 47250
00 4 1439 1410 14194 -1.36 1432.50 572.83 14136 177 1429.26 453.19 14248 -0.99 1433.72 433.78 1410 2,02 1424.16 536.72
100 5 13126 13126 13126 0.00 1321.06 495.69 13126 0.00 1324.96 40452 1315 018 1326.86 384.08 13178 0.40 1328.64 437.68
00 6 14256 14056 14056 -140 1418.26 580.21 14104 -1.07 1421.86 488.87 1408 123 141658 562.06 14106 -1.05 1421.82 580.06
100 7 13588 1337.8 13418 -1.25 1348.42 413.19 13378 -1.55 1347.94 459.18 13418 -1.25 1348.38 399.73 13412 -130 1350.62 448.86
100 8 1408 13922 14074 -0.04 1415.04 310.70 13932 -1.05 1404.40 502.25 13922 -112 1408.04 390.80 13922 112 1402.98 547.02
00 9 13818 1372 13778 -0.29 1381.46 331.30 13724 -0.68 1379.04 408.18 13736 -0.59 1380.16 357.91 1372 071 1375.82 406.03
100 10 14146 14014 14014 -0.93 142344 393.91 14082 045 1416.98 487.32 14016 -0.92 1428.24 39235 14032 -0.81 1418.22 565.63
Average 137816 1359.74 136332 -1.07 1373.83 44215 136238 -1.14 1373.15 44582 136388 -1.03 1375.60 407.31 13626 111 137341 502.30
120 1 14367 14367 1439 016 0.16 1457.97 603.31 14395 019 0.19 1457.60 746.54 14395 019 0.19 1458.88 585.25 1438 0.09 0.09 1446.40 830.38
120 2 14555 145117 | 145283 -0.18 018 1476.42 536.27 145667 0.08 0.08 1468.90 101690 145117 030 030 1473.28 853.87 1467 079 0.78 1481.22 751.90
120 3 14655 14635 1470 031 031 1491.25 468.02 146617 0.05 0.05 1489.02 824.96 14635 -0.14 0.14 1491.13 550.25 147133 0.40 040 1489.97 634.84
120 4 15437 152567 | 152567 -1.17 118 1566.28 625.82 15265 -1.11 113 1547.70 1117.07 1530.67 -0.84 -0.85 1554.80 1150.81 153517 -0.55 056 1556.60 1361.01
120 5 14307 142517 1439 058 058 1445.04 649.06 14345 027 026 1446.87 738.14 144217 0.80 0.80 1447.92 524,57 142517 -0.39 0.39 1446.14 616.25
120 6 1528 152567 152567 -0.15 015 1554.30 873.93 152717 0.05 0.05 1543.50 1072.67 15425 095 094 1558.43 618.51 154333 1.00 099 1556.12 877.91
120 7 15177 151067 | 152317 036 036 1529.13 827.64 151417 023 023 1530.93 856.26 1510.67 046 047 1527.85 861.54 15215 025 025 1534.42 77853
120 8 15048 15048 151033 037 037 1525.95 699.92 151317 056 055 1529.69 907.36 1507.33 0.17 0.17 152677 852.19 1510.83 0.40 040 1527.43 936.75
120 9 15289 152867 | 153683 052 052 1545.72 940.51 153817 0.61 0.60 1549.17 856.54 152867 -0.02 -0.02 1546.10 809.67 152867 -0.02 0.02 1543.60 706.48
120 10 15408 1531.83 153183 -0.58 059 1540.27 730.49 1534 044 0.4 1543.87 616.42 153317 -0.50 -0.50 154623 619.16 1534 044 0.4 1551.22 669.33
Average 149523 1490385 | 1495433 0.02 002 1513.23 69550 1495.002__-0.01 20.01 1510.72 87529 1494935001 0.02 1513.14 742.58 14975 0.5 0.15 151331 816.34

105

A.2. Wilcoxon Test

9€'999¢ S0¥881 €90 90 8491981 S0°184€ 78'4881 16'0 €60 S¥6'9981 F1'0€9¢ 18'9881 680 06'0 SH'998L 162842 0Z'S881 €60 60 LL1L981 196'LF8T LLL'6V8L 28esony
S0'1THT ¥T9L81 €70 €70 68€S8T 008T1E 0¥088T 660 00T 7981 ¥¥T6eT S6'948T o 70 TI'PS81 LTTL6L €T6L81 90 9%0 P81 6°SF8L 6'SP81 ot 081
pevere el 9T LT 68TF6L £5°860€ S8FP6L 90 w0 Frecel €2°08C€ [Uaa 8 PUL 9T L96E6L $8'975T STl 10T °WT TrLgel SLl6l g'Ll6l 6 081
16'660€ L9061 98T 8G°T L9681 6T'856C 166061 86T T 8476681 0t’0cke ST'T061 60 $60 686481 68°€LTT 1479061 680 060 688481 77981 77981 8 081
c06lLe €€'6481 200 W00 FFIP8L 8CFI0Y 18981 80" 18°0- 8471€8T 89°09¢¢ TT'e8s8T €0 €20 1681 6L7L61E T€'8481 190 190 T1'8S81 841€8T 89¥8T L 08T
0T°L19¢ 1Tes8L ¥L0 SL0 L1°Iest 09°1¥cr 98HG8L w€'L el 8L 181 1T'80ce €LPesl 65T oL 689781 €U6I81 8470981 86'L T TThesl LV LI8T L¥LISL 9 081
L6°LSYE €T1C81 160 60 951081 €6'66€€ 76'G8L w01 €01 95°€081 S8'IPLE 786181 09°0 090 9641 €6'199C 206181 €T P01 8L°€08T Te8Ll Te8Ll S 081
91'100S 65°LL61 ¥9°0 790 TTesel 81THCS FOF661 460 860 841961 LL'6€0S SLE661 00T 10T €€T96l PGinig ShvLel 68°0 060 €€0961 86l 86l ¥ 081
18'991% 8TTE8L 60 950 TTTE8L 0TH9et 16'0981 60 60 £€°6£81 YLv66E 6578981 wo wo 96781 €0°1LTe 791881 €80 80 €E°LEST 178l 1781 € 081
§8950€ 200481 S¥0 S¥0 TTLY8L 19°£9%C 008481 €0T 0T LL8T €1'688C 119481 (7" SL1 1481 €€7T891 207481 90°T L0T 96'8G81 6'8€8T 6'8€81 < 08T
$0°009% 851981 810~ 8U0- 99°GI8L S£'8908 LU1981 60°0 600 95081 [y a4 S0°0981 80 w80 68€E8L 05'88€ 9€€981 S50 980 6281 956181 6'8I8L L 081
L8FIFT G€'8941 290 €90 S8YLL SE9FFT 8€044T 640 180 T9STGLT 9T°€LTT 092941 €40 640 T0€0ST €£°€50C 89'8941 120 TLO LE6'6FLL SEOFELL GSLELL a3erony
68'8€ST 19'6841 €10 €r0 T98eLL STesLT TE68LL 800 800 SLLSL1 S5°0LVL TT6SLL 900 900 8ELSLL ST8LTL 66'8SL1 80°0 800 SLLSLL €981 €981 or 091
69°9TCT 06'6841 STo- STo- 841 6€°001C TLT08L w0 w0 (4% (A% 1€°5081 09641 o TC0- SLT8LL 94'€T0T 6LF6L1 €70 €70~ 6LLT 6LLT £'98L1 6 091
06780€ 0£'€6L1 0F'T W YLL 18'260€ 08°48LL SU'T Ir't 6941 ¥6706C ¥6'T6L1 10T w0 £9L1 ST915T FI¥8LL 180 80 S'€9LL TehLL TebLl 8 091
T8'66CT €ULLLL 91 991 8ETLLL PLrvs6l 91841 el 481 SL69L1 LO0°L19T vressl 05T @t 888941 0T0TFL £€°6841 05T €51 6941 vTvil f 4 7A% L 091
90'99cT 009641 9T SLT TR 68'SLST SL96LT Sh'e 16T 0LL1 9697 9€'68L1 sTT 0€T 8€99L1 £€8'790C 040641 80C °re 8ee9Ll £'92LL £'92LL 9 091
1¥°S48T $9'8991 01- €01~ £g91 C0°8LLL 990491 €L0- Lo TUTEIL €0'8461 PeeLol 000 000 TI'¥Pe9L 8€'9961 €5°2991 1o 120~ T90991 L891 I$991 g 091
€V'T8LE 947981 o I7°0- 88681 94'6€9¢ 96'£981 0¥0- 6€0- ST0E8T creere 80°S¥81 950~ 960~ STLTI8T v6'cT0e 902481 S¥0 S¥0 SL'S¥8L Ferayrais GLEST i 091
$0'1581 16°8€L1 9.0 940 TI'L69L 19°6€1T 65°THLL 09C 9T ST6UL 19°€T6l 1LPPL1 0T STT Tl £8°£80T 86°€€LT 0ct 7L SLv0LL €F891 €¥891 € 091
GCL68T 197481 ST'T [8E9PLL 88'8E¥T €9°L8LT 10 wo TU8ELL LU'60¥T 07841 650 650 88'GELT LS€S8T °§L8LL 640 080 S6ELL JACTZA) L'STLT T 091
L6'9T€T €L6ELT 100~ 100~ STl $8'966C FL9ELT €10 €r0 SLPILT 78789 G9'8ELL 050 160 STresl 1L¥¥eT YTTIPLL 8.0 6L0 TI9TLL STILL 9TILL T 091
€£°€991 9€'6891 0£0 140 €99°€291 0T'st81 ¥ 091 140 10 66S°€291 G881 69'8€91 L80 860 ¥ISTTIL 96'0TL1 96°LE91 o €40 1007291 ¥L6'0191 £1TI91 23esony
0S°T6ST 9€T69T 120 120 €761 199191 680691 0%°0- 00~ 6779991 THOP9T 6€°€691 620 600 TL9491 S8PE8T 649891 S0°0 SO0 TLTLIT 626991 6'1L91 ot (4
£9TL9T L5891 1wt wl 6791 €T6161 678991 ort it PULYI1 09°68€L L¥T91 'L €0 98°GF91 Fiacian 9€2991 4670 860 Eigls 16291 1’6291 6 ovL
956891 €6'6E91 L0 40 €091 €€'6881 0F€€9L 690 69°0 jd el Tresrt 0€°0€91 SL0 SL0 P1Iecot F¥'9091 48291 950 950 0291 1191 1191 8 [Uigs
658851 £6'6991 SU'T LUT 6T0P91 85°680C $S6791 £90 £90 6TTEIL 6L'SThL £€8'2991 160 W60 609891 65 LFST 1€'€991 050 0S0 486291 P19t P19t L (04
8T01ST 992991 €80 80 ST €18€0T 020491 S0 940 TL€P91 6LL6VL 64TL9T 0g0 0€0 F19€91 €0°99€T 9T'$991 0e'T T« 987991 €1e91 €1€91 9 [Uigs
SE0zST 66'€9ST €€°0 €€0 8PSt 6C°CI8T LTG9ST 040 040 TLessT 66'G89T ¥6'65ST 1o~ 110- FUTPST P81 TSt 920 9T0 98'9¥ST PUTPST 67TPST S (g
6'6£81 6T0TLL 6L°0 080 19691 §0°80€T €8FILL €L0 VL0 P1G691 8€°L68L IFPILL 9€0 9€0 148891 6L1L91 €L61LL ST 9Tl 622041 £7T891 £7T891 14 [Uig8
P8TUFL €L'€8ST €00 €C0- TLL9ST 8EFE]T PEe8ST STo- ST0- 69T 640981 64°€8ST 6£°0 6€0 €F'LLST 16CH0T 8'78S1 920 90 €F'9LST T£4°£9ST €148T € 0FL
98'980C S TI91 ¥60 760 986651 €0°8891 10°T€9T [iat €L LSL09T LSTHLL STt W'l ST €re09L 6€°GP91 9TTIL Sh'L 871 6T°8091 6781 67851 4 (04
09°€9ST 950091 901 0T T6SL iogeiera £9'609T ST 48T 0091 £€6°L9TL TF1091 €0 €0 62 08ST EVESTL ST°E091 20 S0 £8ST TELat T8/81 T OFL
(s)ouur], ‘8ay -anfep ‘8ay sup den o, deno, ury (s)owrr], ‘Bay -anfep ‘8ay sup den o, deno, Ut (s)ounry, ‘8ay -anpep ‘8ay sup den o, deno, urA (s)ounr], ‘8ay -anpep ‘8ay sup den o, deno, ury San g 1 u

go=tsro=dsLo=»

go=tero=dsco=»

L0=4go=gdgo=»

so=tgo=gdgo=»

[£9] woay saoueysut a3 YIm H-(JdJS.L 943 10§ sinsay Teuoneindwo) ¢y 414v],

Appendix A. GILS - Details for the Granular parameters

106

TABLE A.4: Computational Results for the TSPPD-H with the instances from [63]

t=05B8=057=05

*=05p=057=07

a=025p=0757=05

=075p=0259=0.5

n i BKS UBKS Min %Gap % Gap Hns Avg. Value. Avg. Time(s) Min %Gap % Gap Hns Avg. Value. Avg. Time(s) Min %Gap % Gap Hns Avg. Value. Avg. Time(s) Min %Gap % Gap Hns Avg. Value. Avg. Time(s)
200 1 19286 19286 19609 1.67 1.65 1973.20 4102.21 19479 1.00 0.99 1968.98 4648.11 1945 0.85 0.84 1968.60 5099.32 19406 0.62 0.62 1967.89 5365.74
200 2 19647 19647 1997 164 1.62 2020.10 5180.83 19795 075 0.75 2012.82 5595.20 19849 1.03 1.02 2027.68 4963.56 1992.8 143 141 2020.54 6050.86
200 3 19543 19543 1979.9 131 129 1990.56 3834.65 1990.5 1.85 1.82 1993.52 3455.56 1980.2 1.33 131 1990.19 4098.39 1979.9 131 129 1989.75 4976.59
200 4 20414 20414 2048.7 036 0.36 2094.55 6034.28 2091.7 246 2.40 2106.22 6755.41 20491 038 0.38 2097.84 6534.01 20442 014 0.14 2091.38 6641.43
200 5 1890.4 1888 1888.8 -0.08 -0.08 1905.39 3966.07 1899.3 047 047 1909.34 3702.09 19047 076 0.75 191224 4656.87 18975 0.38 037 1907.97 4458.37
200 3 1948.3 19483 19794 1.60 157 1995.77 4037.88 19826 176 173 1995.99 4547.05 19832 1.79 176 1995.89 4973.84 1979.7 1.61 159 1995.73 4642.23
200 7 19304 19304 19641 175 172 1985.48 4090.13 19486 094 0.93 1982.57 4999.08 19415 058 0.57 1982.60 5698.55 19674 192 1.88 1983.07 5553.71
200 8 19951 1995.1 2006.8 059 0.58 2022.97 6294.31 20035 042 0.42 2023.96 5315.90 2007.8 0.64 0.63 2032.24 5888.56 20051 050 0.50 2025.38 4393.57
200 9 2013.7 20137 20581 220 2.16 2062.93 3117.16 20568 2.14 2.10 2062.53 3691.44 20571 216 211 2062.71 4176.62 20475 1.68 1.65 2059.22 4364.51
200 10 1927.3 19273 19533 135 133 1965.35 2452.35 19447 0.90 0.89 1960.41 3242.52 1946.6 1.00 0.99 1962.25 3569.29 19504 1.20 118 1964.36 2904.72

Average 1959.42 1959.18 19837 124 1.22 2001.63 4310.99 198451 1.27 1.25 2001.63 4595.24 1980.01 1.05 1.04 2003.22 4965.90 1980.51 1.08 1.06 2000.53 4935.17

107

$L91 6€CE0L 1€0 1€0 £9'1€0L [IWAS 8F2€01 820 8T0 €€1€0L $891 26TE0L 1€0 1€0 L9'1€0L 919t 86'1€0L 0€0 0€0 09'1€01L ¥$'8201 SF'8¢01 28esony
8¥'1C 78'8701 000 000 £9'8%01 [QwAS 98701 000 000 £9'8%01 181 0€670T 000 000 £9'8%01 6LLL L0'6701 000 000 £9'8F%0T £9'8%01 04'8¥0T 0t 09
LE8T €€700T 620 600 €€H00L £00T €€F001 6C°0 620 €€F00T 66'0C €€700T 620 600 €001 €081 967001 6C°0 600 €€F00T €F100T €7'100T 6 09
Shst 00'1€0T LE0 LE0 00'T€0T el 00°T€0T LE0 L£0 00'1€0T 0891 00°'1€0T LE0 £L£0 00'1€0T 08T 00°T€0T 80 £€0 00'1€0T 61°£201 614201 8 09
91 €€7200T 610 610 €€400T 7961 €€200T 610 610 €€7400T 6L €€7200T 610 610 €€£001 LS'ST €€°200T 610 610 €€7400T €F'S00T €7'S00T L 09
8V €6'0801 €6'0 €60 L9°LLOL wee €C1801 90 290 €ehL0L €€TT €0°0801 €60 €60 L9°LL0L 19°€ 08°6401 €6'0 €60 L9LL0T £9°£901 0472901 9 09
6C1T L9686 8T0 870 £9'686 6LTL £9'686 870 820 £9°686 1911 £9°686 8T0 870 £9'686 89°0T £9'686 820 8T0 L9686 €6'986 €6986 g 09
rag! 009901 €70 €70 009901 €81 009901 €70 €70 009901 st 009901 €0 €70 009901 €LYL 009901 €70 €70 009901 SPI90T SH'1901 ¥ 09
€8°CL £9°€66 €0 €60 L9966 €e'6L L9°€66 €60 €60 £9°€66 90°41 £9°€66 €€0 €60 £9€66 LS°S1 £9°€66 €€0 €60 L9966 9€066 9£°066 € 09
(18 48 €€°LF0T 620 670 €€LF0L €671 €6'LF01 620 6C0 €€LF0T 0g9°€T €0°870T 6T0 670 €€LV0L SEPL 9T L¥0L €T0 €00 L99%01 0€PP0L 0€FFOT < 09
0981 087501 000 000 00°1S0L LSt 005501 000 000 001501 LUST £€8'9501 000 000 00150 st 00°1S0T 000 000 001901 00°ISOT 00'1S0T L 09
60'S 19'9%8 000 000 S59%8 sTs 79'9%8 000 000 as9r8 60'S 9978 000 000 8CS 79'9%8 000 000 45978 SG9¥8 GS9¥8 a3erony
98 05298 000 000 05798 0§ 05798 000 000 05798 e 05298 000 000 9% 05798 000 000 05798 057798 09298 or [0i4
8¢S 05948 000 000 05948 |7 05948 000 000 0598 [iad 05948 000 000 L8F 05948 000 000 0598 05948 05948 6 o7
(VA 09°S6L 000 000 00°S6L 106 06'S6L 000 000 00964 e 06'S64 000 000 059 06'S6L 000 000 00964 00°S6Z 00°S6L 8 g
95°L 05862 000 000 05864 678 09864 000 000 05864 769 05864 000 000 s 05864 000 000 05864 0986 05864 L [Uig
€Y 05°€88 000 000 0s€88 8% 05°€88 000 000 05€88 LY 05€88 000 000 o4 05°€88 000 000 05€88 05'€88 05€88 9 [t g
(1554 0S°€vL 000 000 0S€PL 11554 05°€vL 000 000 0S€rL L6 0s€vL 000 000 9et 0S°€vL 000 000 0S€rL 0S'€vL 0S°€hL g [0i4
Eiiad 00868 000 000 00868 87 00868 000 000 00868 1€s 00'868 000 000 et} 00868 000 000 00868 00868 00'868 i oF
A 0S°S18 000 000 05€18 86'S 0518 000 000 05€18 L6 05618 000 000 €€g 0518 000 000 05€18 05'S18 09°S18 € 0F
8€F 00°€88 000 000 00°€88 Frad 00€88 000 000 00°€88 6¥'F 00°€88 000 000 97 00°€88 000 000 00°€88 00€88 00'¢88 T [Uig
vy 05°606 000 000 05606 (U4 05606 000 000 05606 laad 05606 000 000 9Tt 05606 000 000 05606 05606 05606 1 g
L850 0€268 000 000 0€T68 850 0€T68 000 000 0€T6S 850 0€'T6S 000 000 0€T68 950 0€T68 000 000 0€T68 0£T68 0£'T6S 23esony
LLO 00598 000 000 00€9S 80 00°€9 000 000 00998 180 00998 000 000 00€9¢ 080 00°€9 000 000 00998 00'69S 00°99S ot 0c
190 00709 000 000 00F09 65°0 0009 000 000 00709 090 00709 000 000 00709 L850 0009 000 000 00%09 00709 00709 6 0T
150 00°£98 000 000 00298 150 00298 000 000 007298 150 007298 000 000 00298 150 00298 000 000 00298 0029 007498 8 0T
050 00C19 000 000 00TI9 150 0019 000 000 0019 150 0019 000 000 00TI9 050 0019 000 000 0019 0019 00T19 L 4
%o 00848 000 000 00848 w0 00848 000 000 00848 6o 00848 000 000 00848 0s'0 00848 000 000 00848 00845 00848 9 0T
SS0 00°T0S 000 000 00°T0S S50 00°T0S 000 000 00'T0S S50 00'10S 000 000 007T0S S0 00°T0S 000 000 00°T0S 00'T0S 00'T0S S 4
L850 0090 000 000 00904 950 00904 000 000 00902 090 00902 000 000 00904 S0 00904 000 000 00902 00904 00904 ¥ 0T
290 00°€48 000 000 00°€4S €90 00°€£S 000 000 00°€LS 290 00°€LS 000 000 00°€48 09°0 00°€4S 000 000 00°€£LS 00€48 00°€LS € 0T
€50 0085 000 000 008 S0 00¥8S 000 000 00%8S 50 0085 000 000 008 €50 008 000 000 00%8S 00%8S 008 4 4
150 00°€€9 000 000 00°€€9 750 00°€€9 000 000 00°€€9 50 00°€€9 000 000 00°€€9 50 00°€€9 000 000 00°€€9 00°€€9 00°€E9 T 0T

(s)ouary ‘8ay anjep 8ay sug deno, deny, urn (s)ourr], Bay -anpep ‘8ay supydeno, deno, unn (s)ourry, ‘8ay anjep 8ay suy deno, deny, urg (s)ourr], Bay -anfep ‘8ay supyden o, deno, unn SN g 1 u

co=Ltezo=gdsro="» co=tero=9dezo=» L0=Ltgo=dgo=» go=teo=gdco=v

A.2. Wilcoxon Test

[£9] woay saoueysut a3 Ym H-(dJS.L 93 10§ sinsay Teuoneindwo) ¢y 414v],

Appendix A. GILS - Details for the Granular parameters

108

TABLE A.6: Computational Results for the TSPPD-H with the instances from [63]

*=05p=057=05

a=05p=057=07

a=025p=0759=05

®=075p=0257=05

n 1 BKS UBKS Min _ %Gap % GapHns Avg. Value. Avg. Time(s) Min _ %Gap % Gap Hns Avg. Value. Avg. Time(s) Min _ %Gap % GapHns Avg. Value. Avg. Time(s) Min _ %Gap % GapHns Avg. Value. Avg. Time(s)
80 1] 120725 119225 | 119225 -124 119558 56.46 119225 124 1195.33 1281 119325 -1.16 1197.05 4049 119225 124 1193.83 10.83
80 2| 119150 118600 | 119050 -0.08 119445 34.03 1186.00 -0.46 1194.23 41.59 119075 -0.06 1197.68 4435 119000 -0.13 1193.88 43.83
80 3| 117075 117075 | 117075 0.0 117075 33.60 117075 0.00 1170.75 33.78 117075 0.00 1170.75 33.57 117075 0.00 117075 30.71
80 4| 127950 127400 | 127800 -0.12 1286.03 33.72 127550 -0.31 1280.08 38.54 127800 -0.12 1286.03 41.22 127800 -0.12 1281.63 47.52
80 5| 122875 121150 | 121325 -126 1217.88 54.90 121150 -1.40 1222.28 6447 121225 -1.34 122138 69.94 121400 -1.20 1218.40 70.00
80 6| 127800 126225 | 1266.00 -0.94 1276.05 53.22 127550 -0.20 1281.18 49.76 126650 -0.90 1278.65 44.87 126475 -1.04 1277.05 50.41
80 7| 117075 116875 | 117075 0.00 1173.95 4425 117025 -0.04 1174.35 36.63 1170.00 -0.06 117355 42.68 116875 -0.17 1171.50 48.73
80 8 | 122000 122000 | 122050 0.4 122173 43.55 122050 0.04 1224.55 49.19 122225 0.18 1225.68 4245 122225 018 122653 46.16
80 9| 120500 119425 | 119425 -0.89 1198.13 4544 119425 -0.89 1196.75 50.89 1197.75 -0.60 1199.73 45.13 119425 -0.89 1197.80 45.04
80 10| 119725 119725 | 119875 0.3 1204.08 51.35 119875 013 1208.25 38.60 119775 0.04 1208.68 38.02 119925 0.17 1201.63 45.65
Average 121488120770 | 120950 044 121386 1505 120953 044 121477 1463 120993 -0.40 121592 427 120943 044 1213.30 16.89
100 1| 131640 131000 | 131000 -0.49 1315.32 90.09 131040 -0.46 1319.76 88.15 1310.60 -0.44 1320.58 83.73 1310.60 -0.44 1316.56 83.14
100 2| 135440 1329.80 | 1341.60 -0.95 1347.22 100.15 1335.80 -1.37 1347.06 81.01 1340.00 -1.06 1347.66 95.46 134420 -0.75 1346.66 82.19
100 3| 137040 132600 | 133520 -257 134136 87.24 133580 -2.52 1342.78 104.89 133280 274 134182 81.03 133240 277 1344.14 85.55
100 4| 1439.00 141000 | 1411.60 -1.90 1420.40 108.58 141600 -1.60 1424.26 9213 142200 -1.18 1426.50 99.00 141160 -1.90 142052 81.13
100 5| 131260 131260 | 131880 047 1327.84 109.80 131540 021 1325.76 98.82 132260 076 1328.84 106.61 131540 021 1321.38 10451
100 6 | 142560 140560 | 140840 -1.1 141320 111.18 141020 -1.08 1415.46 108.66 140840 -1.21 1416.60 107.15 140980 -1.11 141522 106.64
100 7 | 135880 1337.80 | 134240 -121 1349.06 85.60 1337.80 -1.55 1350.12 85.53 134180 -1.25 1350.14 79.55 134380 -1.10 1349.70 81.88
100 8 | 140800 139220 | 139320 -1.05 1396.40 82.12 139320 -1.05 1398.28 89.84 1397.80 -0.72 1400.60 78.79 139220 -1.12 1396.02 88.79
100 9 | 138180 137200 | 137200 -0.71 1375.58 82.79 137260 -0.67 1376.16 79.12 137440 -0.54 1377.58 7532 137200 -0.71 1375.96 70.98
100 10| 141460 140140 | 1401.80 0.9 1406.44 125.69 1401.60 0.9 1406.28 105.58 140220 -0.88 1408.74 126.33 140460 071 1409.46 98.76
Average 137816135974 | 136350 -1.05 1369.28 98.32 1362.88 110 1370.59 93.37 136526 -0.93 137191 93.30 1363.66 -1.04 1369.56 88.36
120 1| 143670 143670 | 1437.67 0.7 0.07 1447.23 184.13 143567 -0.07 0.07 1444.98 129.67 144033 025 025 1448.82 150.03 143817 0.10 0.10 1445.32 153.23
120 2| 145550 145117 | 145817 0.8 0.18 1464.58 158.85 145300 -0.17 0.17 1461.35 173.23 146283 0.50 050 147027 177.29 145817 0.18 0.18 1470.67 209.09
120 3| 146550 146350 | 1463.50 -0.14 0.14 1478.25 163.23 147033 0.33 033 1482.13 13177 147167 042 042 1476.58 163.74 147550 0.68 0.68 1482.55 149.89
120 4| 154370 152567 | 153467 058 059 1540.85 181.04 153117 -0.81 0.82 1544.13 192.04 153383 -0.64 0.64 154552 193.47 153733 -0.41 041 1543.57 180.60
120 5| 143070 142517 | 1437.33 046 046 144252 164.79 144550 1.03 1.02 1447.72 136.77 1429.83 -0.06 -0.06 144152 153.05 142750 -0.22 0.22 1441.12 151.91
120 6| 152800 152567 | 152817 0.1 0.01 1537.28 189.73 1536.00 0.52 052 1546.50 186.92 153117 021 021 1550.82 170.60 152950 0.10 0.10 1542.45 173.43
120 7| 151770 151067 | 151733 -0.02 -0.02 1524.55 157.58 1521.33 0.4 0.24 1526.78 124.19 152050 0.18 018 1529.37 14929 1521.33 0.4 0.24 1524.90 16153
120 8 | 150480 1504.80 | 1509.00 0.8 028 1518.40 140.48 151133 043 043 1520.12 135.25 1508.83 0.27 027 1520.03 129.57 151267 0.52 052 1519.75 144.76
120 9 | 152890 152867 | 152617 -0.18 018 1533.67 142.87 152400 -0.32 032 1539.62 152.01 1530.67 0.12 0.12 1538.60 182.41 152100 -0.52 052 1534.12 144.40
120 10| 1540.80 1531.83 | 1532.50 -0.54 0.54 1539.38 122.25 153717 -0.24 0.24 1540.68 130.11 1537.67 -0.20 -0.20 1542.65 122.07 153533 -0.36 0.36 1542.38 135.15
Average 149523 149039 | 149445 0.05 005 1502.67 160.50 149655 0.09 0.09 1505.40 149.20 149673 0.10 0.10 1506.42 159.15 149565 0.03 0.03 1504.68 160.40

109

$8°€19 29°7£81 o €40 61'€981 64878 S9°6481 SL0 S£'€981 L0708 07581 10 TL0 867981 118G 940481 90 8€'8981 P6'LV81 8L°6F8L 28esony
16'6¥F 8070481 98°0 480 681981 6L TLY 1€°0481 190 TTLS81 89°L9F% 08°0481 09°0 190 TT°4S8T 00767 617981 190 TTLS81 06'SP8L 06'STST 081
06128 €56€61 ¥L0 SL0 68161 wses €6'8€61 <80 0061 9czes 1S6€61 L60 86'0 €961 86429 89'8¢€61 890 £9°0g61 0S°Z16T 0SZ161 6 081
LETFS TH6881 160 160 TT6L81 €C°LLY 8€°0681 1Tt 0076881 207008 986881 60T 01T £977881 6G°LFS €7°9881 €L0 68°GL81 022981 0TT98L 8 081
1658 TH'e981 €00 €00 €CL8T €07SS L9981 90 951681 0¥'62S T€048T L850 860 ¥FLS8T 96795 S0°098T or'o L9'8¥81 8L1€8T 08'9¥81 L 08T
€0°59% €1'8F8L LET 6€T 8LTHSL 9T LLY 0T 6781 STL 96°8€81 08°60% 086781 8T 6L 00°I¥8L 8€°60S SLLY8L 90 L6281 LY LI8L ¥ LISL 9 081
12048 76'8081 150 60 FPE6eLL 10509 §9°208T w1 £L9°€081 E€T'T6S STTI8L ¥l STT 994081 £8'9L9 €9°108T o 6Ll 079841 0T'S8LL S 081
€918 £€'€961 ¥00 F00 L9€v6l 86'879 G8'8961 L¥0 681961 1U6¥S 147961 90°0- 900~ L9TF6L w6 T 0%°0961 €€0 wetel 08°Ch6l 08°Th6L 4 081
68718 8°LF81 €80 780 €€LE8T 69°€TS 8€°GF8L o €ETI8L °W6'SLY 8T 1681 €0 €0 68481 S0°€LS €E'8F81 0€0 £9°/LT81 01°CZ8l 01°CT8L € 081
68'CTS T°E'LI8T 80 880 IT'SS8T T°G8FS TG'L981 61T T1° 1981 05918 80°8981 €Tt ST'T 000981 8C°09S 05°'198L 650 686781 06881 06'8€8T < 08T
¥ o8t L18¥81 = 90T TT8esL 8795 181681 190 L1°0€8T 88'89% 8€'9E81 $0°0- ¥00- 11'8I8L LSS 9L'8€81 61°0 €€TT8L 956181 06'8I8L L 081
60°2LE €V LGLT S0 660 S04LvLL SETLE €9'8541 890 0¥ '6vL1 €094€ S0'8G4T 480 650 ¥9LVLL €€°6LE 04'GSLT 480 06'€PLL FOFELL GGLELT a3erony
S81EE 66'LSLL 900 900 8ELSLL 6C°9€€ 6L LSLL 900 8ELSLT 60°81€ $0'8541 800 800 SLLSLL L°L¥E 8G°LSLL 900 8ELSLT 0€'9S41 0€'9S41 or 091
LSV €€'8841 wo- TC0- SLT8LL 8SF0F TL7T6LT L00- 8€°G8L1 09°%4E STF6LT o ¥20 00°T6L1 crsey 18°68L1 ¥To- 05T8L1 006441 0479841 6 091
T€00€ 9€'SLLT 80 £80 0SF9LL 80°€TE 10'84L1 S6°0 009941 SL€TE ¥T8LL1 ¥L STT TUTLLL 09°€€€ TTILLL 080 8E°€9LT 0T6VLL 0T6PLL 8 091
e vooLLl art 9T T9T9LL 61LTE TrTLLL €T SLL9L1 09°62¢ 6€°6941 790 90 T9¢€ssl £00LE 9€°£L9L1 680 008841 0vehsl OFThLL L 091
20°06€ 9L'ELLT STT 0TT T9PILL 06'L¥F S699LT A 88TSLT 1rese SL'8LLT €T 8TT TI'99L1 66'8LE F0°0LLT €5'T 05°€SLT 0L:92LT 0492 9 091
66'69€ 09°€991 S50 §6°0- 00°SF9L 1799 089591 €70 00°£¥91 8€19¢ 1891 ¥ 0- ¥0- 88°9F9L §9°86€ €T6591 €0 888791 0091 01'FS91 g 091
60'9L% 86'LEST 490~ £9°0- STS8L 10805 6E°€V8L qe0- 00'1€8T 9¥'qes 98781 8€°0- L0~ T90€8L TT9%F S€'8C8L 8T'T- 918t STLT8T 0S7LEST i 091
99°'19% ST'0ELL W'l ST 8E0ILL L8LLE 6€°07LL we 8ETELL 09°L9% I 1eLT 06T 6T 004141 LE18E €8°07LL €re 88°0TL1 0€F89T 0€'¥891L € 091
€1'88€ yUsvil £L80 450 T9'SELL 80°96€ 19°L¥LT €80 TrovsL 9¥'99¢ 6¥'STLL w90 790 8E9ELL Fiadig VLT €0 8ETELL 0£'9¢LT 04°STLL T 091
orree PL8TLT L850 L50 8€TTUL 90°'82C T9TELT 120 ot 6C'80€ 68°TTUL 6€°0- 670~ 88'G0LL 0T'L6T 6CFTLL €60 00°£0LT 0STILT 09°TILT T 091
SL9HT ¥6'0€91 €50 €60 1£0291 T695¢ $S1E91 €0 19°0291 6C°€5T 86°0€91 €50 €60 140291 S6'79C 0L'1€91 090 181291 £6'0191 £1T191 23esony
SL91T L8891 070 0%'0 08'92C 197891 L10 TL¥7L91 9€'861 65°€89T €0 w0 6TLLT ¥T'L0T 260891 €0°0- € 1L9T 6CS99T 06'TL9T ot (4
€912 L1979 880 68°0 6€°SHT F09791 £90 PLOvIL ST0ET 687791 €L0 €0 0091 10°0¥T €991 €80 LLTHIL 0’6291 016291 6 [0}
80°'GE€T 98'6291 790 €90 E€LFIT 8'¥9L 940 6C°€T91 98'¥CT 8CTFTIT o 0 FI8I91 YT 6€°€C9T 650 £8°0291 00'TT9T 00°TI9T 8 [Uigs
SPHrC P aroL <o o 8L'69T 96'L91 0r'o 00°€291 0T'65T 1T9P91 990 990 FITEIL 079 €9°4191 LLO 00%€91 0F'129T 0% 1291 L (04
1679C 967991 £L80 860 €9°00€ 19991 €€0 1£9¢91 8€'66T #0991 840 60 FLFPIL 88'FCE T7'es91 9T'0 98°€€91 0€1€9T 0€7TEIT 9 [Uigs
65°€ST 18'09ST w60 €60 9L%8C 6L'8SST 6C°0 €V LPST 6L€ST 8°09ST 10 T 00FSST 88°09C LTT9ST 86'0 PI'8SST PUTPST 06°CHST S (g
€eHse 10°S041 670 670 £L976T 989041 £8°0 989691 187The 6£°80L1 Lo ¥10 009891 €r11E 96°L0LL 180 €7'9691 0477891 04°T891L ¥ [0
LS0€T 65 18ST €0°0- €00~ S¥eeT LS'88ST 150 €F'64ST 96'€TT 40851 700 ¥00 00TLST 169¢€T 08°'I8ST L10 007451 TLL9ST 0€°14ST € 0FL
9980C 6L9091 S0 S50 wLe 965091 980 148651 66'89C €1'9091 80 ¥80 608651 LE'88T 161191 101 L1091 06%8ST 06'78ST 4 (04
£8'9€T L8L6ST 86'0 860 ¥LL9T LLG6ST 290 98'6861 YETFT PEG6ST €90 €90 ¥I'G8ST 0¥'69T 9€'96SL 290 98'G8GT 0TGLST 0TSLST T OFL
(s)ouary ‘8ay -anpep ‘8ay sup den o, deno, (s)our], 3ay -anfep ‘8ay sup deo o, Ut (s)ourry, ‘8ay anjep 8ay suy deno, deny, urg (s)ourr], 3ay -anfep ‘8ay supy deo o, Ul SN g 1 u

so=4sro=dsLo=»

go=tero=dsco=»

L0=4go=gdgo=»

go=tco=dgo=v

A.2. Wilcoxon Test

[£9] woay saoueysut a3 Ym H-(JdJS.L 93 10§ sinsay Teuoneindwo) 1/ v 414V],

Appendix A. GILS - Details for the Granular parameters

110

TABLE A.8: Computational Results for the TSPPD-H with the instances from [63]

=05p=057=05

«=05=057=07

a=025B=0757 =05

a=075p=0257=05

n i BKS UBKS Min %Gap % Gap Hns Avg. Value. Avg. Time(s) Min %Gap % Gap Hns Avg. Value. Avg. Time(s) Min %Gap % Gap Hns Avg. Value. Avg. Time(s) Min %Gap % Gap Hns Avg. Value. Avg. Time(s)
200 1 1928.60 1928.60 1959.10 1.58 1.56 1967.37 895.12 1958.90 1.57 1.55 1969.22 840.09 1957.10 148 146 1967.09 844.66 1960.00 1.63 1.60 1967.65 799.88
200 2 1964.70 1964.70 197380 046 0.46 1990.91 902.99 1986.20 1.09 1.08 2007.01 769.80 1996.50 1.62 1.59 2005.77 912,51 199120 1.35 133 2003.54 862.49
200 3 1954.30 1954.30 1968.40 0.72 0.72 1975.40 734.50 197240 093 0.92 1980.17 627.92 197240 093 0.92 1982.13 655.51 197420 1.02 1.01 1980.64 639.57
200 4 2041.40 2041.40 205270 055 0.55 2070.05 802.85 2077.70 1.78 1.75 2083.08 72213 2058.00 0.81 0.81 2079.07 700.23 206610 1.21 1.20 2077.64 749.64
200 5 1890.40 1888.00 1899.90 0.50 0.50 1905.29 936.95 1902.00 0.61 0.61 1908.96 918.75 1898.90 045 045 1904.97 899.32 1901.80 0.60 0.60 1907.88 877.52
200 3 194830 1948.30 1977.80 1.51 149 1982.28 767.20 197310 127 1.26 1984.09 653.73 1978.60 1.56 153 1987.20 650.99 197740 149 147 1987.33 668.49
200 7 1930.40 193040 193740 036 0.36 1963.23 839.47 1948.20 0.92 091 1966.85 961.68 1950.80 1.06 1.05 1975.37 920.50 1966.50 1.87 1.84 1971.27 874.32
200 8 1995.10 1995.10 199740 0.12 0.12 2009.43 724.29 2010.10 075 0.75 2027.68 579.10 200690 0.59 0.59 2016.74 610.86 201740 112 111 2023.06 510.58
200 9 2013.70 2013.70 204820 171 1.68 2053.09 792.22 204490 1.55 1.53 2053.55 821.42 204580 159 1.57 2053.72 745.88 2043.80 149 147 2051.28 733.24
200 10 1927.30 1927.30 1939.40 0.63 0.62 1951.38 561.05 194620 0.98 0.97 1954.78 457.31 1947.10 1.03 1.02 1955.22 451.58 1947.80 1.06 1.05 1958.00 484.63

Average 1959.42 1959.18 197541 0.82 0.81 1986.84 795.66 1981.97 115 1.13 1993.54 735.19 198121 111 1.10 1992.73 739.20 1984.62 1.28 127 1992.83 720.04

A.2. Wilcoxon Test 111

1600

1400

800
L

1000 1200
L
1600 1700 1800 1900 2000 2100

600

T T T T T T T
Erdogan ALNS ILSF alLs Erdogan ALNS ILSF alLs

FIGURE A.l: FIGURE A.2:
Group G1 Group G2

113

Appendix B

MS-ILS

B.1 Repair procedure

Observations about Algorithm Repair:

¢ The function Criteria returns true if in feasibleM < in f Measure. If in feasibleM =
inf Measure, then the function returns true if newGain > gain. In any other
case, it returns false.

 The ternary expression varl = ((exp1)?(exp2) : (exp3)) is a simplified state-
ment. If expl is true, the expression (exp2) is saved in the variable varl, other-
wise the expression (exp3) is saved in the variable varl.

¢ The function ApplyMove applies the moveType (moveType = 1 is extraction,
moveType = 2 is relocation, and moveType = 3 is exchange) with the input
parameters to the xIn feasible matrix solution.

* The function Update is a simplified way of indicating that the variables
R, Items, total OverL, xProfit are updated.

114

Appendix B. MS-ILS

Algorithm 18 Repair procedure

Input: xInfeasible, xFeasible, NiterRep
Output: xInfeasible2
1: feasible = false

86:
. end while
: if feasible then

® ®
S 8%

90:
91:
92:

N

Items =R =@

totalOverL = repairCount = 0
fork € {1,2..K} do
fori € {1,2..N} do
if xInfeasible; == 1 then
Ry = Ry + w;

Itemsy
end if
end for
Ry =Cy—R

= Items; Ui

k

totalOverL = totalOverL + ((Ry < 0)?(—Ry) : 0);

: end for
. xProfit = f(xInfeasible)
: while feasible == false and repairCount < NiterRep do

moveType =
in f Measure
fork € {1,2.

eleml = elem2 = knapl = knap2 = gain = —1
=oco / Extraction’
.K} do

fori € Itemsy do
newGain = xProfit — A(i, k)

infeas.
Rwk
infeas.

iblel = ((Rx + w;) < 0)? — (R +w;) : 0
= (Rp <0)2— (Ry) : 0
ibleM = totalOverL — (Rwk) + infeasiblel

if Criteria(infeasibleM, in f Measure, newGain, gain) then
moveType = 1;
eleml =i;
knapl = k;
gain = newGain;

inf Measure = infeasibleM
end if
end for
end for
// re-allocation
fork € {1,2..K} do

fori € Items; do
for kaux € {1,2..K} do
if kaux!=k then

newGain = xProfit + A(i, kaux) — A(i, k)

infeasiblel = ((Rg + w;) < 0)? — (Rx +w;) : 0

infeasible2 = ((Rypu — ;) < 0)2 = (Ryque — 07) : 0

Rwk = (Re <0)?— (Rg): 0

Rwaux = (Riguy < 0)? — (Rgauy) : 0

infeasibleM = totalOverL — (Rwk + Rwaux) + infeasiblel 4 in feasible2

if Criteria(infeasibleM, inf Measure, newGain, gain) then
moveType = 2;
eleml = i;
knapl = k;
knap2 = kaux;
gain = newGain;
inf Measure = infeasibleM

end if

end if
end for
end for
end for// exchange

fork € {1,2..K} do
for il € Items; do
for kaux € {1,2..K} do
for i2 € Itemsy,,, do

if kaux!=k then
newGain = xProfit + A(il, kaux) — A(i1, k) + A(i2, k) — A(i2, kaux) — 2pj1 i
infeasiblel = ((Ry +wj — wip) < 0)? — (Rg + wjp —wjpp) : 0
infeasible2 = ((Riqux +wiz — wit) < 0)? = (Requx + Wiz —wj1) : 0
Rwk = (R <0)?—(Rg):0
Rwaux = (Rigux < 0)2 — (Regux) : 0
infeasibleM = totalOverL — (Rwk + Rwaux) + infeasiblel + in feasible2
if Criteria(in feasibleM, in f Measure, newGain, gain) then
moveType = 3;

eleml =
elem2 = i2;
knapl = k;

knap2 = kaux;

gain = newGain;
inf Measure = infeasibleM
end if
end if
end for
end for
end for
end for

ApplyMove(moveType, xIn feasible, elem1, elem2, knapl, knap2, gain, in f Measure)
Update(R, Items, totalOverL, xProfit)

repairCount

= repairCount +1

if isFeasible(xInfeasible2) then
feasible = True

break;
end if

return xIn feasible2

else

return xFeasible

end if

B.2. Wilcoxon signed-rand test

115

B.2 Wilcoxon signed-rand test

TABLE B.1: % Gap between BKS and Average for the instances with

n = 100
n |d|m|l]| MSILS| HTS TIG SO IRTS
100 | 25| 3 | 1 || 0.95421 | 0.00000 | 0.88131 | 0.28785 | 0.00000
100 | 25| 3 | 2 || 1.41817 | 0.00000 | 0.07125 | 0.00941 | 0.00000
100 | 25| 3 | 3 || 1.04732 | 0.00000 | 0.60010 | 0.01398 | 0.00000
100 | 25| 3 | 4 || 1.16987 | 0.00000 | 0.00000 | 0.04284 | 0.00000
100 | 25| 3 | 5 || 0.60985 | 0.00000 | 0.02391 | 0.25104 | 0.00000
100 | 25| 5 | 1 || 1.03937 | 0.00797 | 1.35964 | 0.78606 | 0.22284
100 | 25| 5 | 2 || 1.37809 | 0.07418 | 0.25802 | 0.37583 | 0.17048
100 | 25| 5 | 3 || 1.11069 | 0.00000 | 0.65775 | 0.40492 | 0.01436
100 | 25| 5 | 4 || 1.17961 | 0.00000 | 0.00261 | 0.07520 | 0.00045
100 | 25| 5 | 5 || 1.67636 | 0.00000 | 0.02377 | 0.47072 | 0.05806
100 | 25| 10 | 1 || 1.27335 | 0.11837 | 1.00734 | 1.38197 | 0.12619
100 | 25 | 10 | 2 || 1.43185 | 0.00000 | 0.90650 | 1.61529 | 0.21879
100 | 25 | 10 | 3 || 2.09151 | 0.23447 | 1.27802 | 1.86622 | 0.50245
100 | 25| 10 | 4 || 1.31759 | 0.00000 | 0.07725 | 0.60763 | 0.00000
100 | 25 | 10 | 5 || 1.69222 | 0.00000 | 0.89097 | 1.50796 | 0.21532
100 | 75| 3 | 1 | 0.34326 | 0.00000 | 0.06002 | 0.06002 | 0.00000
100 | 75| 3 | 2 || 0.42674 | 0.00000 | 0.00000 | 0.00950 | 0.00633
100 | 75| 3 | 3 || 0.12952 | 0.00000 | 0.02295 | 0.02760 | 0.00000
100 | 75| 3 | 4 || 0.43254 | 0.00000 | 0.00000 | 0.00000 | 0.00000
100 | 75| 3 | 5 || 0.31237 | 0.00000 | 0.01535 | 0.05708 | 0.00000
100 | 75| 5 | 1 || 0.50009 | 0.00000 | 0.25374 | 0.36861 | 0.11133
100 | 75| 5 | 2 || 0.53917 | 0.02834 | 0.26964 | 0.35101 | 0.10000
100 | 75| 5 | 3 || 0.28147 | 0.00000 | 0.04289 | 0.27663 | 0.00000
100 | 75| 5 | 4 || 0.53149 | 0.00000 | 0.55606 | 0.24241 | 0.20798
100 | 75| 5 | 5 || 0.74836 | 0.00000 | 0.03651 | 0.07101 | 0.00800
100 | 75| 10 | 1 || 1.66573 | 0.20993 | 1.30433 | 1.31436 | 0.18418
100 | 75| 10 | 2 || 1.04992 | 0.48162 | 0.76217 | 0.93889 | 0.35633
100 | 75| 10 | 3 || 1.38709 | 0.03912 | 0.82252 | 0.90009 | 0.04430
100 | 75 | 10 | 4 || 1.44355 | 0.16088 | 0.85064 | 0.88376 | 0.17474
100 | 75| 10 | 5 || 1.64831 | 0.18389 | 1.51080 | 1.48025 | 0.15898

TABLE B.2: p-values for the Wilcoxon Test for the instances, with n =

100.
Hip. HTS TIG SO IRTS
HO | 1.86E-09 | 1.64E-07 | 8.01E-08 | 1.86E-09

H1

1

1

1

1

116

Appendix B. MS-ILS

TABLE B.3: % Gap between BKS and Average for the instances with

n = 200

n | d|m|l| MSILS| HTS TIG SO IRTS

200 | 25| 3 | 1] 1.07873 | 0.07391 | 1.24568 | 0.68492 | 0.02957
200 | 25| 3 | 2| 0.32753 | 0.00000 | 0.13339 | 0.27325 | 0.00000
200 | 25| 3 | 3| 0.60585 | 0.00956 | 0.13768 | 0.21417 | 0.02868
200 | 25| 3 | 4| 1.74528 | 0.03296 | 1.29744 | 0.96419 | 0.03795
200 | 25| 3 | 5| 0.57814 | 0.00000 | 0.42420 | 0.50728 | 0.00098
200 | 25| 5 |1 1.08525 | 0.18976 | 1.66812 | 1.63069 | 0.09111
200 | 25| 5 | 2| 1.16621 | 0.00000 | 0.71679 | 0.98534 | 0.01200
200 | 25| 5 | 3| 1.12521 | 0.00000 | 0.41313 | 0.60503 | 0.01800
200 | 25| 5 | 4| 1.76470 | 0.15619 | 1.55867 | 1.53089 | 0.10616
200 | 25| 5 | 5| 1.08746 | 0.00300 | 0.92006 | 1.01827 | 0.01616
200 | 25 | 10 | 1 || 2.82026 | 0.34077 | 1.90198 | 2.38860 | 0.25720
200 | 25 | 10 | 2 || 1.82665 | 0.52945 | 1.37279 | 1.82163 | 0.29865
200 | 25 | 10 | 3 || 2.35012 | 0.15500 | 1.65153 | 2.22534 | 0.16714
200 | 25 | 10 | 4 || 2.65009 | 0.39843 | 1.98725 | 2.53242 | 0.43624
200 | 25 | 10 | 5 || 1.59042 | 0.02947 | 1.42597 | 2.28623 | 0.16553
200 | 75| 3 | 1] 0.53803 | 0.01367 | 0.00000 | 0.00776 | 0.01219
200 | 75| 3 | 2| 0.31335 | 0.00000 | 0.07346 | 0.13876 | 0.00583
200 | 75| 3 | 3| 0.52037 | 0.00000 | 0.00000 | 0.01518 | 0.05295
200 | 75| 3 | 4| 0.75235 | 0.04535 | 0.12510 | 0.17733 | 0.04696
200 | 75| 3 | 5 0.70358 | 0.00000 | 0.00000 | 0.00000 | 0.01001
200 | 75| 5 | 1] 1.13907 | 0.02696 | 0.38762 | 0.45932 | 0.31753
200 | 75| 5 | 2| 0.85034 | 0.00000 | 0.11096 | 0.22364 | 0.08465
200 | 75| 5 | 3| 0.88819 | 0.02249 | 0.14295 | 0.22594 | 0.05354
200 | 75| 5 | 4| 1.42849 | 0.13402 | 0.39188 | 0.53607 | 0.23633
200 | 75| 5 | 5 0.79577 | 0.02431 | 0.15933 | 0.24520 | 0.04811
200 | 75 | 10 | 1 || 1.32262 | 0.23208 | 0.87713 | 0.94067 | 0.45445
200 | 75 | 10 | 2 || 1.55494 | 0.15006 | 0.84467 | 0.95509 | 0.49264
200 | 75 | 10 | 3 || 1.57043 | 0.22723 | 0.80968 | 0.99512 | 0.42922
200 | 75 | 10 | 4 || 2.18701 | 0.46189 | 1.09665 | 1.43295 | 0.46063
200 | 75 | 10 | 5 || 1.49234 | 0.31455 | 0.88910 | 1.08943 | 0.30859

TABLE B.4: p-values for the Wilcoxon Test for the instances with n =

200.
Hip. HTS TIG SO IRTS
HO | 1.86E-09 | 4.71E-07 | 2.69E-05 | 1.86E-09
H1 1 0.9999 0.9999 1

B.2. Wilcoxon signed-rand test 117

A statistical test was performed using the % gap between the BKS and the Av-
erage for each instance (n,m,d,l). Tables B.1 and B.3 contain the values for each
instance (rows) and for each metaheuristic (columns). These tables are normalized
to be able to apply a statistical test and check the performance of the MS-ILS.

The Wilcoxon test is applied to the data in Tables B.2 and B.4. For this test, we
consider two hypotheses:

¢ HO: AverageCost (MSILS) = AverageCost (X) (null hypothesis).
¢ H1: AverageCost (MSILS) > AverageCost (X) (alternative hypothesis).

With X = { HTS, TIG, SO, IRTS } With significance level « = 0.05. Looking
at the p — values in Tables A.2 and A4, all algorithms are better than MS-ILS (HO is
rejected and H1 is not rejected).

Figures A.1 and A.2 show the average performance against the BKS for each
metaheuristic using Tables Al and A3. HTS and IRTS are the best algorithms to date
and show to be much more stable than any other algorithm (HTS for the smallest
instances finds the BKS for any seed in 25 cases for the first group and 8 cases for the
second group).

2.0

15

1.0

0.5
1

o o

-~ L I

T T T T T
MSILS HTS TIG S0 IRTS

0.0

FIGURE B.1: Box plot about the performance of the metaheuristics for
the instances with n = 100

118 Appendix B. MS-ILS

i] o o
] g H
sl T == —]
S
T T T T T
MSILS HTS TG SO IRTS

FIGURE B.2: Box plot about the performance of the metaheuristics for
the instances with n = 200

119

Bibliography

[1] Joseph F McCloskey. “OR Forum—British Operational Research in World
War I1”. In: Operations research 35.3 (1987), pp. 453—470.

[2] Hamdy A Taha. Operations research an introduction. Pearson Education Lim-
ited 2017, 2017.

[8] Informs. What is O.R.? https://www.informs.org/Explore/What-is-0.R.-
Analytics/. 2021. (Visited on 04/29/2021).

[4] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer
Science & Business Media, 2003.

[5] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[6] David L Applegate, Robert E Bixby, Vasek Chvatal, and William] Cook. The
traveling salesman problem. Princeton university press, 2011.

[7] Martin Grotschel, Michael Jiinger, and Gerhard Reinelt. “Optimal control of
plotting and drilling machines: a case study”. In: Zeitschrift fiir Operations Re-
search 35.1 (1991), pp. 61-84.

[8] Robert D Plante, Timothy] Lowe, and R Chandrasekaran. “The product ma-
trix traveling salesman problem: an application and solution heuristic”. In:
Operations Research 35.5 (1987), pp. 772-783.

[9] Robert G Bland and David F Shallcross. “Large travelling salesman problems
arising from experiments in X-ray crystallography: a preliminary report on
computation”. In: Operations Research Letters 8.3 (1989), pp. 125-128.

[10] Marshall Fisher. “Vehicle routing”. In: Handbooks in operations research and
management science 8 (1995), pp. 1-33.

[11] Stephen A Cook. “The complexity of theorem-proving procedures”. In: Pro-
ceedings of the third annual ACM symposium on Theory of computing. 1971, pp. 151-
158.

[12] Fereshteh Vaezi, Seyed Jafar Sadjadi, and Ahmad Makui. “A portfolio selec-
tion model based on the knapsack problem under uncertainty”. In: PloS one
14.5 (2019), 0213652.

[13] Hans Kellerer, Ulrich Pferschy, and David Pisinger. “Multidimensional knap-
sack problems”. In: Knapsack problems. Springer, 2004, pp. 235-283.

[14] Reuters. Chile’s Cochilco sees 2020 copper production and price rising. https://
www.reuters.com/article/chile-copper-idINL1N2I9124. 2020. (Visited on
04/29/2021).

https://www.informs.org/Explore/What-is-O.R.-Analytics/
https://www.informs.org/Explore/What-is-O.R.-Analytics/
https://www.reuters.com/article/chile-copper-idINL1N2I9124
https://www.reuters.com/article/chile-copper-idINL1N2I9124

120 Bibliography
[15] Jinseok Hong, Minyoung Lee, Taesu Cheong, and Hong Chul Lee. “Routing
for an on-demand logistics service”. In: Transportation Research Part C: Emerg-

ing Technologies 103 (2019), pp. 328-351.

[16] Amazon. Amazon Hub Locker - General Information. https : //www . amazon .
com/b/?node=6442600011. 2021. (Visited on 04/29/2021).

[17] Charles Darwin. On the origin of species. 1859.

[18] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter] Gut-
jahr. “A survey on metaheuristics for stochastic combinatorial optimization”.
In: Natural Computing 8.2 (2009), pp. 239-287.

[19] El-Ghazali Talbi. Metaheuristics: from design to implementation. John Wiley &
Sons, 2009.

[20] L.]J.Fogel. “Toward inductive inference automata”. In: In Proceedings of the In-
ternational Federation for Information Processing Congress, Munich (1962), 395-399.

[21] John H Holland. “Outline for a logical theory of adaptive systems”. In: Journal
of the ACM (JACM) 9.3 (1962), pp. 297-314.

[22] Vladimir Cerny. “Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm”. In: Journal of optimization theory and
applications 45.1 (1985), pp. 41-51.

[23] Fred Glover. “Future paths for integer programming and links to artificial
intelligence”. In: Computers & operations research 13.5 (1986), pp. 533-549.

[24] Thomas A Feo and Mauricio GC Resende. “A probabilistic heuristic for a
computationally difficult set covering problem”. In: Operations research letters
8.2 (1989), pp. 67-71.

[25] Pablo Moscato. “On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms”. In: Caltech concurrent computation
program, C3P Report 826 (1989), p. 1989.

[26] Olivier Martin, Steve W Otto, and Edward W Felten. Large-step Markov chains
for the traveling salesman problem. Citeseer, 1991.

[27] Helena R Lourencgo, Olivier C Martin, and Thomas Stiitzle. “Iterated local
search”. In: Handbook of metaheuristics. Springer, 2003, pp. 320-353.

[28] Nenad Mladenovic. “A variable neighborhood algorithm-a new metaheuris-
tic for combinatorial optimization”. In: papers presented at Optimization Days.
Vol. 12. 1995.

[29] M. Dorigo. “Optimization, learning and natural algorithms”. PhD thesis. Po-
litecnico di Milano, Italy, 1992.

[30] James Kennedy and Russell Eberhart. “Particle swarm optimization”. In: Pro-
ceedings of ICNN'95-international conference on neural networks. Vol. 4. IEEE.
1995, pp. 1942-1948.

[31] John R Koza. Genetic programming: on the programming of computers by means of

natural selection. MIT press, 1992.

https://www.amazon.com/b/?node=6442600011
https://www.amazon.com/b/?node=6442600011

Bibliography 121

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Paolo Toth and Daniele Vigo. “The granular tabu search and its application
to the vehicle-routing problem”. In: Informs Journal on computing 15.4 (2003),
pp. 333-346.

Viet-Phuong Nguyen, Christian Prins, and Caroline Prodhon. “A multi-start
iterated local search with tabu list and path relinking for the two-echelon
location-routing problem”. In: Engineering Applications of Artificial Intelligence
25.1 (2012), pp. 56-71.

Michael Held and Richard M Karp. “The traveling-salesman problem and
minimum spanning trees”. In: Operations Research 18.6 (1970), pp. 1138-1162.

Gerhard Reinelt. “TSPLIB—A traveling salesman problem library”. In: ORSA
journal on computing 3.4 (1991), pp. 376-384.

Shen Lin and Brian W Kernighan. “An effective heuristic algorithm for the
traveling-salesman problem”. In: Operations research 21.2 (1973), pp. 498-516.

Keld Helsgaun. “An effective implementation of the Lin—Kernighan traveling
salesman heuristic”. In: European Journal of Operational Research 126.1 (2000),
pp- 106-130.

Keld Helsgaun. LKH Version 2.0.9 (July 2018). http://webhotel4 . ruc.dk/
~keld/research/LKH/. 2018. (Visited on 07/01/2018).

Gerardo Berbeglia, Jean-Frangois Cordeau, Irina Gribkovskaia, and Gilbert
Laporte. “Static pickup and delivery problems: a classification scheme and
survey”. In: Top 15.1 (2007), pp. 1-31.

Cagr1 Kog, Gilbert Laporte, and [lknur Tiikenmez. “A Review on Vehicle
Routing with Simultaneous Pickup and Delivery”. In: Computers & Operations
Research (2020), p. 104987.

Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applica-
tions. SIAM, 2014.

Maria Battarra, Giines Erdogan, Gilbert Laporte, and Daniele Vigo. “The trav-
eling salesman problem with pickups, deliveries, and handling costs”. In:
Transportation Science 44.3 (2010), pp. 383-399.

David Pisinger and Paolo Toth. “Knapsack problems”. In: Handbook of combi-
natorial optimization. Springer, 1998, pp. 299-428.

PC Gilmore and Ralph E Gomory. “The theory and computation of knapsack
functions”. In: Operations Research 14.6 (1966), pp. 1045-1074.

Peter] Kolesar. “A branch and bound algorithm for the knapsack problem”.
In: Management science 13.9 (1967), pp. 723-735.

David S Johnson. “Approximation algorithms for combinatorial problems”.
In: Journal of computer and system sciences 9.3 (1974), pp. 256-278.

Oscar H Ibarra and Chul E Kim. “Fast approximation algorithms for the
knapsack and sum of subset problems”. In: Journal of the ACM (JACM) 22.4
(1975), pp. 463—468.

Silvano Martello and Paolo Toth. “Upper bounds and algorithms for hard 0-1
knapsack problems”. In: Operations Research 45.5 (1997), pp. 768-778.

http://webhotel4.ruc.dk/~keld/research/LKH/
http://webhotel4.ruc.dk/~keld/research/LKH/

122

Bibliography

[49]

Silvano Martello and Paolo Toth. “Knapsack problems: algorithms and com-
puter implementations”. In: Wiley-Interscience series in discrete mathematics and
optimiza tion (1990).

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Nature
Book Archives Millennium. Springer, 2004.

David Pisinger. “Where are the hard knapsack problems?” In: Computers &
Operations Research 32.9 (2005), pp. 2271-2284.

Nicolds Acevedo, Carlos Rey, Carlos Contreras-Bolton, and Victor Parada.
“Automatic design of specialized algorithms for the binary knapsack prob-
lem”. In: Expert Systems with Applications 141 (2020), p. 112908.

Giorgio Gallo, Peter L Hammer, and Bruno Simeone. “Quadratic knapsack
problems”. In: Combinatorial optimization. Springer, 1980, pp. 132-149.

Christoph Witzgall. “Mathematical methods of site selection for Electronic
Message Systems (EMS)”. In: NASA STI/Recon Technical Report N 76 (1975),
p- 18321.

John MW Rhys. “A selection problem of shared fixed costs and network
flows”. In: Management Science 17.3 (1970), pp. 200-207.

Amanda Hiley and Bryant A Julstrom. “The quadratic multiple knapsack
problem and three heuristic approaches to it”. In: Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation. 2006, pp. 547-552.

Daniel Espinoza, Marcos Goycoolea, Eduardo Moreno, and Alexandra New-
man. “MineLib: a library of open pit mining problems”. In: Annals of Opera-
tions Research 206.1 (2013), pp. 93-114.

Saber Elsayed, Ruhul Sarker, Daryl Essam, and Carlos A Coello Coello. “Evo-
lutionary approach for large-Scale mine scheduling”. In: Information Sciences
523 (2020), pp. 77-90.

Laura Galli, Silvano Martello, Carlos Rey, and Paolo Toth. “Polynomial-size
formulations and relaxations for the quadratic multiple knapsack problem”.
In: European Journal of Operational Research 291.3 (2021), pp. 871-882.

Jan Dethloff. “Vehicle routing and reverse logistics: the vehicle routing prob-
lem with simultaneous delivery and pick-up”. In: OR-Spektrum 23.1 (2001),
pp- 79-96.

Fermin Alfredo Tang Montané and Roberto Diéguez Galvao. “Vehicle routing
problems with simultaneous pick-up and delivery service”. In: Opsearch 39.1
(2002), pp. 19-33.

Jacques F Benders. “Partitioning procedures for solving mixed-variables pro-
gramming problems”. In: Numerische mathematik 4.1 (1962), pp. 238-252.

Giines Erdogan, Maria Battarra, Gilbert Laporte, and Daniele Vigo. “Meta-
heuristics for the traveling salesman problem with pickups, deliveries and
handling costs”. In: Computers & Operations Research 39.5 (2012), pp. 1074~
1086.

Bibliography 123

[64] Fred Glover and Manuel Laguna. “Tabu search”. In: Handbook of combinatorial
optimization. Springer, 1998, pp. 2093-2229.

[65] Richard P Hornstra, Allyson Silva, Kees Jan Roodbergen, and Leandro C
Coelho. “The vehicle routing problem with simultaneous pickup and de-
livery and handling costs”. In: Computers & Operations Research 115 (2020),
p. 104858.

[66] Stefan Ropke and David Pisinger. “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows”. In: Trans-
portation science 40.4 (2006), pp. 455—472.

[67] Carlos Rey, Paolo Toth, and Daniele Vigo. “An Iterated Local Search for the
Traveling Salesman Problem with Pickup, Delivery and Handling Costs”.
In: 2020 39th International Conference of the Chilean Computer Science Society
(SCCC). IEEE. 2020, pp. 1-8.

[68] Kengo Katayama and Hiroyuki Narihisa. “Iterated local search approach us-
ing genetic transformation to the traveling salesman problem”. In: Proceed-
ings of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume
1. Morgan Kaufmann Publishers Inc. 1999, pp. 321-328.

[69] Anand Subramanian and Maria Battarra. “An iterated local search algorithm
for the travelling salesman problem with pickups and deliveries”. In: Journal
of the Operational Research Society 64.3 (2013), pp. 402—409.

[70] Valentina Cacchiani, Carlos Contreras-Bolton, John W Escobar, Luis M Escobar-
Falcon, Rodrigo Linfati, and Paolo Toth. “An Iterated Local Search Algorithm
for the Pollution Traveling Salesman Problem”. In: New Trends in Emerging
Complex Real Life Problems. Springer, 2018, pp. 83-91.

[71] William Cook. Concorde TSP solver. http://www.math.uwaterloo.ca/tsp/
concorde.html. Access 05-07-2020. 2015.

[72] Georges A Croes. “A method for solving traveling-salesman problems”. In:
Operations research 6.6 (1958), pp. 791-812.

[73] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. “Optimization by sim-
ulated annealing”. In: science 220.4598 (1983), pp. 671-680.

[74] Yaghout Nourani and Bjarne Andresen. “A comparison of simulated anneal-
ing cooling strategies”. In: Journal of Physics A: Mathematical and General 31.41
(1998), p. 8373.

[75] David Abramson, Mohan Krishnamoorthy, and Henry Dang. “Simulated an-
nealing cooling schedules for the school timetabling problem”. In: Asia Pacific
Journal of Operational Research 16 (1999), pp. 1-22.

[76] Keld Helsgaun. “An extension of the Lin-Kernighan-Helsgaun TSP solver for
constrained traveling salesman and vehicle routing problems”. In: Roskilde:
Roskilde University (2017).

[77] Michel Gendreau, Gilbert Laporte, and Daniele Vigo. “Heuristics for the trav-
eling salesman problem with pickup and delivery”. In: Computers & Opera-
tions Research 26.7 (1999), pp. 699-714.

http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/tsp/concorde.html

124 Bibliography

[78] Manuel Lopez-Ibanez, Jérémie Dubois-Lacoste, Leslie Pérez Céceres, Mauro
Birattari, and Thomas Stiitzle. “The irace package: Iterated racing for auto-
matic algorithm configuration”. In: Operations Research Perspectives 3 (2016),
pp- 43-58.

[79] S.Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[80] Paul E. Black. “Dictionary of algorithms and data structures”. In: (2005).

[81] C. Witzgall. “Mathematical methods of site selection for Electronic Message
Systems (EMS)”. In: NASA STI/Recon Technical Report N 76 (1975).

[82] G. Gallo, PL. Hammer, and B. Simeone. “Quadratic knapsack problems”. In:
Mathematical Programming (1980), pp. 132-149.

[83] A. Billionnet and E. Soutif. “An exact method based on Lagrangian decom-
position for the 0-1 quadratic knapsack problem”. In: European Journal of Op-
erational Research 157.3 (2004), pp. 565-575.

[84] B.A.Julstrom. “Greedy, genetic, and greedy genetic algorithms for the quadratic
knapsack problem”. In: Proceedings of the 7th Annual Conference on Genetic and
Evolutionary Computation. 2005, pp. 607-614.

[85] D.Pisinger. “The quadratic knapsack problem - a survey”. In: Discrete Applied
Mathematics 155.5 (2007), pp. 623-648.

[86] W.D. Pisinger, A.B. Rasmussen, and R. Sandvik. “Solution of large quadratic
knapsack problems through aggressive reduction”. In: INFORMS Journal on
Computing 19.2 (2007), pp. 280-290.

[87] S.Pulikantiand A.Singh. “An artificial bee colony algorithm for the quadratic
knapsack problem”. In: International Conference on Neural Information Process-
ing. Springer. 2009, pp. 196-205.

[88] E. Lalla-Ruiz, E. Segredo, and S. Vofs. “A cooperative learning approach for
the quadratic Knapsack problem”. In: International Conference on Learning and
Intelligent Optimization. 2018, pp. 31-35.

[89] A. Hiley and B.A. Julstrom. “The quadratic multiple knapsack problem and
three heuristic approaches to it”. In: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation. 2006, pp. 547-552.

[90] A.Singhand A.S. Baghel. “A new grouping genetic algorithm for the quadratic
multiple knapsack problem”. In: European Conference on Evolutionary Compu-
tation in Combinatorial Optimization. Springer. 2007, pp. 210-218.

[91] S. Sundar and A. Singh. “A swarm intelligence approach to the quadratic
multiple knapsack problem”. In: International Conference on Neural Information
Processing. Springer. 2010, pp. 626—633.

[92] SM. Soak and SW. Lee. “A memetic algorithm for the quadratic multiple con-
tainer packing problem”. In: Applied Intelligence 36.1 (2012), pp. 119-135.

[93] C.Garcia-Martinez, F. Glover, EJ. Rodriguez, M. Lozano, and R. Marti. “Strate-
gic oscillation for the quadratic multiple knapsack problem”. In: Computa-
tional Optimization and Applications 58.1 (2014), pp. 161-185.

Bibliography 125

[94] C. Garcia-Martinez, EJ. Rodriguez, and M. Lozano. “Tabu-enhanced iterated
greedy algorithm: a case study in the quadratic multiple knapsack problem”.
In: European Journal of Operational Research 232.3 (2014), pp. 454—463.

[95] Y. Chen and J.K. Hao. “Iterated responsive threshold search for the quadratic
multiple knapsack problem”. In: Annals of Operations Research 226.1 (2015),
pp- 101-131.

[96] Y. Chen,].K. Hao, and F. Glover. “An evolutionary path relinking approach
for the quadratic multiple knapsack problem”. In: Knowledge-Based Systems
92 (2016), pp. 23-34.

[97]]. Qin, X. Xu, Q. Wu, and T.C.E. Cheng. “Hybridization of tabu search with
feasible and infeasible local searches for the quadratic multiple knapsack
problem”. In: Computers & Operations Research 66 (2016), pp. 199-214.

[98] T. Tlili, H. Yahyaoui, and S. Krichen. “An iterated variable neighborhood
descent hyperheuristic for the quadratic multiple knapsack problem”. In:
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing 2015. Springer, 2016, pp. 245-251.

[99] Meéziane Aider, Oussama Gacem, and Mhand Hifi. “Branch and solve strategies-
based algorithm for the quadratic multiple knapsack problem”. In: Journal of
the Operational Research Society (2020), pp. 1-18.

[100] Mhand Hifi, A Mohamed Youssouf, Toufik Saadi, and L Youssef. “A Co-
operative Swarm Optimization-Based Algorithm for the Quadratic Multiple
Knapsack Problem”. In: 2020 7th International Conference on Control, Decision
and Information Technologies (CoDIT). Vol. 1. IEEE. 2020, pp. 1168-1173.

[101] D. Bergman. “An Exact Algorithm for the Quadratic Multiknapsack Problem
with an Application to Event Seating”. In: INFORMS Journal on Computing
31.3 (2019), pp. 477-492.

[102] R.Fortet. “L’algebre de Boole et ses applications en recherche opérationnelle”.
In: Cahiers du Centre d'Etudes de Recherche Opérationnelle 1.4 (1959), pp. 5-36.

[103] FE Glover and E. Woolsey. “Converting the 0-1 polynomial programming
problem to a 0-1 linear program”. In: Operations Research 22.1 (1974), pp. 180-
182.

[104] F Glover. “Improved linear integer programming formulations of nonlinear
integer problems”. In: Management Science 22.4 (1975), pp. 455—460.

[105] F Furini and E. Traversi. “Theoretical and computational study of several lin-
earisation techniques for binary quadratic problems”. In: Annals of Operations
Research 279.1-2 (2019), pp. 387—411.

[106] W.P. Adams and H.D. Sherali. “A tight linearization and an algorithm for
zero-one quadratic programming problems”. In: Management Science 32.10
(1986), pp. 1274-1290.

[107] H.D. Sherali and W.P. Adams. “A hierarchy of relaxations between the contin-
uous and convex hull representations for zero-one programming problems”.
In: SIAM Journal on Discrete Mathematics 3.3 (1990), pp. 411-430.

126

Bibliography

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization. John
Wiley & Sons, 1998.

A. Caprara, D. Pisinger, and P. Toth. “Exact solution of the quadratic knap-
sack problem”. In: INFORMS Journal on Computing 11.2 (1999), pp. 125-137.

D. Pisinger. “Upper bounds and exact algorithms for p-dispersion problems”.
In: Computers & Operations Research 33.5 (2006), pp. 1380-1398.

A. Caprara. “Constrained 0-1 quadratic programming: Basic approaches and
extensions”. In: European Journal of Operational Research 187.3 (2008), pp. 1494—
1503.

M. Guignard. “Strong RLT1 bounds from decomposable Lagrangean relax-
ation for some quadratic 0-1 optimization problems with linear constraints”.
In: Annals of Operations Research (2020), pp. 173-200.

S. Martello and P. Toth. “A bound and bound algorithm for the zero-one mul-
tiple knapsack problem”. In: Discrete Applied Mathematics 3.4 (1981), pp. 275—
288.

A. Frangioni. “Generalized Bundle Methods”. In: SIAM Journal on Optimiza-
tion 13.1 (2002), pp. 117-156.

T. Sarag and A. Sipahioglu. “Generalized quadratic multiple knapsack prob-
lem and two solution approaches”. In: Computers & Operations Research 43.1
(2014), pp. 78-89.

Mustafa Avci and Seyda Topaloglu. “An adaptive local search algorithm for
vehicle routing problem with simultaneous and mixed pickups and deliver-
ies”. In: Computers & Industrial Engineering 83 (2015), pp. 15-29.

M. Avci and S. Topaloglu. “A multi-start iterated local search algorithm for
the generalized quadratic multiple knapsack problem”. In: Computers & Op-
erations Research 83 (2017), pp. 54-65.

Martina Fischetti and Matteo Fischetti. “Matheuristics”. In: Handbook of heuris-
tics. Springer, 2018, pp. 121-153.

Krzysztof Fleszar. “A Branch-and-Bound Algorithm for the Quadratic Mul-
tiple Knapsack Problem”. In: European Journal of Operational Research (2021).

Amina Lamghari. “Mine planning and oil field development: a survey and
research potentials”. In: Mathematical Geosciences 49.3 (2017), pp. 395-437.

W Hustrulid and M Kuchta. “Open pit mine planning and design. Vol 1. Fun-
damentals; Vol. 2. CSMine software package and orebodey case examples.
2nd.” In: (2006).

Helmut Lerchs. “Optimum design of open-pit mines”. In: Trans CIM 68 (1965),
pp. 17-24.

W Brian Lambert, Andrea Brickey, Alexandra M Newman, and Kelly Eu-
rek. “Open-pit block-sequencing formulations: a tutorial”. In: Interfaces 44.2
(2014), pp. 127-142.

Bibliography 127

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Renaud Chicoisne, Daniel Espinoza, Marcos Goycoolea, Eduardo Moreno,
and Enrique Rubio. “A new algorithm for the open-pit mine production schedul-
ing problem”. In: Operations research 60.3 (2012), pp. 517-528.

Shi Qiang Liu and Erhan Kozan. “New graph-based algorithms to efficiently
solve large scale open pit mining optimisation problems”. In: Expert Systems
with Applications 43 (2016), pp. 59-65.

S Ramazan and R Dimitrakopoulos. “Recent applications of operations re-
search and efficient MIP formulations in open pit mining”. In: SME Transac-
tions 316 (2004).

F Navarro. “Un algoritmo genético paralelo y distribuido para el agendamiento
de bloques en minas a cielo abierto”. MA thesis. www.usach.cl: Universidad
de Santiago de Chile, 2015.

Agoston E Eiben and James Smith. Introduction to evolutionary computing. Vol. 53.
Springer, 2003.

David E Goldberg and John Henry Holland. “Genetic algorithms and ma-
chine learning”. In: (1988).

Franz Rothlauf. “Representations for genetic and evolutionary algorithms”.
In: Representations for Genetic and Evolutionary Algorithms. Springer, 2006, pp. 9-
32.

James MacQueen. “Some methods for classification and analysis of multi-
variate observations”. In: Proceedings of the fifth Berkeley symposium on mathe-
matical statistics and probability. Vol. 1. 14. Oakland, CA, USA. 1967, pp. 281-
297.

Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing neu-
ral network model for a mechanism of visual pattern recognition”. In: Com-
petition and cooperation in neural nets. Springer, 1982, pp. 267-285.

	Abstract
	Acknowledgements
	Introduction
	Main problems studied
	The Traveling Salesman Problem
	The Knapsack Problem
	The Open-Pit Mine Production Scheduling Problem

	Overview

	Iterated Local Search Algorithms for the TSPPD-H
	Introduction
	The Handling Cost
	Dynamic programming algorithm
	Improved DP Algorithm

	The Iterated Local Search Algorithm
	Existing algorithm
	Iterated Local Search using Frequency (ILS-F)
	Roulette Perturbation
	Elementary Heuristics
	Local search methods
	Acceptance Criterion

	Granular Iterated Local Search
	The granular approach
	Neighborhoods, perturbation and local search
	Neighborhoods
	Perturbation
	Local search

	Results
	Instances
	Parameters and Experiments for ILS-F
	Parameters and Experiments for GILS
	Results and comparison
	About the Iterated Local Search with frequency
	About the Granular Iterated Local Search

	Conclusion and future directions

	Formulations, Relaxations and Heuristics for the QMKP
	Introduction
	Linear Formulations
	Classical Linear Formulations
	Reformulation Linearization Technique
	A decomposable Level 1 RLT model

	Surrogate relaxation of the quadratic model
	Decomposable Lagrangian relaxations
	Relaxing the Quadratic Model
	Relaxing DRLT1

	Meta-heuristic Approach: The Multi-Start Iterated Local Search
	MS-ILS: Main Scheme
	Initial Solutions
	Feasible Local Search
	Perturbation
	Infeasible local Search and the Repair procedure

	Matheuristics Approach
	Matheuristic: Main Scheme

	Computational experiments
	Formulations and the Relaxations
	Benchmark instances
	Experiments

	Multi-Start Iterated Local Search
	General descriptions and Parameter Setting
	Comparison of results without time limit

	Matheuristic Experiments
	General descriptions and Parameter Setting
	Comparison

	Conclusions
	Formulations and Relaxations
	Multi-Start Iterated Local Search
	Matheuristic

	A parallel genetic algorithm for strategic mine planning
	Introduction
	General description of the Parallel Genetic Algorithm
	Representation of CPIT-P for PGA
	Representing a feasible solution for the CPIT-P
	Definition of the PGA operators
	Fitness evaluation

	Computational Experiments
	Set of instances
	Tuning of the parameters

	Results
	Conclusion
	Current and future works

	Conclusion
	GILS - Details for the Granular parameters
	Results
	Wilcoxon Test

	MS-ILS
	Repair procedure
	Wilcoxon signed-rand test

	Bibliography

