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Abstract

Although the debate of what data science is has a long history and has not reached
a complete consensus yet, Data Science can be summarized as the process of learn-
ing from data. Guided by the above vision, this thesis presents two independent
data science projects developed in the scope of multidisciplinary applied research.

The first part analyzes fluorescence microscopy images typically produced in
life science experiments, where the objective is to count how many marked neu-
ronal cells are present in each image. Aiming to automate the task for supporting
research in the area, we propose a neural network architecture tuned specifically
for this use case, cell ResUnet (c-ResUnet), and discuss the impact of alternative
training strategies in overcoming particular challenges of our data. The approach
provides good results in terms of both detection and counting, showing perfor-
mance comparable to the interpretation of human operators. As a meaningful
addition, we release the pre-trained model and the Fluorescent Neuronal Cells
dataset collecting pixel-level annotations of where neuronal cells are located. In
this way, we hope to help future research in the area and foster innovative method-
ologies for tackling similar problems.

The second part deals with the problem of distributed data management in the
context of LHC experiments, with a focus on supporting ATLAS operations con-
cerning data transfer failures. In particular, we analyze error messages produced
by failed transfers and propose a Machine Learning pipeline that leverages the
word2vec language model and K-means clustering. This provides groups of simi-
lar errors that are presented to human operators as suggestions of potential issues
to investigate. The approach is demonstrated on one full day of data, showing
promising ability in understanding the message content and providing meaningful
groupings, in line with previously reported incidents by human operators.
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To my parents, who were my foremost motivation.
To don Bruno, who taught me that even mistakes may lead to some good when

done with the right intent.
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The future of data analysis can involve great progress, the overcoming of real
difficulties, and the provision of a great service to all fields of science and

technology. Will it? That remains to us, to our willingness to take up the rocky
road of real problems in preference to the smooth road of unreal assumptions,

arbitrary criteria, and abstract results without real attachments.
Who is for the challenge?

John Wilder Tukey, 1962
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Chapter 1

Introduction

Data Science is a very vibrant field of research that has been gaining more and more

interest across all the world in the past decade (Fig. 1.1), both in the educational

and industrial sectors. That much so that it was awarded the title of “sexiest job

of the 21st century” (Davenport & Patil, 2012), and only American universities

counted 78 data science programs in 2020 (Z. Zhang & Zhang, 2021).

However, the discussion over data science’s essence has a long history, and

multiple definitions have been proposed over the years (Donoho, 2017). Although

researchers and practitioners are yet to reach a complete agreement on its exact

meaning (van Dyk et al., 2015), five common pillars can be identified by the vari-

ous definitions. First, multidisciplinarity is indisputably a key element stressed

in every definition of data science. Second, as the name suggests, the focus on

data and adequate techniques to manage and process them is inevitably an es-

sential aspect. Third, data science requires adopting suitable statistical models

to convert data into knowledge. Fourth, the computing infrastructure that is

necessary to manage the data and analyze them efficiently. Fifth, a compelling

visualization and communication of results that is simple enough to be un-

derstood by a heterogeneous and non-technical audience, yet comprehensive of all

relevant details to convey valuable insights.

Inspired by these principles, we reckon that the essence of data science ought

to be traced back to its practical aspect, which is the starting sparkle and the

ultimate destination of any data science investigation. Indeed, all data science
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Figure 1.1: “Data Science” Google searches. The trend of Google searches
for the term “data science” (a) shows an evident increased popularity in latest
years. The corresponding geolocalizations (b) testify the global penetration of the
subject. The scale index is a re-scaled measure of the number of searches, where
100 corresponds to the maximum number of searches observed and 0 means that
insufficient data were available.
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projects share the common target of solving real-life problems in a data-driven

fashion. Although overcoming hampers is not a novel challenge – in fact, one may

see it as a key aspect of the evolution really, which has always been crucial for the

progression of species, especially regarding the human kind – the distinctive fea-

ture of data science is its framing into a data-oriented paradigm. Not surprisingly,

its explosion comes as a normal response to the increased availability of data we

have been experiencing in modern times. Having data about virtually any aspect

of life poses the question of how to leverage this information to tackle unsolved

problems and re-think current approaches. This in turn urges for a methodolog-

ical framework that provides tools for modeling natural phenomena and learning

from their data. As a consequence, computing infrastructures are needed to man-

age the data and enable the practical implementation and use of the developed

theories. Hence, the foundational core of data science can be established in the

trinomial data-modeling-computing that summarizes the practical, theoretical and

technical challenges related to the discipline. Importantly, the above chain of

causes-consequences is not static, as advancements in any of the three areas pave

the way for novel research in the others. Therefore, each of the components can

be seen as both an enabling factor and a stimulus for the others, thus generating

a virtuous circle that encourages progress.

Clearly, this process typically requires mixing heterogeneous competencies,

from which the necessity for contamination between multiple disciplines contribut-

ing to sub-tasks propaedeutic to the final solution. Also, a clear visualization and

communication of the results is paramount to guarantee effective usage of the de-

veloped methodologies and avoid misunderstandings in the various inter-domain

interactions.

Guided by the former vision, this work discusses two independent data sci-

ence projects developed in the scope of multidisciplinary applied research, and

describes how the five pillars above are declined for the two use cases. Despite

treating the proposed methodologies in detail, a particular emphasis posits on i)

the interdisciplinary nature of the projects, ii) the origin of the data, the infor-

mation they carry and the corresponding challenges, and iii) the practical impact

of our approaches. Also, specific attention is devoted to data visualization, both

in the initial exploration and the presentation of the results, for its crucial role in
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enabling the communication among experts from various domains.

Structure of the Thesis

After an initial definition of the discipline of Data Science, this thesis is organized

as follows.

Section 1.1 draws a historical reconstruction of the evolution of the data science

concept over time, trying to clarify what this subject is all about and set an

unambiguous reference framework. Section 1.2 then introduces the major learning

paradigms and their characteristics.

Part I explores in greater detail the work presented in Morelli et al. (2021). In

particular, Chapter 2 describes the technique of microscopic fluorescence and its

application to life science and biology experiments. The task of counting objects in

digital images is then presented, and some relevant literature is reviewed. Chap-

ter 3 describes the Fluorescent Neuronal Cells dataset (Clissa et al., 2021),

focusing on data acquisition, data annotations, and peculiar characteristics and

challenges. In Chapter 4, the cell ResUnet (c-ResUnet) (Morelli et al., 2021)

model is introduced and compared with several alternative architectures. Also,

three experimental settings are detailed, which are then used for testing competing

architectures through ablation studies. In Chapter 5, the performances achieved

by the proposed approaches are evaluated both quantitatively and qualitatively.

Finally, Chapter 6 summarizes the main findings of the study and discusses possi-

ble extensions.

Part II deals with the issue of computing infrastructure management in the

context of the Worldwide Large Hadron Collider Computing Grid. Chapter 7

introduces the High-Energy Physics community and the related experiments con-

ducted through the Large Hadron Collider (LHC) at the CERN laboratory, with a

particular focus on the computing infrastructure adopted for sharing and analyzing

the experimental data. In particular, Chapter 8 describes more in detail the data

flows generated by the LHC and introduces the Operational Intelligence project

(Di Girolamo, Alessandro et al., 2020), a joint effort of different collaborations to

automate infrastructure management. Among its various activities, the subject of

troubleshooting transfer failures is taken into account, and some ongoing attempts
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are outlined alongside our contributions. Chapter 9 discusses a possible approach

to the problem aimed at supporting current operations by automatically extract-

ing a few error categories (in the order of tens) from the massive amount of daily

failed transfers (in the order of millions). Chapter 10 reports a demonstration of

our approach applied to one day of data as a proof of concept for its potential,

taking into account both a qualitative interpretation of the results and a quanti-

tative proxy of the performance. Finally, Chapter 11 summarizes the advantages

and limitations of the proposed methodology and suggests a possible direction for

future developments.

1.1 History of Data Science

Some authors attribute the first appearance of the term “data science” in literature

to Naur (1974), where he presents data science as an alternative name for computer

science and defines it as “the science of dealing with data, once they have been

established, while the relation of the data to what they represent is delegated to

other fields and sciences”.

However, the first mention of something resembling what we currently per-

ceive as data science dates back to Tukey (1962), where the term data analysis is

used to indicate a discipline with the connotations of science, which is “defined

by a ubiquitous problem rather than by a concrete subject”. Tukey’s description

incorporates many aspects seemingly tied closely to applied statistics:

procedures for analyzing data, techniques for interpreting the results of

such procedures, ways of planning the gathering of data to make its

analysis easier, more precise or more accurate, and all the machinery

and results of (mathematical) statistics which apply to analyzing data.

Nevertheless, the extent Tukey attributes to data analysis is broader than its

philological meaning, as it comprises all of statistics and embeds it in a larger entity

(Huber, 2012; Donoho, 2017). Indeed, Tukey himself sets the boundaries between

data analysis and statistics in their respective binding to the strict formalism of

mathematics. In fact, he appeals for a looser attachment to mathematical rigor and

suggests focusing on actionable insights rather than theory (“scope and usefulness
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over security”). In Tukey’s vision, data analysis is framed within the paradigm of

an empirical science proceeding by trial and error, whose role is to advise actions

and insights for new investigations. More precisely, this has to hold even when

not enough evidence is available to be (mathematically) sure of the conclusions,

thus accepting a reasonable degree of error (“Data analysis must be willing to err

moderately often in order that inadequate evidence shall more often suggest the

right answer”). As a result, the mathematical foundations should be used as an

element to directing the strategy of investigation rather than validating its results

(“as bases for judgment rather than as bases for proof ”). Finally, Tukey identifies

four driving forces in the emerging data analysis science:

Four major influences act on data analysis today:

1. The formal theories of statistics

2. Accelerating developments in computers and display devices

3. The challenge, in many fields, of more and ever larger bodies of
data

4. The emphasis on quantification in an ever wider variety of disci-
plines

Despite being released 60 years ago, Tukey’s description is astonishingly modern

and well depicts many activities under the umbrella of what we refer to as data

science today. In line with Tukey’s vision, several authors have defined – more or

less explicitly – data science as an extension of applied statistics.

In 1985, Wu used the term “Data Science” for the first time as an alterna-

tive name for statistics, and in 1997 advocated the renaming “Statistics = Data

Science” to avoid the limiting association of statistics with accounting and data de-

scription. In particular, he indicates large/complex data, data-driven methodologies

and representation and exploitation of knowledge as promising future directions for

statistics. Also, he suggests that statistics degree programs should be grounded on

the “Statistical Trilogy: Data Collection – Modeling and Analysis – Problem Un-

derstanding/Solving and Decision Making”, with a strong emphasis on a balanced,

interdisciplinary curriculum (Wu, 1997).

In 1993, Chambers provocatively distinguished between “Greater or Lesser

Statistics”, drawing the line between the traditional data analysis supported by

mathematical statistics and a broader concept of learning from data (Chambers,
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1993). In his view, data science reshapes statistics by enlarging its focus in the

areas of data preparation and visualization. In particular, Chambers points to the

opportunities offered by new types of data and new types of presentation, deeming

such extended subject to be even larger than Tukey’s data analysis.

In 2001, Breiman shed new light on the debate about the nature of data science.

Namely, he distinguishes between two cultures of statistical modeling depending

on the ultimate goal of the analysis of data: information and prediction (Breiman,

2001). The former is related to the traditional statistics approach, where we

assume that natural processes can be described by mathematical formulations,

i.e. the models. Thus, by fitting them to the data we can infer knowledge about

the model’s parameters and understand the dynamics of the phenomenon. The

latter, instead, is what we intend as data science. This prioritizes prediction over

inference without caring much about the underlying mechanism that generates the

data.

In the same year, Cleveland presented an “action plan to expand the technical

areas of statistics focuses on the data analyst” (Cleveland, 2001). In particular,

he posits a great deal of attention to the practical impact of the data analysis

procedures, suggesting that results in data science “should be judged by the extent

to which they enable the analyst to learn from data” (rather than their theoretical

properties). Also, he outlines a precise structure for future academic programs,

where it stands out the equal balance given to multidisciplinarity investigations

(25%), model and methods for data (20%), computing for data (15%) and theory

(20%). Notably, he also leaves some space devoted explicitly to pedagogy (15%).

Donoho (2017) presents a thorough historical review of the evolution of data sci-

ence as a discipline. Specifically, he describes data science as an applied field grow-

ing out of traditional statistics, and he names it as “Greater Data Science” (GDS)

in analogy with the Greater Statistics nomenclature adopted by Chambers. In

practice, Donoho proposes a taxonomy for the activities of the would-be such dis-

cipline of the future, based on the merging, relabeling and generalization of the

divisions proposed by Chambers and Cleveland:

The activities of GDS are classified into six divisions:

1. Data Gathering, Preparation, and Exploration
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2. Data Representation and Transformation

3. Computing with Data

4. Data Modeling

5. Data Visualization and Presentation
6. Science about Data Science

Interestingly, Donoho also includes the study of data science (GDS6) as a part of

the discipline itself, and he thereby encompasses activities devoted to:

identify commonly occurring analysis/processing workflows, for exam-

ple, using data about their frequency of occurrence in some scholarly or

business domain; when they measure the effectiveness of stan-

dard workflows in terms of the human time, the computing

resource, the analysis validity, or other performance met-

rics, and when they uncover emergent phenomena in data analysis,

for example, new patterns arising in data analysis workflows, or dis-

turbing artifacts in published analysis results.

More recently, Z. Zhang and Zhang (2021) inspected a clever approach to

define the discipline of data science that fits exactly – perhaps unwittingly – in

Donoho’s GDS6. In fact, they adopt a data-driven strategy by analyzing the course

descriptions of graduate degree programs in analytics, business analytics, and data

science offered by American universities.

Nonetheless, researchers and practitioners are yet to reach a complete agree-

ment on its definition. Indeed, other schools of thought, especially in industry,

suggest that data science should be considered as a separate body of knowledge

due to its focus on digital and qualitative data (Silver, 2013; Priceonomics, 2015;

Dhar, 2013), and that statistics is only a marginal, nonessential part of it (Gelman,

2013). The interested reader is referred to Donoho (2017) and L. Cao (2017) for a

more extensive dissertation on the topic.

This thesis shares the vision of data science as an extension of applied statistics.

In particular, we frame it as an applied science that studies how to combine domain

expertise with suitable learning approaches and necessary computing resources

to process real data for a tangible purpose. Also, we devote particular care to

the visualization of data. Furthermore, we try to embrace GDS6 when assessing
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the results to provide a comprehensive evaluation of our approaches from the

application point of view.

1.2 Learning theory

By and large, data science can be summarized as the process of learning from

data. Multiple strategies are available to achieve that, differing for their funda-

mental assumptions, adopted methodologies, and ambit of applicability. Although

an exhaustive list of the possible approaches would be much longer, the differ-

ent methods can be categorized into three main learning paradigms: supervised,

unsupervised, and reinforcement learning.

The Supervised Learning (SL) paradigm is based on the concept of learning

by examples, sometimes also referred to as “learning with a teacher” (Friedman,

Hastie, Tibshirani, et al., 2009, Chapter 14). Formally1, this can be expressed

as the task of predicting a (set of) response/target2 variable Y based on a set of

predictors/inputs2 X. In other words, the objective is to learn a mapping function,

f , between the predictors and the response such that it is possible to forecast the

value of Y given the values of X up to some random noise ϵ:

Y = f (X;θ) + ϵ (1.1)

where θ is a parameter vector that defines the precise form of the function f .

In practice, the model (student) starts by guessing the association between some

input data x and the corresponding response based on an initial configuration of

the parameters. Then, the corresponding label, y, is used to score the quality of

the produced association according to a given performance measure (loss func-

tion). This comparison between the predicted answer and the right label is what

furnishes the supervision, thus allowing the parameter updates to reduce the ob-

1 the variables in this section are represented according to the statistical conventions, namely:
random variables are capitalized, while observations are expressed as the corresponding lower-
case letters; also, bold symbols indicate vectors, meanwhile normal font stands for univariate
quantities

2 the terms predictors and response proper of the statistical community are used hereafter
interchangeably with inputs and output, respectively, that are instead more used in the machine
learning jargon
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served mismatch between the prediction and label. Finally, the whole procedure

is iterated until the learned parameters generate a sufficiently satisfying mapping

that allows the generalization to new data. The advantage of this approach is

that the previous knowledge provided by the labels is leveraged to supervise the

training, helping the model learn the right mapping between predictors and tar-

get. For this reason, the SL paradigm is widely used in practice and has a long

list of successes for many different learning tasks (e.g. spam filtering, fraud de-

tection, image classification, stock price forecasting). However, most of the data

in a real-world scenario are produced without labels. This prevents the adoption

of SL techniques to learn from such data unless undertaking a (probably costly)

labeling/annotation phase before their analysis.

Contrarily, Unsupervised Learning (UL), or “learning without a teacher”,

addresses the task of learning when no labels are available. In this case, the goal

is to directly infer properties of the input data X without the help of a super-

visor (Friedman et al., 2009, Chapter 14), i.e. identifying hidden structures and

commonalities in the data. Cluster analysis is one of the most popular families of

unsupervised learning algorithms. In this case, the problem is formulated as find-

ing subgroups of observations (clusters) that can be considered similar according to

a given measure of distance/similarity. The training phase proceeds by assigning

the data points to the clusters by minimizing an overall measure of internal com-

pactness and/or separation between different groups. Thus, UL is very convenient

in many practical situations since it does not require labels (e.g. market basket

analysis, anomaly detection, pattern recognition, dimension reduction), and it can

be pursued as a goal per se – i.e. to discover hidden patterns in data – or as a pre-

processing for subsequent elaborations – e.g. learn a convenient representation for

further analysis. However, the absence of a reference target makes it difficult – usu-

ally impossible – to objectively measure the goodness of the results – as opposed

to the intuitive notion of score given by the loss function in SL (Von Luxburg,

Williamson, & Guyon, 2012). Rather, the evaluation typically resorts to heuristic

arguments based on the interpretability of the results for a given use case, which

makes the whole process somewhat arbitrary.

Alternative learning paradigms have been proposed at the intersection between

supervised and unsupervised learning to access the benefits of both strategies and

10 CHAPTER 1. INTRODUCTION



1.2. LEARNING THEORY

mitigate their limitations. For instance, semi-supervised learning adopts a mixed

training strategy where only a small fraction of the data are labeled. Nonetheless,

such approaches perform significantly better than purely unsupervised methods.

Another example is represented by weakly supervised learning. In this case, the

collected labels may be scarce in number and/or quality (i.e. inaccurate). Again,

this implies considerable improvements in performance at lower annotation costs

with respect to supervised strategies. An emerging alternative that is showing

great potential is self-supervised learning. This approach tries to leverage large

amounts of unlabeled data to learn representations to reuse for different purposes.

In particular, a model is first pre-trained on a so-called pretext task, i.e. a learning

objective other than the desired target but propaedeutic for its learning, for which

labels can be automatically/easily retrieved. Then, the learned representation is

reused to fine-tune the model on the downstream task of interest.

A completely different approach is represented by Reinforcement Learning

(RL). In its simplest formulation, the learning task is formalized in terms of an

agent interacting with an evolving environment, and the goal is to learn a policy

– i.e. a mapping between the states of the environment and the corresponding

actions the agent may undertake in those states. These actions generate a reward

for the agent, and an optimal mapping must be sought to maximize this notion of

reward over time. Drawing a comparison with the above paradigms, in this case

the inputs correspond to the environment settings at a given time t, and the agent

has to output an action at. Like in UL, no explicit labels are provided to the agent

to learn from. Instead, the reward signal is used as an indirect measure of ranking

between the goodness of different actions for a given state. This is conceptually

different from the label in SL, which instead represents the right prediction for a

given input (Sutton & Barto, 2018, Chapter 1). The RL framework is particularly

appealing for its resemblance with the way we humans learn. Indeed, we interact

with an environment without an explicit supervision, and we learn to associate

actions to given situations. For this reason, RL is also very adopted in practice for

an wide range of applications ranging from autonomous driving to playing games.

In this thesis, we adopt different learning paradigms based on the nature of the

data and the corresponding use cases. In particular, Part I exploits convolutional

neural networks for classifying pixels into signal and background classes. Part II
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explores the domains of self-supervised and unsupervised learning instead. Specif-

ically, a language model is first used to get a convenient numeric representation

for textual data (Section 9.1.2), and a K-means algorithm is then applied to get

clusters of similar error messages (Section 9.1.3).
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Chapter 2

Introduction

One of the reasons for the increasing popularity of data science is the extensive

list of successes achieved thanks to statistical approaches capable of learning from

data. Deep Learning is one of such techniques and comprehends a family of mod-

els derived from classical Artificial Neural Networks. Their distinctive characteris-

tic is the exploitation of efficient implementations available in modern computers

to build architectures with many hidden layers, whence the ‘deep’ connotation.

Among these models, Convolutional Neural Networks (CNNs) (Jimenez-del Toro

et al., 2017; Greenspan, van Ginneken, & Summers, 2016) were the first appar-

ent evidence of Deep Learning’s potential, showing the ability to outperform the

state-of-the-art in many computer vision applications in the past decade. Success-

ful examples range from classification and detection of basically any kind of objects

(Krizhevsky, Sutskever, & Hinton, 2012; Redmon, Divvala, Girshick, & Farhadi,

2016) to generative models for image reconstruction (Cheng, Chen, Alley, Pauly,

& Vasanawala, 2018) and super-resolution (Ledig et al., 2017). Thus, researchers

from both academy and industry have started to explore adopting these techniques

in fields such as medical imaging and bioinformatics, where the potential impact

is vast. For instance, CNNs have been employed for the identification and local-

ization of tumors (Havaei et al., 2017; Vandenberghe et al., 2017; Ciresan, Giusti,

Gambardella, & Schmidhuber, 2012, 2013), as well as detection of other structures

like lung nodules (Jiang, Ma, Qian, Gao, & Li, 2018; Meraj et al., 2020; Su, Li, &

Chen, 2021), skin and breast cancer, diabetic foot (Alzubaidi et al., 2021), colon-
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rectal polyps (Korbar et al., 2017) and more, showing great potential in detecting

and classifying biological features (Lundervold & Lundervold, 2019; Sahiner et al.,

1996; Yadav & Jadhav, 2019).

In the wake of this line of applied research, Part I tackles the problem of

counting cells into fluorescent microscopy pictures. In particular, our work aims

at developing a Deep Learning approach for automatic recognition and counting

of neuronal cells. We start by exploiting formerly available fluorescence pictures

acquired during past experiments, and we collect detailed pixel-wise segmentation

maps tracking the location of the cells in such pictures. Then, we attempt dif-

ferent approaches based on convolutional neural networks trained from scratch in

a supervised manner. In the end, the results are assessed both in terms of cell

detection and counting performances. Also, a thorough qualitative assessment is

conducted with the help of domain experts. Importantly, the collected dataset

and the best pre-trained model are released to foster future research in this and

related areas.

The following sections describe the most relevant stages of our project. In par-

ticular, Chapter 2 presents a panoramic of fluorescence microscopy, its application

to natural sciences and the more general task of counting objects in images, as well

as our contributions to such domains. Chapter 3 then introduces the Fluores-

cent Neuronal Cells dataset with its characteristics and challenges. Chapter 4

discusses the alternative techniques we adopted to tackle the problem and the

specifics of our experimental settings, with a particular focus on the cell ResUnet

architecture of our proposal and the weight map adopted for promoting precise

segmentation. In Chapter 5, the output of our experiments is reported. Particular

attention is devoted to comparing alternative approaches and evaluating various

study design choices. Finally, Chapter 6 summarizes the main findings of our work

and outlines some possible future lines of research related to this application.

2.1 Fluorescence microscopy

Fluorescence is a luminescence phenomenon that was first discovered in 1852 by

George G. Stokes (Stokes, 2010). He observed that some molecules, denominated

fluorophores, are susceptible to emitting light when they are in electronically ex-
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cited states. These states can be caused by a physical mechanism (e.g. absorption

of light), a mechanical process (e.g. friction) or chemical interactions. In other

words, fluorescence is the property of some atoms and molecules to absorb light at

a specific wavelength. In turn, this causes a transition from a ground state to an

excited one. When that happens, the fluorophore becomes unstable and releases

the absorbed energy by emitting light of a longer wavelength (Stokes shift) to get

back to the ground state. This difference in wavelengths between the absorbed

and emitted light is the enabling factor of microscopic fluorescence. In practice,

synthetic fluorophores having desired fluorescence properties are adopted, and the

instrumentation is carefully set up to illuminate the specimen with a precise wave-

length. The Stokes shift is then exploited to filter out the exciting light with-

out blocking the emitted fluorescence, thus making the fluorescent objects visible

(Lichtman & Conchello, 2005).

Many experiments in the life science domain are based on this technique.

Specifically, the fluorophore is designed to couple with the molecular structures

of interest and interact with the tissues under study. In this way, the efficacy of a

treatment or the organism response to a given environment is assessed by track-

ing the activity/presence of the targeted compounds. This process often resorts

to counting how many molecular structures produced fluorescent emissions in the

different conditions (Hitrec et al., 2019, 2021; da Conceição, Morrison, Cano, Chi-

avetta, & Tupone, 2020). For example, Hitrec et al. (2019) investigated the brain

areas of mice that mediate the entrance into torpor, showing evidence of which

networks of neurons are associated with this process.

Torpor, also referred to as dormancy, is a behavioral and physiological state

often observed in both animals and plants. In particular for animals, this condition

is typically characterized by reduced body temperature and depressed metabolism,

and it is exploited by living organisms in response to a variety of hostile environ-

mental stimuli, including low temperature, water or food deprivation (Gansloßer &

Jann, 2019; Withers & Cooper, 2019). Interestingly, some studies have shown how

this condition can induce resistance to radiations (Cerri et al., 2016; Tinganelli

et al., 2019; Cerri, Negrini, & Zoccoli, 2021), which could be crucial for a broad

spectrum of medical purposes. Certainly, knowing the mechanisms that rule the

onset of lethargy, and understanding how to trigger their activation, may have
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a significant impact when coming to human applications. For instance, such an

approach could be very beneficial when dealing with patients who need invasive

surgery, e.g. intensive care or oncology treatments (Bouma et al., 2012; Alam et

al., 2012; Bellamy et al., 1996). Pushing the imagination even further, one could

think of hibernation as an enabling factor for long interplanetary trips, where as-

tronauts could overcome or limit side effects of space travels (Cerri et al., 2016;

Cerri, Hitrec, Luppi, & Amici, 2021; Puspitasari et al., 2021; Bradford, Schaffer,

& Talk, 2020).

As a result of all these implications, it becomes evident how the matter assumes

considerable interest and qualifies for further in-depth studies. Nevertheless, the

technical complexity and the manual burden of these analyses often hampers fast

developments in the field. Indeed, these experiments typically rely heavily on semi-

automatic techniques that involve multiple steps to acquire and process images

correctly. Manual operations like area selection, white balance, calibration and

color correction are fundamental in order to identify neurons of interest successfully

(Dentico et al., 2009; Gillis et al., 2016; Luppi et al., 2019). As a consequence, this

process may be very time-consuming depending on the number of available images.

Also, the task becomes tedious when the objects appear in large quantities, thus

leading to errors due to fatigue of the operators. Finally, a further challenge is that

sometimes structures of interest and image background may look similar, making

them hardly distinguishable. When that is the case, counts become arguable and

subjective due to the interpretation of such borderline cases, thus leading to an

intrinsic arbitrariness.

For these reasons, this work aims at facilitating and speeding up future research

in this and similar fields through the adoption of a CNN that counts the objects

of interest without human intervention. The advantages of doing so are two-fold.

On one side, the benefit in terms of time and human effort saved through the

automation of the task is evident. On the other, using a Deep Learning model

would impede fatigue errors and introduce a systematic “operator effect”. In this

way, the annotation would result in a more coherent process and it would guarantee

similar structures are labeled consistently, both within the same experiment and

across different studies.
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2.2 Counting objects in images

Counting objects in digital images is a common task for many real-world applica-

tions (Segui, Pujol, & Vitria, 2015; Arteta, Lempitsky, & Zisserman, 2016; Cohen,

Boucher, Glastonbury, Lo, & Bengio, 2017; Rahnemoonfar & Sheppard, 2017) and

different approaches have been explored to automate it (Lempitsky & Zisserman,

2010; Ciresan et al., 2012, 2013; Kraus, Ba, & Frey, 2016; Raza et al., 2017).

Multiple paradigms for counting objects in images have been proposed depend-

ing on the study’s specific needs and the available data. The natural setting to

tackle this problem is the so-called counting-by-regression scheme. In this case,

the input data consist of the image and, optionally, other features. The model is

then trained to output the raw count of objects directly. However, this approach

does not provide any immediate justification of which elements generated the final

count. Possible refinements are also available, based on regressing density maps

instead of counts directly (W. Xie, Noble, & Zisserman, 2018; Cohen et al., 2017).

In this case, the predicted density maps provide some hints of where the objects are

generally located, but without identifying individual instances. Another strategy

is counting-by-detection. In this case, the model is trained to reproduce ground-

truth masks having bounding boxes surrounding the objects to detect. In this way,

the output becomes an image where pixels are classified either into the signal class

(within the boxes) or as background (outside). This outcome provides the raw

count as the number of sets of connected pixels, plus a justification in terms of the

localization furnished by the bounding boxes. Building on the latter framework,

one can refine the model’s ability to detect and localize the objects by including

semantic labels for each pixel in the ground-truth masks. This allows pixel-wise

classification that enables to discern the exact boundaries of each object. The

total count is then retrieved again by looking at groups of connected pixels. Such

an approach is referred to as counting-by-segmentation. This work is framed under

the latter paradigm so to support the results with a clear, visual evidence of which

objects contribute to the final counts.
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2.2.1 Related works

Some interesting approaches have been proposed for detecting and counting cells in

microscopic images. Faustino, Gattass, Rehen, and de Lucena (2009) propose an

automated method leveraging the luminance information to generate a graph rep-

resentation from which counts of cells are retrieved after a careful mining process.

Nonetheless, their approach relies on the manual setting of some parameters, like

the optimal threshold for separating cell clusters and the luminance histogram bin-

ning adopted for retrieving connected components, which hampers the extension

to different data.

Ronneberger et al. (2015) present a Deep Learning approach for segmentation

of cells in an image. Their main contribution is the introduction of a novel network

architecture, U-Net, which is still state-of-the-art in several applications with only

slight adaptations (Masin et al., 2021; Ritch et al., 2020). The basic idea is to have

an initial contracting branch used to capture relevant features, and a symmetric

expanding one that allows for accurate localization. The main drawback is that

its enormous number of parameters requires relevant computing power and makes

the training difficult because of vanishing gradient (Hochreiter, 1998; Guan, Khan,

Sikdar, & Chitnis, 2020; Y. Cao, Liu, Peng, & Li, 2020; Qamar, Jin, Zheng,

Ahmad, & Usama, 2020). For this reason, a commonly used variation adopts

residual units (K. He, Zhang, Ren, & Sun, 2016) with short-range skip-connections

and batch normalization to prevent that problem. Also, this typically guarantees

comparable performance with much less parameters.

Kraus et al. (2016) combine deep CNNs with multiple instance learning in

order to classify and segment microscopy images using only whole image level

annotations. Raza et al. (2017) propose a novel multiple-input multiple-output

convolution neural network (MIMO-Net) that utilizes multiple resolutions of the

input image, connects the intermediate layers for better localization and context

and generates the output using multi-resolution deconvolution filters.

A common downside of these approaches is the need of ground-truth labels (or

masks) with accurate annotations of whether each pixel belongs to an object –

in this case a cell – or the background, resulting in an additional and laborious

data preparation phase. In an attempt to overcome this limitation, some works
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try to tackle the problem in an unsupervised fashion. For example, Riccio, Bran-

cati, Frucci, and Gragnaniello (2018) address segmentation and counting with a

step-wise procedure. The whole image is first split into square patches, and a

combination of gray level clustering followed by adaptive thresholding is adopted

for foreground/background separation. Individual cells are then labeled by de-

tecting their centers and applying a region growing process. While this procedure

bypasses the need for ground-truth masks, it still requires handcrafted hyperpa-

rameters selection that needs to be tuned for new data. For additional examples

of segmentation in biological images, the interested reader is referred to Riccio et

al. (2018).

2.3 Contribution

Part I tackles the issue of automating cell counting in fluorescence microscopy

using Deep Learning. Building upon Morelli et al. (2021), the following focuses

on a supervised learning approach in the context of semantic segmentation. The

main contributions of this work are the following.

First, we propose an automatic approach for counting neuronal cells based on

Deep Learning. To achieve that, two families of network architectures are com-

pared – Unet and its variation ResUnet – in terms of counting and segmentation

performance. In particular, we introduce a slight modification of the ResUnet

explicitly tailored for our use case, which we call cell ResUnet (c-ResUnet).

Second, an error weighting mechanism is proposed to penalize misclassifications

on cell boundaries and its effectiveness is demonstrated through ablation studies,

showing how this strategy promotes accurate segmentation, especially in cluttered

areas.

Last but not least, our pre-trained model1 and the rich dataset with the cor-

responding ground-truth annotations (Clissa et al., 2021) are released to foster

methodological research in both biological imaging and deep learning communi-

ties.

1available at: https://l.infn.it/linkmodel
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Chapter 3

Fluorescent neuronal cells dataset

The Fluorescent Neuronal Cells dataset (Clissa et al., 2021) consists of 283

pictures of mice brain slices and the corresponding ground-truth labels. In order to

acquire these images, the mice are first subjected to controlled experimental condi-

tions. Then, a monosynaptic retrograde tracer (b-subunit of Cholera Toxin, CTb)

is surgically injected into a small region of the brain called raphe pallidus. Sub-

sequently, some areas of interest – i.e. dorsomedial hypothalamic nucleus (DM),

lateral hypothalamic area (LH) and ventrolateral part of the periaqueductal gray

matter (VLPAG) – are observed to spot signals of the tracer indicating the neu-

rons that projects into the injection site (Hitrec et al., 2019), thus highlighting

functional connections between brain regions. These tracers are widely used to

understand neuronal links among neural structures since their composition allows

synaptic termini to capture the tracer and then retrogradely transport it into the

cell soma through the axon. As the term “monosynaptic” suggests, they can-

not pass into other cells once captured by the synaptic terminal, thus enabling a

unique association between the marked neurons and the area where the tracer was

injected. After some time required for capturing and transporting the tracer – 7

days in our case, as typical for laboratory rodents –, the brain is cut into slices and

observed through a fluorescence microscope. This tool allows to lit the specimens

with light at a specific wavelength and select the corresponding narrow frequency

emitted by a fluorophore associated with the tracer. In our case, the samples are

observed at a 200x zoom through a Nikon eclipse 80i microscope equipped with a
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(a) empty (b) mask

(c) dark (d) mask

(e) bright (f) mask

Figure 3.1: Sample data. Raw images and corresponding ground-truth masks.
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Nikon Digital Sight DS-Vi1 color camera (3.1876 pixels/micron of resolution). The

configuration adopted exploits absorption (excitation) and emission wavelengths

of 555 and 580 nanometers, respectively, corresponding to a hue between yellow

and orange. Thus, the resulting images depict neurons of interest as yellow-ish

spots over a composite, generally darker background (Figs. 3.1a, 3.1c and 3.1e).

3.1 Ground-truth labels

Under a supervised learning framework, the training phase leverages ground-truth

labels acting as examples of desired outputs that the model should learn to repro-

duce. In the case of image segmentation, such targets are in the form of binary

images (masks) where the objects to segment and the background are represented

by white and black pixels, respectively (Figs. 3.1b, 3.1d and 3.1f).

Obtaining target masks usually requires a great effort in terms of time and

human resources, so an initial automatic procedure was exploited to speed up

the labeling process. In particular, starting from a large subset composed by

252 pictures, gaussian blurring (with size σ = 7)1 was first applied to mitigate

small-frequency noise. Then, the resulting images were subjected to a thresholding

operation. For this step, the image histogram of the pixel intensity was considered,

and a cutoff equal to the 97-th percentile of the intensity distribution was adopted

for binarization. The goal was to obtain a loose selection of good candidates

to be labeled as neuronal cells. After that, knowledgeable operators reviewed

the results to discard the false positives introduced with the previous procedure,

taking care of excluding irrelevant artifacts and misleading biological structures.

The remaining 31 images were segmented manually by domain experts. Significant

pictures with challenging traits – such as artifacts, filaments and cell agglomerates

(see Section 3.3) – were included in the latter set to have highly reliable masks for

the most arduous examples2.

Despite the huge popularity Deep Learning has gained in computer vision in

the last decade, the lack of annotated data is a common curse when dealing with

applications involving non-standard images and/or tasks (J. Xie, Kiefel, Sun, &

1the skimage.filters.gaussian utils was adopted for this task
2check the README file in Clissa et al. (2021) for the list of manually segmented images
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Geiger, 2016). Since ground-truth labels are expensive to acquire in terms of time

and costs (Vijayanarasimhan & Grauman, 2009; Mullen Jr, Tanner, & Sallee,

2019), a common approach is to fine-tune models that are pre-trained on giants

datasets of natural images like ImageNet (Deng et al., 2009) or COCO (T.-Y. Lin

et al., 2015), possibly using as few new labels as possible for the task of inter-

est. However, this strategy often does not apply to use cases where the pictures

under analysis belong to extraneous domains with respect to the ones used for

pre-training (Alzubaidi et al., 2021). For this reason, by releasing the annotated

dataset3 and the pre-trained model4 we hope to i) foster advances in fields like

biomedical imaging through the speed up guaranteed by the automation of man-

ual operations, and ii) promote methodological research on new techniques of data

analysis for microscopic fluorescence and similar domains.

3.2 Data exploration

Fluorescent Neuronal Cells images are high-resolution RGB pictures of constant

shape (1200 pixels height by 1600 pixels width) collected under fixed experimental

conditions. The data can be explored at two complementary levels: pixel features

and cell characteristics. On the one hand, interesting insights can be retrieved

by looking at pixels’ color and luminance information. Also, analogous analyses

on the ground-truth masks reveal essential information about class-imbalance be-

tween signal and background. On the other hand, examining object properties can

highlight potential nuisances and suggest how to evaluate model performances.

The above data explorations are presented in the following sections of this

chapter, and a summary table of the most important data features is reported in

Table 3.1.

3.2.1 Salient features

The picture appearance is dominated by two prevalent tints due to the intentional

selection of a specific wavelength: a darker hue corresponding to areas whose light

3available at: http://amsacta.unibo.it/6706/
4available at: https://l.infn.it/linkmodel
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red
intensity

green
intensity

blue
intensity

signal (%) signal ratio area (µm2)
Feret

diameter (µm)
# cells/image

count 1,920,000 1,920,000 1,920,000 283 283 2,137 2,137 283
mean 7.32 2.83 0.20 0.50 366,681.94 119.30 17.48 27.05

standard
deviation

16.81 13.30 1.43 0.61 755,628.42 97.96 8.20 21.75

min 0 0 0 0 19.57 15.94 5.86 0
10% 0 0 0 0 92.39 35.23 9.42 4
25% 2 0 0 0.09 145.35 55.51 11.95 7
50% 5 1 0 0.34 291.10 89.86 15.53 21
75% 9 2 0 0.68 1,163.29 148.02 20.86 48
90% 12 4 0 1.07 1,920,000 237.09 27.61 59
max 252 251 87 4.86 1,920,000 796.39 67.48 68

Table 3.1: Distributions summary. Summary of the distributions illustrated
in Section 3.2. For each distribution we report the mean and standard deviation;
minimum, maximum and 10-th, 25-th, 50-th, 75-th and 90-th percentiles; the count
of objects from which such measures are computed, i.e. pixels, images and cells.

was filtered out and a yellow tone emitted by the fluorophore (Figs. 3.1a, 3.1c,

3.1e and 3.7). As a consequence, the only color channels to be populated are red

and green, while blue is typically empty. An example of this effect is reported in

Fig. 3.2, where the average distribution of pixel intensity is illustrated5. In practice,

the blues have an extremely narrow distribution squashed on zero, which makes it

even difficult to visualize. The red and green channels are instead more populated.

Their central tendency is still concentrated on low values due to the prevalence

of background pixels, however we observe longer and thicker right tails, especially

for the red channel (see red, green and blue columns in Table 3.1 for a numeric

summary). Guided by this observation, one may argue that all this information

is superfluous, so resorting to a grayscale transformation could be better since

the images are ultimately shades of yellow. A nice way to visually investigate

such relationships is by exploring the colorspace representations of several images.

Figure 3.3 reports the RGB and HSV encodings for two randomly sampled images.

Indeed, the RGB representations (Figs. 3.3a and 3.3c) corroborate the previous

intuition, as most pixels lay almost on a straight line in the red-green plane.

This suggests that the two channels are highly correlated, so a one-dimensional

5the box captures the central half of the distribution (25-th/75-th percentile); the solid and
dashed lines represent the median and the mean, respectively. The same convention is adopted
in the following violin plots
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Figure 3.2: Pixel intensity distribution. Boxplot of the average distribution of
pixel intensities across the RGB channels.

subspace may be enough to represent most of the variability of the data. In turn,

this would bring two advantages: ease the learning process – as neural networks

typically suffer when inputs are correlated – and make it more efficient – as only

one channel is considered instead of three.

However, the use-case at hand has no stringent requirements in terms of com-

puting resources and runtime, so the 3-channels training is still feasible. More

importantly, the information thrown away when converting to grayscale, although

tiny, may be crucial to discriminate background and signal. Hence, a 3D-encoding

may still be worthed but the RGB colorspace may not be the optimal representa-

tion to learn this separation. A hint of that is demonstrated in Figs. 3.3b and 3.3d,

where the same images are depicted according to the HSV encoding. In this case,

the separation between dark and colored tones appears more evident. Moreover,

most of the pixels are concentrated in low hue values and their distribution seems

more spread across the saturation-value plane.

All that being considered, we try to leverage the insights of both approaches.

On one side, the RGB colorspace is taken as a starting point to retain all avail-

able information. On the other, the model first layer is designed to incorporate

a colorspace transformation from RGB to a single channel. In this way, we avoid
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Mar19bS1C4R3 LHl 200x y.png

(a) RGB (b) HSV

Mar21bS1C1R3 VLPAGl 200x y.png

(c) RGB (d) HSV

Figure 3.3: Colorspace. Two images represented as 3D points according to their
RGB (left) and HSV (right) encodings. Each point is colored as the corresponding
pixel in the original image.
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Figure 3.4: Class imbalance. Violin plot and boxplot of signal percentage (a)
and background to signal ration (b).

introducing any colorspace-related bias since the model learns the most conve-

nient representation. At the same time, we exploit the observation that a one-

dimensional manifold is probably enough to express the data variability by forcing

the learned encoding to one channel.

3.2.2 Class imbalance

Inspecting ground-truth masks at pixel level reveals important characteristics that

affect the training process. By looking at the cardinality of pixels belonging to the

background and the signal it is possible to notice how the two classes are extremely

unbalanced (see signal (%), and signal ratio columns in Table 3.1 for a numeric

summary). Figure 3.4a shows a violin plot of the percentage of signal pixel over

the total image pixels across the 283 pictures. The distribution is deeply skewed

towards 0, with a median of 0.34% and a 90-th percentile of 1.07%. Hence, almost

90% of the images contain less than 1% of pixels belonging to the signal. Even

more significantly, the right tail does not exceed 5% of signal coverage, with a

maximum of 4.86%.
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Figure 3.5: Geometrical features. Distributions of the area (µm2) (a) and
maximum Feret diameter (µm) (b) across all annotated cells.

Figure 3.4b illustrates the same concept but focuses on the relative proportion

of background to signal. The distribution is left-skewed, with a lower half concen-

trated in the range (19, 291), i.e. background pixels are roughly from 20 to 300

times the signal pixels in 50% of the images. Remarkably, the disproportion grows

even faster in the right tail, where the ratio explodes up to over 1000. Finally,

notice that the bulk of outliers accumulates in the higher end of the domain. This

is caused by the contribution of empty masks that cover more than 10% of the

total images.

These considerations expose the need for dedicated training strategies to face

this strong class imbalance and correctly learn to classify image pixels.

3.2.3 Objects features

After the initial exploration of the data characteristics at the pixel level, addi-

tional investigations can be devoted to discovering meaningful insights about im-

ages’ macroscopic content. The Fluorescent Neuronal Cells pictures present a rich

collection of 2137 neuronal cell instances of various shapes and sizes (see area, and
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Feret diameter columns in Table 3.1 for a numeric summary) that are unevenly

distributed across the images.

Figure 3.5 shows the distributions of the most interesting geometrical features

of the annotated objects. Regarding the area (Fig. 3.5a), the bulk of the distribu-

tion presents cells with a surface within 55.51 and 148.02 µm2. Figure 3.5b reports

the maximum Feret diameter (Merkus, 2009) instead. This measure is computed

as the longest distance (in pixels) between points of a convex cell countour6. In

both cases, the distribution is left-skewed, with a slight prevalence of values lower

than the median. In fact, 90% of objects are small and medium cells with preva-

lently regular circular shapes, having an area in the range [35.23, 237.09] µm2 and

a Feret diameter between 9.42 and 27.61 µm. The remaining 10% of the distribu-

tion stretches up to a maximum of 796.39 µm2 and 67.48 µm, respectively. This

effect is due to the contribution of more oversized or prolonged objects that cause

a long, heavy tail.

Finally, 3.6 illustrates the distribution of the number of cells across the dataset

(see # cells/image column in Table 3.1 for a numeric summary). In this case, the

distribution presents multiple modes that can be summed up by the five major

peaks, namely 6, 35, 38, 53 and 68 (Fig. 3.6a). The empty spaces are a consequence

of the fact that not all of the possible values were actually observed in the data.

Interestingly, a lower peak is observed at 0 because of the 56 images where no cells

were annotated.

By looking at the estimated density in the violin plot (Fig. 3.6b), it appears

that the distribution can be interpreted as a mixture of two components. The

first is centered around 6 and is made of the images with lower counts, i.e. the

ones depicting brain areas where the fluorophore did not yield abundant emissions.

The second, instead, is a combination of the four higher peaks that represent areas

having anatomical connections with the injection site (i.e. they project into where

the tracer was injected in the first place).

6obtained using skimage package version ‘0.18.1’
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Figure 3.6: Counts distribution. Distributions of the number of annotated cells
across all images in the dataset.

3.3 Challenges

Although many efforts were made to stabilize the acquisition procedure, the images

present several relevant challenges for the detection task.

A first source of complexity is given by the high variability in terms of color,

saturation and contrast from image to image. For example, sometimes the tissues

can soak in some of the marker (see Fig. 3.1e), causing irrelevant compounds to

emit light which is then captured by the microscope. When that is the case, the

background’s hue shift towards values similar to the ones of some fainted neuronal

cells (cf. Fig. 3.1c). In such circumstances, the sheer pixel intensity is not enough

to distinguish between signal and background, which forces the identification to fall

back to other characteristics such as saturation and contrast. However, the latter is

likewise not trivial as fluorescent emissions are naturally unstable, thus generating

fluctuations of the saturation levels exhibited by cell pixels (cf. Figs. 3.1c and 3.7a).

Moreover, the substructures of interest have a fluid nature. Also, the shot can

capture different two-dimensional sections depending on how the cells are oriented

within the tissues. As a consequence, the size and the shape of the stained cells may
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change significantly (see Figs. 3.5a and 3.7a), making it even harder to discriminate

between them and the background.

Another challenge is due to the occasional presence of accumulations of fluo-

rophore in narrow areas that generate emissions very similar to the ones of cells.

When that happens, the pictures may contain fictitious objects or uninteresting

structures that resemble neuronal cells in terms of shape, size or color. These ar-

tifacts may vary from small areas – as in the case of point artifacts and filaments

(see Figs. 3.7b and 3.7c)– to bigger structures as the stripe in Fig. 3.7b or the

“macaron”-shaped object in Fig. 3.7c. Again, their presence hampers the detec-

tion task, making the recognition and the understanding of cells structure and size

mandatory for the model.

A further source of complexity is represented by the broad shift in the number

of target cells from image to image. Indeed, the total counts range from no stained

cells (Fig. 3.1a) to several dozens clumping together (Fig. 3.7a). As a consequence,

a certain degree of flexibility is required for the model so to handle both cases.

In particular, the precise localization of cell boundaries may be hard to achieve in

the presence of overcrowding, and some escamotages may be necessary to avoid

close-by cells are joint in single agglomerates by the model.

Furthermore, the objects are typically small and cover only marginal portions of

the images. This generates an extreme imbalance between signal and background

(see Section 3.2.2), which is even worsened by the high resolution of the pictures.

Hence, dedicated learning strategies are demanded to mitigate this issue during

the training phase.

Last but not least, in some occasions the recognition of cells may be ambiguous

even for human operators. Of course, this poses an issue of intrinsic subjectivity

in the annotation process, which in turn affects both the training and assessment

phases.

By and large, all of these factors make the recognition and counting tasks

harder and complicate the learning process. Likewise, borderline annotations hin-

der model evaluation as their subjectivity deprives the model of a reliable and

indisputable testbed.
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Figure 3.7: Challenges and artifacts. Some of the images present cells agglomerate that require sharp boundary
segmentation. Also, marked cells may look very similar to non-marked objects due to an intrinsic arbitrariness of
the recognition task.
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Figure 3.7: Challenges and artifacts. (2) Although biological structures as the tissue border (stripe) or the
axons (filaments) naturally have similar emission properties compared to neuronal cells, they are not of interest and
ought to be discarded by the model.
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Figure 3.7: Challenges and artifacts. (3) The fluorophore may accumulate in small (point-artifacts) or even
large (“macaroni”-shaped artifact) areas; this causes emissions hard to distinguish from cells just looking at the
pixels’ color features.
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Chapter 4

Methods

This chapter discusses a deep learning attempt to tackle the problem of segmenting
and counting cells in microscopic fluorescence using a supervised learning frame-
work. For this purpose, we leverage the recently proposed cell-ResUnet archi-
tecture (Morelli et al., 2021) for object segmentaion, and we adopt careful training
strategies to address the principal challenges of the Fluorescent Neuronal Cells
dataset (Clissa et al., 2021) described in Section 3.3. Once the cells are detected,
the final count is retrieved as the number of connected pixels in the post-processed
output. In order to demonstrate the efficacy of our method, we compare the
cell-ResUnet against three CNN architectures belonging to the Unet and ResUnet
families. In doing so, we also test the impact of study design choices intended to
reduce false negatives and promote accurate segmentation. In addition to that,
an adaptive thresholding approach is also tested as a baseline for performance
measurement.

4.1 Non-ML baseline

Machine and deep learning have succeeded in many applications from several do-
mains lately, thus building great expectations and becoming hot topics in cur-
rent innovation processes at various societal levels. Nevertheless, these powerful
techniques are not a magic bullet to solve any data-related problem (Wolpert &
Macready, 1997). They come with their own challenges and limitations that are
often overlooked in real-world applications, possibly causing thunderous failures
due to unjustified expectations. In fact, it is not unusual to fall victim to their
popularity only to find months down the line that more straightforward methods
work best for some specific task or data.

To avoid incurring this “ML hype curse”, this work considers a simple non-ML
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approach as a baseline. In particular, this consists in an adaptive thresholding
mechanism implemented to exploit the pixel intensity information for binarization.
In practice, the input image is read as grayscale and a selection cutoff is set at
a configurable quantile of the pixel intensity distribution. A binary mask is then
obtained by labeling pixels above that threshold as cells and the rest as background.
After that, the same post-processing steps as the ones adopted for the output of
the ML models are applied (see Section 4.5). This operation is performed for all
training and validation pictures, and the goodness of fit is assessed as described
in Section 4.6. The whole procedure is then repeated varying the quantile value
used for thresholding. A starting search is conducted using a coarse grid from
0.9 to 0.99 with steps of 0.01. This is intended to explore the hyperparameter
space and get an idea of where the approach performs best. Since this happens for
higher values, a finer grid from 0.97 to 0.999 with steps of 0.001 is exploited for
fine-tuning. Finally, the cutoff corresponding to the highest F1 score is chosen as
the optimal threshold and is later used to assess the baseline performance on the
test set.

4.2 Model architecture

This section describes the four architectures adopted for our studies. In particu-
lar, we tap into two network families commonly used for segmentation tasks, i.e.
Unet and ResUnet, and experiment with two alternative implementations for each
family. The following subsections discuss the two families and each architecture
in greater detail.

4.2.1 Unet architectures

The Unet architecture was introduced in Ronneberger et al. (2015), explicitly tar-
geting the task of semantic segmentation in biomedical images. The idea behind
this approach is to build upon a fully convolutional network (Long, Shelhamer, &
Darrell, 2015) that extends the CNN models commonly seen for classification. In
particular, the proposed architecture comprises a usual contracting branch supple-
mented with successive layers where upsampling operators replace pooling coun-
terparts (Fig. 4.1).

The first network portion is built upon a classical block, hereafter referred to as
unet block or units. The former is made of two convolutional layers using a varying
number of 3 × 3 filters without padding (Goodfellow, Bengio, & Courville, 2016,
Section 9.1), each followed by a rectified linear unit (ReLU ) activation function
(Fukushima & Miyake, 1982; Nair & Hinton, 2010 and Goodfellow et al., 2016,
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Section 6.1). This generates an equivalent number of feature maps (or channels)
of approximately the same shape as the input image. After the previous process-
ing, the resulting feature maps undergo a 2 × 2 max-pooling operation (Weng,
Ahuja, & Huang, 1993 and Goodfellow et al., 2016, Section 9.3) with stride 2, thus
downsampling the input size. In practice, the contracting branch takes a grayscale
image as input and applies four consecutive unet blocks. In the first step, 64
filters are adopted, and the downsampling path then continues roughly halving
the input size at each block, meanwhile doubling the number of feature channels.
The resulting output consists of 1024 feature maps having approximately 1/16 the
size of the original image. Finally, the contracting branch ends with the so-called
bottleneck layer, whereby two convolution-activation blocks are applied.

Conversely, an almost symmetrical upsampling structure follows in the second
part of the network, from which the U-shape comes. This time the unet blocks
are similar to the ones of the contracting branch except that max-pooling oper-
ations are replaced by 2 × 2 up-convolutions (Dumoulin & Visin, 2016; Zeiler,
Krishnan, Taylor, & Fergus, 2010) and long-range concatenations. In this way,
the up-convolutions enlarge individual images to nearly double their size. At the
same time, the feature channels are halved at each step by the upsampling layer.
Although this part is crucial to returning an output of a similar shape as the input,
the upsampling generally produces blurred pixels that hamper precise localization.
For this reason, each up-convolution is concatenated with long-range connections,
i.e. the feature channels are integrated by copying a crop of compatible size from
the corresponding downsampling block. As a result, this escamotage establishes a
flow of information between lower and higher layers such that both low-level finer
details and high-level semantic features contribute to the learning process. In prac-
tice, a total of three upsampling unet blocks are applied in the expanding path,
and the architecture terminates with an additional convolutional block. Specifi-
cally, the latter comprises two of the previous convolution-activation blocks
followed by a last 1 × 1 convolutional layer to map the resulting 64-component
feature vector to the desired number of classes. In the case of cell segmentation,
this corresponds to two feature maps which can be interpreted as pixel-level scores
for the classification as 0 (background) or 1 (signal) classes.

In summary, the Unet architecture aims to create an encoding branch intended
to capture relevant features that enable the recognition of the objects without
caring where they are placed. Once this goal is achieved, the decoding structure
is then applied to refine the localization of the detected objects.

This work considers two implementations of the above structure. The first
one corresponds to the original version of Ronneberger et al. (2015) except for the
padding strategy – we use padded convolution to retain the initial size. The result-
ing model will be referred to as Unet in the following. The second, instead, consists
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Figure 4.1: Unet architecture (example for 32x32 pixels in the lowest resolu-
tion). Each blue box corresponds to a multi-channel feature map. The number of
channels is denoted on top of the box. The x-y-size is provided at the lower left
edge of the box. White boxes represent copied feature maps. The arrows denote
the different operations. This figure is borrowed from Ronneberger et al. (2015).

of a lighter version obtained by setting the initial number of filters equal to 16 and
scaling the following units consequently. Importantly, three unet blocks are used
(plus the bottleneck) rather than the four of the original implementation. Both
of the previous choices are motivated by the intent of testing a unet-like imple-
mentation with a comparable number of parameters with respect to the ResUnet
alternatives (see Section 4.2.2 for more details). However, a trivial transposition
of the original unet blocks does not work in practice for our use case, so we resort
to the insertion of additional batch normalization (Goodfellow et al., 2016, Section
8.7.1) layers after each convolution-activation block. The resulting “light”
unet architecture will be referred to as small Unet hereafter.
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Figure 4.2: Unet versus Residual units. Building blocks of neural networks.
(a) Plain neural unit used in the Unet. (b) Residual unit with identity mapping
used in the ResUnet model. This figure is borrowed from Z. Zhang et al. (2018).

4.2.2 ResUnet architectures

Building on the architecture described in Section 4.2.1, multiple variants have been
proposed, each exploiting more or less substantial tuning of some of its building
blocks. One of such derived versions is the so-called deep ResUnet (Z. Zhang et
al., 2018), whose main difference is the adoption of residual units (K. He et al.,
2016) instead of unet blocks (see Fig. 4.2 for a visual comparison).

The motivation behind the last modifications is to contrast the vanishing gra-
dient (Hochreiter, 1998) issue that generally affects the Unet models. In practice,
the deep architecture poses a severe challenge related to the backpropagation of the
gradients during the learning phase. In fact, each training iteration updates the
network parameters by an amount proportional to the partial derivative of the loss
function with respect to the previous weight values. Specifically, the backpropaga-
tion algorithm is based on chained multiplications that propagate such gradients
backward in the network to update all layers’ parameters. However, this reverse
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flow may entail repeated multiplications of small values (≤ 1) that cause the back-
propagated gradients to “vanish” – i.e. to approach 0. When that is the case, the
update rule implies that network weights are also shrunk towards 0. Consequently,
the corresponding connections between neurons will be deactivated in the next for-
ward pass, thus preventing the full exploitation of the available information and
hampering the learning phase. Of course, the deeper the architecture, the higher
the chances of incurring this drawback. In this regard, the residual units represent
an ingenious gimmick to mitigate the impact of vanishing gradients. The idea is
to leverage an identity mapping (also referred to as short-connection) parallel to
the usual convolutional block, which is added to the result of the convolutions.
In this way, the input information is directly propagated to the next layers and
considered should it be relevant for the subsequent processing. Also, batch nor-
malization layers are typically added to stabilize the range of the input values.
As a result, residual units typically guarantee comparable performance with fewer
parameters, meanwhile enhancing the convergence speed.

Given the advantages described above, we experiment with two architectures
belonging to the ResUnet family inspired by the implementation presented in
Z. Zhang et al. (2018) (see Fig. 4.3). In particular, a first version is obtained
with the same components as in Fig. 4.3, but using 16 initial filters – instead of
the 64 adopted in the original version (Z. Zhang et al., 2018) – and scaling the
following structure consequently. Also, we adopt the exponential linear unit (Elu)
(Clevert, Unterthiner, & Hochreiter, 2015) rather than the ReLU activation. The
resulting model will be referred to as ResUnet in the following.

Finally, we propose a slight modification to the above architecture specifically
developed for our use case. In particular, we add an initial 1×1 convolution to
simulate an RGB to grayscale conversion. The advantage of doing so – as opposed
to applying a standard grayscale conversion – is that the transformation is learned
during training to improve the segmentation performance. As a further modifica-
tion, we insert an additional residual block having 5×5 filters – instead of 3×3 –
at the end of the encoding path. This adjustment should provide the model with a
larger field of view, thus fostering a better comprehension of the context surround-
ing the pixel to classify. This kind of information can be beneficial, for example,
when cells clump together and pixels on their boundaries have to be segmented.
Likewise, the analysis of some background structures (Figs. 3.1e, 3.7b and 3.7c)
can be improved by looking at a broader context. The resulting architecture is
reported in Fig. 4.4 and it will be referred to as cell ResUnet (c-ResUnet)
hereafter.
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Figure 4.3: Deep ResUnet architecture. This figure is borrowed from
(Z. Zhang et al., 2018).
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4.3 Ablation studies

Alongside comparing different approaches, we also tested the effect of two design
choices intended to mitigate errors on challenging images containing artifacts and
cell overcrowding.

4.3.1 Artifacts Oversampling (AO)

The presence of biological structures and technical artifacts like stripes, filaments
(Fig. 3.7b) or accidental flourophore accumulations (Fig. 3.7c) can often fool the
model into detecting false positives. Indeed, their similarity with cells in terms of
saturation and brightness hampers their correct handling and entices the model
to overpredict. This situation is worsened because such structures are underrep-
resented in the data, especially concerning the stripes and the macaroni-shaped
artifact. In fact, only a handful of artifact examples are available, which compli-
cates their recognition even further.

For this reason, we tried to increase the augmentation factor for these inputs
to facilitate the learning process. Specifically, we selected the six different crops
containing stripes and re-sampled them with the augmentation pipeline described
in Section 4.4, resulting in 150 new images for each crop.

4.3.2 Weight Maps (WM)

One of the toughest challenges during the inference is related to cell overcrowding.
In particular, the cells sometimes tend to form agglomerates of several overlying
neurons, making it difficult to reconstruct their individual shapes (see Fig. 3.7a).
Although the human eye can often trace back the morphology of the original
neurons, perhaps even piecing together missing/separated parts due to the super-
position of other cells, this task is still much harder for automatic approaches. In
particular, precise object segmentation is paramount when clumps of objects are
present in the images, as failing to achieve a nitid distinction of cells boundaries
may lead to spurious connections between separated objects. If that happens,
multiple objects are considered as a single one and false negatives are generated,
thus deteriorating the model performance.

In order to improve cell separation, Ronneberger et al. (2015) suggest lever-
aging a weight map that penalizes more the errors on the borders of touching
cells. Building on that, we introduce a novel implementation where single object
contributions are compounded additively. This procedure generates weights that
decrease as we move away from the borders of each cell. At the same time, the
contributions coming from single items are combined so that the global weight
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Figure 4.5: Weight compounding. The dashed curves depict the weights gen-
erated by single cells as a function of the distance from their borders according to
Eq. (4.1). The green line illustrates the final weight obtained by adding individual
contributions.

map presents higher values where more cells are close together (see Fig. 4.5). The
pseudocode1 for a weight map is reported in Alg. 1, and an example weight map
is shown in Fig. 4.6.

With respect to the original Unet implementation, the main difference lies in
the fact that all cells contribute to penalizing each pixel, at least in principle. In
contrast, only the two closest cells have an impact in Unet’s version. In this way,
the weight is increased where more than two cells are close together, producing a
greater penalization in crowded areas. Also, our implementation does not use the
somewhat arbitrary parameter w0 (cf. the original implementation in Ronneberger
et al. (2015)). Finally, our weight map’s σ parameter is tied to the average cell
radius, whereas Unet’s value does not seem attached to any tangible reference or
meaning.

4.4 Model training

After randomly setting 70 full-size images apart as a test set, the remaining pic-
tures were randomly split into training and validation sets. In particular, twelve

1full implementation available at: https://github.com/robomorelli/cell counting

yellow/tree/master/030 weights maker.py
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(a) Mask (b) Weight map

Figure 4.6: Weight map. A target mask and the corresponding weight map.

Algorithm 1: weight map pseudocode for j-th mask.

1 Initialize empty mapj (mask size) // weight map j-th mask

2 for each cell in mask do
/* loop over i-th cell in j-th mask */

3 Initialize empty mapi (mask size) // weight map i-th cell

4 Add i-th cell to mapi

5 Compute euclidean distance between each pixel of mapi and the
closest pixel of the i-th cell

6 Compute each pixel’s weight in mapi according to a decreasing
exponential function:

weight = exp

{
−d2

2σ2

}
(4.1)

/* d is the distance computed at step 5 */

/* σ is a customizable parameter set to 25 (average cell

radius) */

7 Sum the resulting mapi to the full mapj
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512 × 512 partially overlapping crops were extracted from each image and fed as
input to the network after undergoing a standard augmentation pipeline. Common
transformations were considered as rotations, addition of Gaussian noise, bright-
ness variation and elastic transformations (Simard, Steinkraus, & Platt, 2003).
The augmentation factors of the crops were fixed differentially based on their con-
tents. The six patches included in the artifact oversampling ablation study were
re-sampled 25 times each. Instead, all the remaining crops produced 10 augmented
versions for manually segmented images and 4 for all the others. As a result, the
model was trained on a total of nearly 16000 images (70% for training and 30%
for validation).

All competing architectures were trained from scratch under the same con-
ditions to favor a fair comparison. Specifically, the Adam (Kingma & Ba, 2017)
optimizer was employed with an initial learning rate of 0.006. A scheduled decrease
of 30% was then applied if the validation loss did not improve for 4 consecutive
epochs. Aweighted binary cross-entropy loss was adopted on top of the weight
maps to handle the imbalance of the two classes (weights equal to 1.5 and 1 for
cells and background, respectively). All models were trained until no improvement
was observed for 20 consecutive epochs. In this way, each model was allowed to
converge and the comparison was made at the best of each architecture’s capabil-
ities. In terms of convergence speed, all the models required less than 100 epochs
and the training was performed in the scale of a few hours of runtime.

The approach was implemented through Keras API (Chollet et al., 2015) using
TensorFlow (Abadi et al., 2015) as backend. For more details, please refer to the
GitHub repository2. The training was performed on 4 V100 GPUs provided by the
Centro Nazionale Analisi Fotogrammi (CNAF)3 computing center of the National
Institute for Nuclear Physics4 in Bologna.

4.5 Post-processing

This section discusses the full inference pipeline adopted in our approach, with a
particular focus on the post-processing impact. Figure 4.7 reports an illustration
of the above process for a sample input image (Fig. 4.7a).

When the picture is passed through the network, the raw output consists of a
probability map (or heatmap, see Fig. 4.7b) of the same size as the original input,
whereby each pixel value can be interpreted as the probability of belonging to a cell.
The higher the value, the higher is the model’s confidence in classifying that pixel

2available at: https://github.com/robomorelli/cell counting yellow/tree/master
3for more details: https://www.cnaf.infn.it/en/
4for more details: https://www.bo.infn.it/en/welcome-to-infn-bologna-unit/
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(a) ground-truth (b) raw heatmap
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Figure 4.7: Model output. (a) the input image with white contours indicating
annotated cells; (b) the model’s raw output; (c) the predicted mask after thresh-
olding at 0.875; (d) the predicted mask after post-processing.
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as the signal. A thresholding operation is then applied on the heatmap to obtain a
binary mask where the pixels above the cutoff are represented in white (signal) and
the rest in black (background). Hence, groups of white connected pixels represent
the detected cells. The result of thresholding for the sample image is reported in
Fig. 4.7c, where different colors are added for visualization purposes to highlight
different detected objects after the binarization. In this case, the model seems
to perform reasonably well in detecting cell instances, although not being likewise
accurate in the segmentation task (cf. the white contours in Fig. 4.7a that highlight
the annotated cells). Nonetheless, some pathological behaviors are clearly visible.
First, the confidence of the model is not always uniform over all the pixels belonging
to the same object. For instance, its value is typically higher for the central
regions of the detected cells and it deteriorates moving towards the boundaries,
as expected. However, this damping behavior is not always homogeneous, and a
confidence decrease followed by a successive increase can be observed going towards
the cell edges. When that happens, depressed regions are formed inside the objects,
and the thresholding operation risks filtering them out if their values are below
the adopted cutoff. As a result, single cells may be split into multiple instances,
or their body may present internal holes. Examples of those behaviors are the
purple-ish cell in the top-right corner, for which the left tail filament has been
disconnected (cf. Figs. 4.7b and 4.7c), and the green-ish object at the bottom-left,
respectively. Another limitation is related to the overcrowding problem discussed
in Sections 3.3 and 4.3.2, as highlighted by the two close-by cells in the center of
the image. In this case, the heatmap suggests that the model cannot draw sharp
boundaries around the cells, thus failing to separate them in the binary output.

The previous observations suggest that a smarter post-processing may be re-
quired for better performances. For this reason, we adopt ad-hoc post-processing
to tackle the issues above. In particular, we first remove isolated components of a
few pixels and fill the holes inside the detected cells. Then, we employ the water-
shed algorithm (Soille & Ansoult, 1990) to separate close-by objects. An example
of the results is provided in Fig. 4.7d, where the overlapping cells in the middle of
Fig. 4.8 are correctly split after post-processing. Also, the small component in the
top-right corner is removed, and the hole in the bottom-left object is filled.

Unfortunately, this step is customized for our dataset, which hinders its ex-
tension to other applications. However, the parameters for the above operations
are set quite trivially based on the average cell size. Therefore, our approach may
reasonably apply to other use cases as far as ground-truth masks are available for
extracting object statistics5.

5for more details, please check: https://github.com/robomorelli/cell counting

yellow/blob/822944cf91a60c8aae6671d05fbc1c23728cad68/evaluation utils.py#L50
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4.6 Model evaluation

All the presented approaches were evaluated and compared based on both detection
and counting performance. Also, ablation studies were conducted to assess the
impact of artifacts oversampling and weight maps.

In order to evaluate the detection ability of the models, a dedicated algorithm
was developed. Specifically, each predicted object is compared to all cells in the
corresponding ground-truth label and uniquely associated with the closest one.
If the distance between their centroids is less than a fixed threshold (50 pixels,
i.e. average cell diameter), the predicted element is considered a match and it
increases the true positive count (TP). At the end of this procedure, all true ob-
jects without matches are considered false negatives (FN). Likewise, the remaining
detected items not associated with any target are considered false positives (FP).
Algorithm 2 reports the pseudocode of the procedure described above6. Starting

Algorithm 2: metrics computation for i-th image.

Input: predi, maski
Output: TP, FP, FN

1 Set TP, FP, FN = 0
2 Get predicted objects, pred objsi // detected cells

3 Get true objects, true objsi // annotated cells

4 Get predicted centers, pred ctrsi

5 Get true centers, true ctrsi

6 for each ctrj in pred ctrsi do
/* loop over predicted centers */

7 for each ctrk in true ctrsi do
/* loop over true centers */

8 Compute euclidean distance between ctrj and ctrk
9 Store distance and indexes

10 Compute the minimum, min disti of the distances stored in step 9
11 if understand then
12 Increase true positives, TP
13 Remove ctrj from pred ctrsi

14 Remove ctrk from true ctrsi

15 Compute false negatives as true objsi - TP
16 Compute false positives as pred objsi - TP

6full implementation available at: https://github.com/robomorelli/cell counting

yellow/blob/822944cf91a60c8aae6671d05fbc1c23728cad68/evaluation utils.py#L102
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from these values, we resort to accuracy, precision, recall and F1 score as indicators
of detection performance. The definitions of such metrics are reported below:

accuracy =
TP

TP + FP + FN
=

1

1 + 1
TP

(FP + FN)
; (4.2)

precision =
TP

TP + FP
; (4.3)

recall =
TP

TP + FN
; (4.4)

F1score =
2 · precision · recall
precision + recall

=
2 · TP

2 · TP + FP + FN
=

1

1 + 1
2TP

(FP + FN)
.

(4.5)

Notice that we do not have true negatives in Eq. (4.2) since the prediction of the
class “not cell” is done at the pixel level and not at the object level, so there
are no “non-cell” objects predicted by the model. The above metrics have the
limitation of being dependent on the threshold used for the binarization of the
predicted heatmaps. Thus, we also look at the precision/recall curves and the
corresponding Area Under the Curve (AUC) (Hanley & McNeil, 1982; Mason &
Graham, 2002) for a more general measure of performance. For this purpose, we
consider only test images and repeatedly compute precision and recall for each
model, varying the binarization threshold from 0.05 to 1 with steps of 0.05 – these
cutoffs represent quantiles of the grayscale intensity distribution in the case of the
non-ML baseline.

Regarding the counting task, the Mean Absolute Error (MAE), Median Abso-
lute Error (MedAE) and Mean Percentage Error (MPE) are used instead. More
precisely, let npred be the number of detected cells in i-th image and ntrue be the
actual one. Then, the absolute error (AE) and the percentage error (PE) are
defined as:

AE = |ntrue − npred|; (4.6)

PE =
ntrue − npred

ntrue

. (4.7)

Hence, the above counting metrics are just the mean and the median of the AE and
the PE. Although these quantities are intuitive and straightforward to interpret,
they may hide poor performances when the counts’ distribution has low variability.
For this reason, we also report the R2 coefficient of determination that represents
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the percentage of variability explained by the model:

R2 = 1− SSresidual

SStotal

= 1−
∑n

i (yi − ŷi)
2∑n

i (yi − ȳ)2
, (4.8)

where yi is the count of the i-th image, ŷi is the corresponding predicted count and
ȳ is the average count. Hence, values close to 1 indicate that most of the intrinsic
variability of the counts is correctly modeled, whereas lower values (close to 0) are
a signal of poor predicting ability.

4.6.1 Threshold optimization

The choice of the optimal cutoff for binarization is based on the F1 score computed
on full-size images. In practice, the DL models are evaluated on a grid of values
and the best one is selected according to the Kneedle method (Satopaa, Albrecht,
Irwin, & Raghavan, 2011). The same is done for the non-ML approach, with
the only difference of considering the cutoff yielding the maximum F1 value. The
resultant thresholds is then used to assess performances on the test set. Although
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Figure 4.8: Threshold optimization. On the left, the F1 score computed on
validation images as a function of the cutoff for thresholding. On the right, the
same is reported for the c-ResUnet to illustrate the selection of the best threshold
for binarization according to argmax (blue) and kneedle (red) methods.
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the ultimate goal is retrieving the counts, we rely on detection performance to
enforce accurate recognition and avoid spurious balancing between false positives
and false negatives – which are indistinguishable from the counts. Also, full-size
images (as opposed to crops) are used to simulate better the model performance
in a real-world scenario.

Figure 4.8 shows the optimization results. On the left, we can see how each
model performance varies in the validation set as a function of the cutoff for bina-
rization. For the adaptive thresholding approach, only very high thresholds lead
to acceptable performances and we observe a sharp peak followed by a rapid de-
crease thereafter. On the contrary, all DL models work best for lower thresholds
and present F1 curves which are rather flat after their peaks. Thus, increasing
the cutoff allows focusing only on predictions whereby the model is very confident,
with just a slight loss in overall performance. Also, good practices in natural sci-
ence applications suggest being conservative with counts and only consider clearly
stained cells. For these reasons, we opted for the argmax value (0.994) for the
baseline approach, while we resorted to the Kneedle method (Satopaa et al., 2011)
for the selection of the optimal DL threshold. An example of that choice in the
case of c-ResUnet is reported in Fig. 4.8 (right).
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Chapter 5

Results

After the training, the four competing architectures and the non-ML baseline are
compared in three different scenarios: full design, weight maps only (no AO) and
artifacts oversampling only (no WM). The 70 full-size images of the test set are
used as a testbed. Table 5.1 reports individual model performances in terms of
both detection and counting ability.

Model Threshold F1 AUC Accuracy Precision Recall R2 MAE MedAE MPE (%)

c-ResUnet 0.875 0.8149 0.8705 0.6877 0.9081 0.7391 0.8215 3.0857 1.0 -5.13

c-ResUnet (no AO) 0.875 0.8047 0.8741 0.6732 0.9019 0.7264 0.8077 3.0857 1.5 -6.24

c-ResUnet (no WM) 0.875 0.7613 0.8594 0.6147 0.9418 0.6389 0.7048 3.6857 1.0 -19.14

ResUnet 0.850 0.7855 0.8579 0.6468 0.8865 0.7052 0.7831 3.3286 1.0 -4.84

ResUnet (no WM) 0.850 0.7513 0.8643 0.6016 0.9387 0.6262 0.6955 4.0571 2.0 -24.12

Unet 0.875 0.7724 0.8609 0.6291 0.9117 0.6700 0.7560 3.5143 1.5 -14.36

Unet (no WM) 0.850 0.7886 0.8461 0.6510 0.8989 0.7024 0.8069 3.1571 2.0 -9.23

small Unet 0.875 0.7563 0.8691 0.6081 0.9264 0.6389 0.7682 3.5714 2.0 -21.37

small Unet (no WM) 0.825 0.6697 0.8326 0.5034 0.9483 0.5176 0.5723 4.7714 2.0 -32.01

Adaptive Threshold 0.994 0.6106 0.0865 0.4394 0.5680 0.6601 0.3565 8.0143 6.0 78.26

Table 5.1: Performance metrics. Test set performance using the optimal kneed
threshold. The first five columns report the detection metrics, while the latter
ones evaluate counting performance.

5.1 Performance

As a first observation, it is soon apparent how deep learning approaches perform
better than adaptive thresholding according to all the considered metrics.

Starting with detection performance, c-ResUnet clearly outperforms all com-
petitors in terms of F1 score. Remarkably, the Unet is consistently worse than
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Figure 5.1: Precision/Recall plot. Test set precision/recall curves varying the
threshold for predicted heatmap binarization. The inset plot reports a zoom of
the top right corner to highlight differences of the various curves.

c-ResUnet and ResUnet despite having far more parameters (nearly 14M against
1.7M and 887k, respectively). The advantage of the ResUnet architectures is even
more evident with respect to the lighter Unet version which has a comparable
number of parameters (876k). The values of the area under the precision/recall
curves also confirm this supremacy. While the F1 can be interpreted as a measure
of maximum performance achieved, the AUC can be even more powerful since it
indicates a global measure of performance independent of the choice of the thresh-
old for binarization (see Fig. 5.1). Again, c-ResUnet sits on top of the list, with
ResUnet and Unet following shortly after. Interestingly, the small Unet performs
on par according to the AUC metrics, suggesting that the choice of the threshold
is perhaps suboptimal for the test set.

In addition, c-ResUnet keeps its leading role also when extending the evalua-
tion to the other metrics. The only meaningful exception is precision, for which
the Unet architectures are better. This is probably due to a tendency to overde-
tection. Nonetheless, the ResUnet counterparts well balance this behaviour with
a significant improvement in accuracy and recall.

c-ResUnet remains the most accurate model also when shifting the focus on
counting performance. Although the difference is hardly noticeable concerning
the MAE, the gap becomes more prominent when looking at the R2, with the
c-ResUnet reaching a decent value of roughly 82% of explained variability. Inter-
estingly, this time the ranking between ResUnet and Unet is inverted, with the
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latter performing slightly better in terms of counting.

Finally, it is worth noticing that adopting the kneed optimal threshold ensures
large cutoffs and enforces only detections with high confidence. Although desired,
this behavior also increases false negatives as less cells are detected. As a result,
we observe a drop in the accuracy whereby the impact of false negatives is twice
as much the one in the F1 score (cf. Eqs. (4.2) and (4.5)), thus explaining the gap
between these two metrics. In conclusion, the model provides reliable predictions
and satisfies the design requirement of being conservative with counts, as suggested
by the negative values of MPE for all experimental conditions.

5.2 Design evaluation

This section presents the comparison of the different design choices investigated
through the ablation studies. In order to evaluate the impact of artifacts oversam-
pling and weight maps, the experiments were repeated under the same conditions
described in Section 4.4, alternately switching off one of the two design choices.

From Table 5.1 it is evident how penalizing errors in crowded areas generally has
a positive impact. Indeed, experiments exploiting weight maps achieve consistently
better results than those without this addition (no WM). The only exceptions are
the Unet and ResUnet architectures – the former in terms of F1 score, MAE and
R2, and the latter concerning AUC. In particular, this strategy seems to produce a

Figure 5.2: Weight map effect. Predicted heatmaps obtained with c-ResUnet
(top row) and c-ResUnet (no WM).
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loss in precision to foster a more significant gain in accuracy and recall. Figure 5.2
illustrates a visual comparison of the c-ResUnet output in crowded areas with (top)
and without (bottom) weight maps. Again, its beneficial contribution is apparent,
with close-by cells sharply separated when exploiting the weight maps.

Regarding the impact of artifacts augmentation, Table 5.1 shows how there
is little difference between the full c-ResUnet and the one without oversampling
of challenging examples (no AO). In particular, the advantage of artifacts over-
sampling is numerically minimal. This is also confirmed by qualitative evaluation
(Fig. 5.3). On the one hand, the c-ResUnet (no AO) avoids detecting more evident
biological artifacts as the stripe in Fig. 5.3a even without specific oversampling.
On the other, the c-ResUnet still fails to ignore the macaroni-shaped accumulation
of fluorophore (Fig. 5.3b) although additional challenging examples are provided
during training. Probably, this is due to the lack of similar structures in the train-
ing set, which makes the oversampling ineffective for such kind of artifacts. For
this reason, the experiment was not replicated for the other architectures.
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(a) stripes and filaments

Figure 5.3: Results on test images. The c-ResUnet (no AO) correctly handles
the evident stripe in the top left corner despite not receiving dedicated oversam-
pling for such biological structures.
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(b) technical artifacts

Figure 5.3: Results on test images (2). The c-ResUnet fails with the
macaroni-shaped artifact in the middle of the picture, suggesting that the oversam-
pling strategy is not effective in this case. However, notice that no other similar
artifacts are present in the training set.
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(c) false positives

Figure 5.3: Results on test images (3). The c-ResUnet sometimes produces
false positives (red boxes), i.e. it labels as cell structures that are not annotated by
the researcher. However, the difference with marked cells is marginal (cf. also with
d), suggesting that these errors may lie within the limits of arbitrariness intrinsic
to the task.
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(d) false negatives

Figure 5.3: Results on test images (4). The c-ResUnet is generally conservative
in predictions, thus generating false positives (blue boxes). However, these are
similar to other stains that were not annotated (cf. also with c), thus falling again
within the limits of operator’s interpretation.
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Chapter 6

Conclusions

In Part I, we tackled the issue of automating counting cells in fluorescent mi-
croscopy images through the adoption of Deep Learning techniques.

From the comparison of four alternative CNN architectures, the cell ResUnet
(c-ResUnet) emerges as the best model amongst the investigated competitors.
Remarkably, the careful additions with respect to the ResUnet (Z. Zhang et al.,
2018) – i.e. a learned colorspace transformation and a residual block with 5×5
filters– enable the model to perform better than the original Unet (Ronneberger
et al., 2015) despite having seven times fewer parameters.

Also, the two design choices considered in the ablation studies provide an ad-
ditional boost in model performance. On one side, the adoption of a weight map
that penalizes errors on cell boundaries and crowded areas is definitely helpful to
promote accurate segmentation and dividing close-by objects. On the other, the
effect of artifacts oversampling is less evident. Nonetheless, the combined impact
of the two components guarantees better results than any of the two considered
separately.

In terms of overall performance, the results are satisfactory. Indeed, the model
predicts very accurate counts (R2 = 0.8215 and MAE = 3.0857) and satisfies the
conservative counting requirement, as testified by the negative MPE (-5.13%). The
detection performance is also very good (F1 score = 0.8149 and AUC = 0.8705),
certifying that the precise counts come from accurate object detection rather than
a balancing effect between false positives and false negatives.

Finally, qualitative assessment by domain experts corroborates further the pre-
vious statements. Indeed, by visually inspecting the predictions is possible to
appreciate how even erroneous detections are somewhat arguable and lay within
the subtle limits of subjective interpretability of borderline cases (see Figs. 5.3c
and 5.3d).

In conclusion, the proposed approach proved to be a solid candidate for au-
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tomating current operations in many use cases related to life science research.
Thus, this strategy may bring crucial advantages in terms of speeding up studies
and reducing operator bias both within and between experiments. For this reason,
by releasing the c-ResUnet model1 and the annotated data2, we hope to foster
applications in microscopic fluorescence and similar fields, alongside innovative
research in Deep Learning methods.

6.1 Future work

As mentioned in Section 2.1, imaging techniques – and in particular fluorescence
microscopy – are fundamental building blocks regarding many research activities
in the life sciences domain. For this reason, we believe the field may highly benefit
from the adoption of the available solutions presented in the literature concerning
Deep Learning. At the same time, the distinctive traits of the images studied
in life sciences – such as specific luminance conditions, biological and technical
artifacts and cell overcrowding – may pose stimulating challenges for deep learning
researchers. As a result, similar applications to the one described in Part I embrace
potentially compelling problems for both communities. Therefore, the rest of this
section is dedicated to outlining possible follow-ups we envision for the presented
work.

A peculiar characteristic of microscopic fluorescence lies in the opportunistic
association between the marker and the fluorophore. Although the choice of the
former depends on the experiment’s goal – since the marker must be compatible
with the biological structures of interest –, the latter benefits from more freedom
instead. In particular, its choice is not bound by biological properties, meaning
that different fluorophores may be associated with the same marker. As a result,
different studies may produce pictures of the same structures stained with different
colors, and automatic detection approaches ought to recognize objects based on
morphology rather than color. Clearly, this poses an interesting research line aimed
at investigating the invariance of different techniques to the hue information. In
this respect, a simple angle to address this requirement may be to start with
grayscale images or incorporate hue-shift transformations in the augmentation
pipeline.

Another interesting problem is the comparison of different strategies for precise
localization. In fact, a limitation of our approach is the likely need for application-
specific tuning of the post-processing parameters, especially for the watershed.
This, of course, hinders a straight transposition of the method to new use cases

1available at: https://l.infn.it/linkmodel
2available at: http://amsacta.unibo.it/6706/
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Figure 6.1: Weight map effect. Predicted heatmaps obtained with c-ResUnet
using keras (top) and fastai (bottom) default initializations of the BatchNorm

layers.

and paves the way for the exploration of more or less substantial variants. A
possible approach would be to experiment with alternative post-processing strate-
gies, perhaps including their parameters in the learning process to automate their
optimization (see for example Wolf, Schott, Kothe, & Hamprecht, 2017). Further-
more, a possible strategy to tackle this issue is to tweak the model to enforce more
refined localization in the first place. An attempt in this direction is currently
under investigation by the authors of this work. In particular, preliminary results
have shown that changing from the keras initialization of the batch normalization
layers – momentum=0.01, eps=0.001 – to that adopted by fastai (Howard &

Gugger, 2020) – momentum=0.1, eps=1e-5 – seem to produce predictions with

sharper boundaries (cf. top and bottom rows in Fig. 6.1).

Apart from variants of the study discussed in Part I of this thesis, a whole
new set of experiments may be devoted to analyzing different data from those
contained in the current version of the Fluorescent Neuronal Cells dataset. In
particular, we are currently studying the release of an extended dataset where
more pictures are available. These features two additional target biological struc-
tures, and the images are reported both in single exposure and with more mark-
ers visible at the same time. This opens to novel learning tasks such as non-
binary classification (one signal class per image, but more than two classes in
total), multi-label classification (double marked pictures, more than one signal
class in the same image) and transfer learning of the pre-trained architecture to
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the additional biological structures. Also, another fascinating research direction
would be to consider new data referring to different markers as a natural do-
main shift. Given this framework, it would be interesting to explore the extension
of our approach in the context of active learning, thus aiming to enhance the
model to account for additional biological structures without forgetting previous
ones. In this regard, a technical matter related to the practical implementation
of the latter use case is the adoption of helpful Machine Learning Operations
(MLOps) tools. For example, this work combined SuperAnnotate3 (commercial)
and Label Studio (open source) (Tkachenko, Malyuk, Shevchenko, Holmanyuk,
& Liubimov, 2020-2021) to produce the visualizations presented in Fig. 3.7. Both
frameworks are designed for easing MLOps pipelines and let the researchers focus
on the models and the learning strategies. The nice idea behind these tools is
the concept of human in the loop. Indeed, apart from easing the annotation of
new data, the user can leverage such solutions to keep track of their experiments
and smoothly navigate through the typical stages of practical applications, i.e.
the training −→ visualization −→ labels refinement −→ re-training loop. Also, it
would be nice to integrate our codebase within powerful open source solutions for
continual learning, such as the recently released Avalanche framework (Lomonaco
et al., 2021).

Despite the vast availability of fluorescence microscopy pictures, a significant
bottleneck for supervised approaches is the lack of annotations. For this reason, a
vital task would be to come up with ingenious strategies to leverage this massive
amount of dispersed information without direct annotations in a Self Supervised
Learning (SSL) framework. Figure 6.2 reports the draft of an ongoing attempt we
are testing to pursue the above goal. In particular, we are trying to exploit the
extended Fluorescent Neuronal Cells dataset to improve the encoding branch of
our c-ResUnet and get rid of the weight maps. The currently studied strategy is
based on a first pre-training of the c-ResUnet from scratch for marker classification.
Specifically, the images are randomly sampled from three datasets depicting dif-
ferent biological structures present on the same tissues, i.e. obtained by injecting
various marker-fluorophore couples into the same tissues and acquiring multiple
pictures with the appropriate wavelength filtering for the corresponding marker.
Then, the single-marked images are fed grayscale into the network to predict the
corresponding marker label, used as a proxy for teaching the model to discrimi-
nate images with different structures (pretext task). This is achieved quite easily
with human-like performance. Once that is accomplished, the same decoding path
described in Fig. 4.4 is attached to the end of the pre-trained encoding branch,
and the model is further trained for the downstream segmentation task presented
in Part I. However, the results are not yet mature and were therefore excluded

3available at: https://www.superannotate.com/
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Figure 6.2: SSL pretext task (pre-training). A self-supervised strategy to
exploit the extended Fluorescent Neuronal Cells data. The c-ResUnet backbone is
first pre-trained using marker classification as a pretext task. Then, the resulting
hidden representation can be leveraged for learning a downstream task of interest
more easily. The network illustration is borrowed from Wikipedia.
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from this dissertation.
Finally, another engaging project from the data science perspective would be

deploying our model in production as a service for a wider community. At the
moment, this task is subject to a feasibility study and the collection of require-
ments is being conducted. These involve the development of reliable service with
suitable storage and computing resources, proper access mechanism (hosting and
authentication), plus efficient scalability to a reasonable number of users.
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Chapter 7

Introduction

In the last twenty years, we have witnessed an unprecedented and ever-increasing
trend in data production. Hilbert and López (2011) date the rise of this phe-
nomenon back to 2002, with the beginning of the digital age. Indeed, the transi-
tion from analog to digital storage devices enormously expanded the capacity of
accumulating data, thus leading to the Big Data era.

The term “big data” was first introduced in 1990s (Mashey, 1998; Lohr, 2013)
and it is commonly adopted to describe datasets whose size exceeds the potential
to manipulate and analyze them within reasonable time limits (Snijders, Matzat,
& Reips, 2012). However, the expression does not target any specific storage size
but rather assumes a deeper meaning that goes well beyond the sheer amount of
data points. In fact, big data embrace a broad spectrum of data sources includ-
ing structured, semi-structured and, mostly, unstructured data (Dedić & Stanier,
2016). Although multiple connotations have been attributed to the concept of big
data over the years, a commonly shared definition is related to the so-called 5 Vs
(Jain, 2016):

• Volume: the actual quantity of generated data is huge, in the order of
magnitude of terabytes and petabytes (Sagiroglu & Sinanc, 2013). More
generally, it indicates amounts that are too large and complex to exploit
conventional data storage and processing technologies;

• Variety: the data may come in several data types and from diverse origins.
These include sources as sensors, social media, log files and more, plus they
encompass heterogeneous formats like text, images, audio, video and so on;

• Velocity: data are produced and/or processed at high rates (Kitchin &
McArdle, 2016), typically nearly real-time;
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• Value: data must carry valuable information that, if correctly analyzed,
bring business value and profitable insights (Uddin, Gupta, et al., 2014). In a
scientific context, this means information that contribute to the advancement
of human knowledge;

• Veracity: data sources must be reliable and generate high-quality data that
can produce value (Onay & Öztürk, 2018; Big Data’s fourth V , 2017);

Nonetheless, the community has not reached a complete agreement on the
big data definition (Grimes, 2013; Kitchin & McArdle, 2016), with some au-
thors suggesting moving their characterization from the intrinsic properties to
the techniques adopted to acquire, store, share and analyze the data (Balazka &
Rodighiero, 2020).

Besides the modification of the storage supply, multiple factors significantly
enhanced data production and, hence, favored the rise of the big data era. In the
first place, the diffusion of the internet and the progress of computer technologies
provided more processing capabilities and easier access to data, thus stimulating
further their production. Consequently, several stakeholders as big tech compa-
nies, traditional industries, governments, healthcare institutions and more started
increasingly contributing to this growth. Finally, the introduction of smart every-
day objects that not only receive but also produce data exponentially accentuated
individual contributions to the total data produced. Modern objects, in fact, are
endowed with technologies that allow to collect data and share them via a network
– the so-called Internet of Things (Ashton et al., 2009) –, thus augmenting the pro-
duction rate even more. For instance, sensors measuring the status and operation
are now commonly used in industrial machinery and household appliances to ease
their control and automate maintenance. The same paradigm is also influencing
the direction of the personal items market in various ways. For example, some
tech companies are recently investing in wearable devices like watches and glasses
to enable the users to be always connected with a rapidly mutable environment,
track their progress and explore the world in unparalleled manners thanks to vir-
tual reality. Furthermore, the solutions that digitization offers are being explored
to respond to the emerging challenges of current times. Think, for instance, of
the urge for modernization of institutional processes posed by the pandemic. The
massive spread of the infections has required unprecedented amounts of patients
needing access to health assistance. However, the impossibility to scale up ser-
vices and equipment correspondingly caused huge issues and jeopardized people’s
safety. In such context, the availability of intelligent systems capable of remotely
monitoring patients’ conditions and providing them with specialist support would
have enormously helped.

In order to cope with the growing amount of data to store and process, the
big data players of both industry and academy have gradually moved to new
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computing paradigms in recent years. For instance, new solutions as distributed
and cloud computing (Kshemkalyani & Singhal, 2011; Wang et al., 2010) have
been specifically designed to address these new requirements, taking advantage of
multiple and heterogeneous resources geographically displaced and accessible via
a network.

However, the boost in performance guaranteed by these technologies comes
with the price of requiring very complex interactions of both hardware and software
components. Aside from the enormous benefits these solutions bring, their most
relevant drawback is that the wider the infrastructure, the higher the chances of
something going wrong, and the bigger the effort to detect, inspect and solve the
issues. Part II explores this domain and tries to propose a data-driven pipeline to
ease and support people working to maintain the infrastructure integrity. Despite
applying to many different applications with some tuning, the presented approach
is discussed in the context of data transfer failures within the Worldwide Large
Hadron Collider Computing Grid (WLCG).

7.1 The HEP community and LHC

High-Energy Physics (HEP) is a branch of physics that studies the elementary
constituents of matter and the fundamental principles that govern their interaction
to understand how our universe has formed and is evolving. These particles,
however, are not visible at the scales whereby we experience reality today. Thus,
HEP experiments need to either look at natural phenomena generated in pressure
and temperature conditions similar to those of the primordial universe – like cosmic
rays – or recreate such settings artificially.

The European Council for Nuclear Research (CERN) is part of this second
strand of experiments, and it constitutes the largest particle physics laboratory
in the world. From 2008, CERN facilities also include the Large Hadron Collider
(LHC), the longest particle accelerator ever built. LHC consists of a 26.7-kilometer
ring located in a tunnel about 100 meters underground in the Geneva area (Fig. 7.1),
and it is made of superconducting magnets with several accelerating structures
(CERN, n.d.). Inside the accelerator, bunches of protons are revved up to nearly
the speed of light, forming two high-energy particle beams that travel in opposite
directions inside separated pipes. When they acquire the desired energy, the beams
are directed towards dedicated interaction points where the experiments occur. In
practice, LHC hosts four major experiments built in correspondence of these lo-
cations – ALICE (ALICE Collaboration, 2008), ATLAS (ATLAS Collaboration,
2008), CMS (CMS Collaboration, 2008) and LHCb (LHCb Collaboration, 2008)
– and equipped with giant detectors (Fig. 7.2). Once the beams get there, the
two pipes cross and the particles are squeezed through substantial magnetic fields
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(a) LHC accelerator

(b) Aerial view (c) LHC scheme

Figure 7.1: LHC accelerator complex. (a) the underground tunnel that hosts
LHC and its transverse section; (b) aerial view of the LHC complex at the bound-
ary between Switzerland and France; (c) schema of the various LHC accelerating
structures. The pictures are borrowed from various online sources: (1), (2), (3).
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(a) ALICE (b) ATLAS

(c) CMS (d) LHCb

Figure 7.2: CERN major experiments. The images are borrowed from the
CERN experiments image gallery.
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to increase their chances of colliding. In this way, a massive amount of energy is
concentrated in an extremely tiny area, generating billions of particles at each col-
lision. Indeed, the high intensity of the beams causes roughly 40 million crossings
per second at each interaction point (Albrecht et al., 2019; Grandi, 2017). When a
crossing happens, an average of 60 bunch collisions – also referred to as pileup – are
observed (Albrecht et al., 2019). The particles produced by each scattering then
fly around the interaction point to be eventually detected through high-technology
experimental devices endowed with over 100 million electronic channels (Grandi,
2017; Aad et al., 2020). According to the latest experimental setup, this delivers
100 MegaBytes (MB) of data per collision and it would generate 40k ExaBytes
(EB) every year (Grandi, 2017). However, storing such a tremendous amount of
data is unattainable with current technology and budget. In addition, the events
of interest are typically rare, so there is actually no need to record all of the in-
formation detected by the electronic channels. Thus, the vast majority of read-out
data from collisions is discarded straight away using hardware and software trigger
selection systems, thus lowering the recorded event rate to 1k crossings per sec-
ond. As a result of this reduction, the actual acquisition rate amounts to nearly
1 PetaBytes (PB) per day (CERN, 2017), translating to roughly 160 PB1 a year
in 2018. Besides that, physics analyses require comparing experimental results
with Monte Carlo data simulated according to current theories, thus producing
somewhat between 1 and 2 times additional data (Grandi, 2017). Furthermore,
the CERN community is already working at enhancing the Large Hadron Collider
capabilities. The project involves boosting the energy of the beam and gradually
increasing the pileup towards 200 collisions per bunch crossing (Albrecht et al.,
2019), thus leading to the so-called High Luminosity LHC (HL-LHC) (Aberle et
al., 2020). Thanks to this upgrade, the observed events are expected to increase
of a factor ≥ 5 (Aberle et al., 2020) and produce an estimated 800 PB of new data
each year by 2026.

Although it is difficult to replicate such a punctual measurement of the data
production for other big data players, some hints can be retrieved by comparing
multiple online resources (Clissa, 2022). Figure 7.3 tries to summarize a reason-
able, up-to-date “guesstimate”2 of yearly data production for the main big data
companies. Despite not being the most popular among the mainstream audience,
the HEP community is one of the most prominent players concerning big data.

1LHC registered 161 days of physics data taking in 2018 (Todd, Ponce, Apollonio, & Walsh,
2018)

2These data are reconstructed based on multiple online sources about the amount of contents
produced, streamed or hosted by big data companies and reasonable estimates of unitary sizes
for such contents, e.g. average mail or picture size, average data traffic for 1 hour video, and so
on. However, the actual values reported are not meant to be extremely accurate and only serve
the purpose of giving an idea of the orders of magnitude of the various phenomena.
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Indeed the read-out data LHC produced every year in Phase 2 (40k EB) is
around one order of magnitude bigger than the total size of objects ever stored
on Amazon AWS cloud service (500 EB)3. Considering effectively recorded data,
LHC figures are comparable with those of other most renowned big data entities.
The last run (2018), in fact, produced hundreds of PetaBytes (PB) (roughly 160
of real data and 240 of Monte Carlo simulations), which is similar to the orders
of magnitude generated by Google searches (62 PB)4, Instagram and Facebook
shared photos (68 and 252 PB, respectively)5 and YouTube video uploads (263
PB)6. Moreover, LHC will climb the table even further with the upgrade to high
luminosity, when the real and Monte Carlo data production rate is expected to
rise to levels comparable to those of storage services like Dropbox (800, 1200 and
768 PB7, respectively).

Apart from the nominal values of the generated information, streaming data
comprise a significant slice of the big data market. As a matter of fact, the
continual movement of small- to medium-sized files spawns massive traffic when
scaled up to millions of users, as testified by e-mails (5.7k PB)8, and Netflix (51.1k
PB)9 bubbles in Fig. 7.3. A similar usage is generated also by the LHC, whose data
are continuously transferred across the HEP community thanks to the Worldwide
LHC Computing Grid (see Section 7.2) to fuel innovative research. For example,
a throughput of 60 GB/s was generated by the 4 experiments together in 2018
(WLCG, 2019) thus giving a yearly projection (1.9k PB) close to half of the global
e-mails traffic and only one order of magnitude lower than Netflix usage.

Given the large quantities of data involved by the LHC, it is not surprising
how careful planning must be done in order to meet the needs of the LHC com-

3Obtained considering the total number of objects reportedly stored in Amazon S3 (100
trillion, Barr (2021)) and assuming an average size of 5 MB based on some average bucket
example (Hampton, 2021)

4Obtained considering that Google search index contains at least 30 billion web pages (Van den
Bosch, Bogers, & De Kunder, 2016; De Kunder, 2021; Djuraskovic, 2021; Indig, 2020) and that
the average page size is 2.15 MB (Teague, Karamalegos, Rebecca, Peck, & Pollard, 2021)

5Obtained considering that 65k and 240k pictures are shared every minute on Instagram and
Facebook (Domo, 2021), and assuming 2 MB as a reasonable average picture size (Adobe, 2021)

6Obtained considering that 720k hours of video are uploaded daily (Dean, 2021b) and assum-
ing an average size of 1 GB (Vera, James, & Dan, 2019)

7Obtained considering that Dropbox registered 100 million of new users in 2020, 1.17 million
of which were paid subscriptions (Dean, 2021a). For the average per-unit size, it was assumed
that free accounts exploited 75% of the 2 GB storage available, while paid ones exploited 25%
of the total 2 TB

8Obtained considering that 71k billion e-mails and 60k billion spam messages were sent from
October 2020 to September 2021 (Statista, 2021), and that the average size is 75 KB for e-mails
(Tschabitscher, 2021) and 5 KB for spam (Baker, 2014)

9Obtained considering that Netflix users consumed 140 million hours per day of streaming
(Domo, 2021) and that counts for 1 GB of data for standard definition videos (Perry, 2021)
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munity, and tailored strategies and technologies must be adopted to cope with
such requirements. Luckily, the presence of other stakeholders facing analogous
problems provides the HEP community with some alternatives to draw from, and
it allows researchers to tap in from existing solutions and customize them for their
necessities.

7.2 The Worldwide LHC Computing Grid

The Worldwide LHC Computing Grid (WLCG) (Bird, 2011) is a global collabo-
ration that links up more than 170 computing centers in 42 countries, serving an
audience of more than 12000 physicists all around the world. As of 2022, WLCG
constitutes the largest computing grid in the world and it is supported by many
associated national and international grids, such as the European Grid Initiative
and the Open Science Grid, as well as many other regional grids. Founded in
2002 by CERN, the WLCG mission is to provide computing resources to store,
distribute and analyze the data generated by the Large Hadron Collider.

Given the scale and complexity of the LHC data, this requires massive storage
facilities, immense computing power, global networking, tailored software, ade-
quate personpower and, of course, funding. In order to achieve such challenging
goals, WLCG leverages a distributed computing paradigm, where resources are
shared among member states and made equally available to all the partners, re-
gardless of their physical location. Figure 7.4 summarizes the WLCG infastructure
composition. The Worldwide Large Hadron Collider Grid is structured in 4 levels,
called tiers, differing in terms of computing resources, storage capabilities and de-
livered services. Its bottom layers comprise a few computing centers having great
amounts of storage and processing resources, ultra-fast network connectivity (up
to 100 GB/s), and they are devoted to general processing tasks. The shallower
layers, instead, group many smaller data centers devoted to more specialized ac-
tivities. In particular, the CERN data center is located at the bottom of this
infrastructure, constituting the cornerstone of the whole architecture. It is located
in Geneve (Switzerland) and it is endowed with more than 73000 processor cores,
providing around 20% of the total compute capacity of WLCG. In terms of ac-
tivity, the Tier-0 is responsible for i) the management of the raw data streams
coming from the LHC experiments and their archiving for safe-keeping, ii) the
reconstruction of physical entities like particles energy and velocity starting from
the raw read-outs recorded by the electronic equipment, and iii) the distribution
of raw and reconstructed data to the next tier layers. Moving up the WLCG ar-
chitecture, we find 13 large computer centres of the Tier-1s. These are directly
linked to the Tier-0 and contribute to WLCG operations with sufficient storage
capacity and round-the-clock support for the users. They are responsible for i) the
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Figure 7.4: WLCG structure. The Worldwide Large Hadron Collider Grid
has a tiered structure organized into three levels and comprising more than 170
computing centers spread across 42 countries. The image is borrowed from the
WLCG website.
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safe-keeping of a proportional share of raw and reconstructed data, ii) large-scale
reprocessing and safe-keeping of corresponding output, iii) access and distribution
of data to the next infrastructure levels, and iv) safe-keeping of Monte Carlo sim-
ulated data. One of these Tier-1 sites is located in Bologna10 and it represents one
of the biggest data centers in Italy. Its facilities count 40000 CPU cores, 40 PB
of disk storage, 90 PB of tape storage, and the center is connected to the Italian
(GARR) and European (GEANT) research network infrastructure with more than
200 Gbps (INFN-CNAF Collaboration, 2019; dell´Agnello, Luca et al., 2019). The
subsequent layer involves around 160 Tier-2 sites. These are data centers offered
by universities and other scientific institutes, which are connected through regional
networks. They essentially act as analysis facilities to perform specialized tasks
as the experiments production jobs and the Monte Carlo simulated data, which
are then either stored locally or shared across the infrastructure. Finally, the last
rung of the ladder is constituted by Tier-3s. These sites enormously vary in scale,
ranging from local computing resources like university clusters or even individual
pc to large national analysis facilities. In fact, they do not formally belong to the
WLCG but solely serve as entry points to its infrastructure for end-users analyses.

Alongside the hardware facilities, the WLCG supplies also advanced software
solutions to provide researchers with seamless access to resources in a transparent
way, without needing to worry about where the computing resources are coming
from or where the data are physically stored. This means that users can request
access to data or resources from one of the many entry points into the system, and
the grid infrastructure will then take care of spawning all the needed processes
under the hood. This may entail establishing the user identity and its access rights
to the various sources, checking their credentials, and searching for available sites
that can provide the requested resources.

10for more details: https://www.cnaf.infn.it/en/
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Chapter 8

Operational Intelligence

The automation of infrastructure management and maintenance has become cru-
cial in recent years. The increasingly large scale of modern data centers, and the
adoption of distributed resources that necessitate the interaction of diverse hard-
ware and software components, have made this task extremely complex. Conse-
quently, traditional approaches to infrastructure management where manual hu-
man intervention is required have become impractical or even useless. For this
reason, several communities involved in the Worldwide LHC Computing Grid have
started a project named Operational Intelligence1 that aims at increasing the
level of automation in computing operations, thus reducing human interventions.
As a result of the joint effort, several strategies have already been proposed to
support operational workflows in various ways (Clissa, Lassnig, & Rinaldi, sub-
mitted; Di Girolamo, Alessandro et al., 2020; Di Girolamo et al., 2022; Leite,
Decker, Santana, & Souza, 2020; Diotalevi et al., 2019). Although listing a precise
taxonomy of alternative methods is hard – since the boundaries between differ-
ent classes are often blurred and the categories may overlap – a first distinction
can be established based on the analysis intent. A common approach is to focus
on anomaly detection, where the objective is to spot anomalous behaviors that
may entangle underpinning faults in the system. The detected anomalies are then
reported to experienced operators for further investigations and fixes. However,
sometimes the malfunctions are too many to be inspected and solved singularly.
Hence, an option is to rely on error categorization to reduce the number of reports
to check by grouping similar issues. This approach assumes that similar problems
have similar solutions, therefore it is possible to address all the events of a group
by inspecting only one (or a few) of them. A more desirable yet more complicated
target is root-cause analysis (Solé, Muntés-Mulero, Rana, & Estrada, 2017). In

1for more details: https://operational-intelligence.web.cern.ch/
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this case, the objective is to identify the origin of the problem directly, thus en-
tirely automating the diagnosis phase. In turn, these approaches can be further
split into methods that seek just root causes – what induced the issues – or plain
explanations – why/how the faults were conceived.

Another essential distinction is based on the time of intervention with respect
to a system failure. The simplest approach is reactive maintenance, where the
human intervention occurs after a failure is detected. In this case, the fault di-
agnosis is performed post-mortem and, if effective, it helps identify the problems
and speed up the restoration of good operating status. Nonetheless, the failures
are not avoided and downtimes or denial of services are impossible to avert. Some
approaches try to intervene proactively to overcome this limitation, performing the
so-called preventive maintenance. In this case, the objective is to set an optimal
schedule of periodic interventions to preserve high Quality of Service (QoS) and
prevent faults directly. However, completely eradicating failures requires frequent
maintenance that is often unnecessary, which increases management costs. An
alternative strategy to limit these extra expenses is predictive maintenance. The
idea is to monitor the infrastructure on the fly (real-time or online analysis) and
try to predict when an intervention is required. In this way, the inconveniences de-
riving from system downtimes are limited, and the costs imputable to unnecessary
hardware replacement are cut.

Apart from the end goal and the time requirements of a given use case, a fur-
ther distinction can be established based on the analyzed information. Indeed, the
choice of which strategy to pursue is bound by the available data or, vice-versa, it
restricts the applicable techniques. A first family of approaches leverages overall
workloads – e.g. number of running processes, hardware resources usage, network
saturation – as indicators of infrastructure health and monitor their trends over
time. The deviations from normal operations are considered anomalies and trig-
ger alerts to be investigated by experts (Giordano, Domenico, Paltenghi, Matteo,
Metaj, Stiven, & Dvorak, Antonin, 2021). A second class relies on event logs as
the primary way to register key runtime information. These reports record events
happening during the execution of a system to provide an audit trail that can be
helpful to understand the system activity and diagnose problems. This information
can be exploited in various forms. Some approaches focus on log activity summary
statistics (e.g. number of printed lines) and try to disentangle nominal behaviors
from suspect activity (Decker, Leite, Giommi, & Bonacorsi, 2020; Decker, Leite,
Viola, & Bonacorsi, 2020; Minarini & Decker, 2020). Other alternatives use the
log content instead, thus directly analyzing the textual information contained in
the log files (Giommi et al., 2019). These vary from traditional keyword searches –
e.g. “kill”, “error”, “fail”, “exception” – and heuristics (Tisbeni, 2019) to smarter
tools based on deep learning language models. The advantage of such procedures is
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that the textual information can aid system experts finding root causes and expla-
nations which are harder to grasp from sheer workloads. Both families mentioned
above can be adopted for both online monitoring and offline debugging, depending
on the use case. Finally, another class of techniques focuses on error messages
and is only devoted to diagnosing issues in post-mortem analyses. Like event logs,
errors can be exploited to conduct thorough root-cause investigations or just error
categorization. Although logs and error messages both collect textual data, their
difference lies in the format this information is presented in and the actual content.
Error messages only include system printouts related to failure events, while logs
typically gather the full runtime information. In terms of format, error messages
are cleaner compared to log files, despite both can be listed as semi-structured
data. In fact, both classes can be summarized into a free-form constant string
describing the status of a system, plus some parameters that record important
system attributes.

This work tackles the problem of error categorization for post-mortem diagnosis
of issues during WLCG data transfers.

8.1 Distributed data management

LHC data are arguably the most valuable asset of the HEP community. As a
consequence, the data are continuously transferred across the grid for several pur-
poses, and a paramount part of the WLCG operations involves Distributed Data
Management (DDM) processes.

Indeed, stringent workflows are put in place by the experiments to ensure data
distribution and redundancy, thus preventing data loss and guaranteeing reliable
accessibility. For example, the ATLAS experiment has drawn up an accurate plan
– the so-called computing model – describing in detail the data life cycle (ATLAS
Collaboration, 2008; Calafiura, Catmore, Costanzo, & Di Girolamo, 2020; Bird,
2011). The first data stream happens at the CERN data center, where a com-
bination of electronic and software triggers are applied to the raw data acquired
by the detectors to filter out uninteresting collisions. The skimmed data are then
archived in the Tier-0 on tape supports for long-term storage, and a second copy
is sent to one of the Tier-1s through a dedicated network. After that, a first-pass
reconstruction occurs to retrieve physically meaningful information – such as par-
ticles energy, velocity, scattering angles and so on – from the electronic signals
recorded by the experimental devices. As for the raw data, these elaborations are
stored in double copy, one at CERN and one at the same Tier-1 hosting the corre-
sponding raw data. In this way, two full copies of the same raw and reconstructed
data are retained to safeguard data accessibility and recovery. The copy at CERN
is archived on durable but slow storage supports, and it serves the purpose of
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restoring the data in case of losses or corruption. The second copy, instead, is
stored on hard drives that are more prone to faults but guarantee a faster reading
speed to comply with the repeated data accesses typical of analysis workflows.
Once the data are properly distributed, a second stream takes place at the Tier-1s
that provide data-intensive processing facilities for large-scale organized analysis.
Here, further (re)processing and calibrations are performed on the reconstructed
data, and the derived outputs are stored and shipped on-demand to other sites
for subsequent elaborations. The last part of the data life cycle is then performed
at the Tier-2s, where Monte Carlo data are simulated and sent back to Tier-1s
for long-term storage. Furthermore, the Tier-2s are exploited by smaller groups of
researchers to conduct more specialized analyses. In such cases, additional data
streams are needed to retrieve the reconstructed data from the Tier-1s and make
the results available to the end-users on their local machines.

As a result of DDM workflows, massive amounts of data are constantly moved
across the grid. In order to achieve that, various services for file transfer have been
developed. These are used alternately or concurrently to create a chain of software
services that act as interfaces between the end-users and the physical resources.
At the lowest level there is the File Tansfer System (FTS) (Karavakis et al., 2020),
which is configured to reliably interact with diverse storage devices and filesystems,
execute fault-tolerant transactions and support users authentication. On top of
that, the various collaborations may add other middleware layers as higher-level
interfaces for the users. For example, ATLAS uses an open-source framework called
Rucio (Barisits et al., 2019), that basically orchestrates the transfers creating a
catalog to track data locations, managing replication rules and retries in case of
failures and so on. Clearly, ensuring high QoS is very hard due to the huge volumes
transferred, the heterogeneity of the software and hardware components and the
large user base.

8.2 FTS transfer failures

In practice, occasional faults may happen at various levels during data transfers,
which may include a wide range of root causes, provoking failures during the
shipment of the files. These errors may vary from naive ones – e.g. a mistyped
command or the request of an unavailable file – to more severe software and hard-
ware defects. For instance, the requesting endpoint or archiving server might be
temporarily unreachable (connection shortage). Likewise, the requested data may
be corrupted (checksum error) due to storage hardware faults or unstable con-
nection (network problem). Also, there might be timeouts when the shipment
takes more than the pre-configured waiting window – e.g. when the desired data
are bigger than usual and/or must be retrieved from tape, thus requiring more
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time. In addition, errors of different nature may often arise due to the interac-
tions between miscellaneous middleware layers. All of these factors, and more,
can generate significant service disruptions and infrastructure malfunctions that
require prompt intervention. For this reason, data transfer processes are contin-
uously monitored by teams of shifters. When an issue is detected, the operators
report it through the Global Grid User Support (GGUS) ticketing system (Antoni,
Bühler, Dres, Grein, & Roth, 2008), and experts and site maintainers take care of
their solution. To give an idea of the volumes involved, the ATLAS collaboration
alone experienced an average traffic of more than 2 PB per day in 2019 (Calafiura
et al., 2020), corresponding to roughly 1.5-2 million files moved each day. Nearly
10% of these transfers failed producing about 100-200k errors on a daily basis.
In total, transfer failures generated more than 4k incident reports filed in 20192

for all the LHC experiments (1141 for ATLAS only). Due to the complexity of
the infrastructure and its layered composition, understanding the problem root
causes and fixing them demands a great human effort – more than 100 ATLAS
members were involved in 2019, corresponding to roughly 50 FTEs (Full-Time
Equivalent) (Schovancová, 2019) – and it may entail undesired disservices. The
average solving time may vary from a few hours or days – e.g. in the case of issues
that are easy to solve or have already been dealt with in the past – to entire weeks
– e.g. for unknown problems or more troublesome malfunctions that imply im-
portant software or hardware interventions. In practice, the median solving time
for incidents reported by the ATLAS, CMS and LHCb collaborations in 2019 was
around 17 days, with a 90-th percentile of 44 days and a long right tail extending
over 100 days (see Fig. 8.1). When a transfer failure happens, the FTS log files are
parsed and the transfers more relevant features are extracted and re-organized in
a structured format. In particular, this involves collecting the exit status of each
of the subsystems responsible for the transfer and appending them to compose
a global error message. This information is then exposed to the on-duty shifters
along with other characteristics – e.g. source and destination endpoints, file size,
exchange protocol and so on – and visualizations – e.g. time evolution plots or
site transfer efficiency – for more in-depth investigations.

Current operations are based on a site-centric approach where trained per-
sonnel monitors the status of the various services almost 24/7 and tries to spot
hints of incorrect or undesired behaviors. In particular, the operators look at
Grafana dashboards to get a high-level overview of the system. A usual starting
point is the so-called efficiency matrix (Fig. 8.2), where the percentage of suc-
cessful transfers is reported. The granularity level is customizable and it may
range from global transfers between national cloud infrastructures involving more
computing centers to a finer tracking of particular site exchanges or even specific

2available at: https://l.infn.it/ggus
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Figure 8.1: Tickets solving time. Boxplot of the distribution of the solving time
for GGUS incidents reported in 2019 by ATLAS, CMS and LHCb collaborations.

endpoint links. When the efficiency falls below an acceptable threshold, typically
60-70%, on-duty shifters start to investigate the issue at a lower level by checking
i) where the error happened, ii) how many errors are produced, iii) what is the
time pattern (temporary, extended or cyclical) and iv) which error messages are
generated. However, this procedure gives rise to many false alarms as it is usual to
encounter problems that do not represent a real concern. For instance, this may
happen when few transfers are attempted so even a low number of errors imply
a high failure rate, or when there are after-effects of a transient issue that had
already been fixed. Also, sometimes unnecessary drill-down activity is performed
for actual issues that were already known, as in the case of ongoing tickets or site
downtimes, for which reporting is not required. As a result, many human resources
are employed in repetitive tasks of little scientific interest that would enormously
benefit from automation.

In addition to that, the site-centric strategy described above has some draw-
backs. Firstly, monitoring focuses on spotting where issues occur, while under-
standing the actual root causes is typically demanded to site experts in a subse-
quent investigation. Secondly, problems generating few error messages are usually
ignored. This is natural, and to some extent desirable, as having limited resources
forces us to address bigger malfunctioning first. However, that could be a potential
pitfall in cases where promptly fixing a minor issue may prevent the rising of a
more significant and longer to solve defect.

All these problems could be tackled programmatically by standardizing the
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logging output of all the services. In this way, neat error messages would point
directly to the source of the problem, thus allowing complete automation. However,
the distributed nature of the infrastructure hampers such an approach. In fact,
the opportunistic gathering of computing resources that led to WLCG entails
many local configurations that are not easy to address using only a static strategy.
Therefore, all these considerations expose the need for an intelligent support tool
for speeding up infrastructure management to meet the productivity requirements
for the near future.
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Figure 8.2: Transfer efficiency matrix (Grafana). Transfer sources are shown as columns and destinations as
rows. The drop-down menus at the top allow for custom filtering at the desired level of granularity.
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8.2.1 Related works

Analyzing error messages encountered in large-scale distributed systems has be-
come one of the crucial tasks for monitoring computing resources. Thus, a variety
of tools for log and error message parsing has already been explored. Some of
these approaches include longest common subsequence (Du & Li, 2016), frequent
pattern mining (Vaarandi, 2003; Vaarandi & Pihelgas, 2015), iterative partitioning
(Makanju, Zincir-Heywood, & Milios, 2009), parsing trees (P. He, Zhu, Zheng, &
Lyu, 2017) and hierarchical clustering (Fu, Lou, Wang, & Li, 2009) (see Zhu et
al., 2019 for a thorough discussion and comparison). However, the existing tools
present some drawbacks. First, most methods require a crucial pre-processing
phase that may need deep customization for specific data. This limitation ham-
pers their adaptation to novel use cases as different systems may have diverse
logging conventions, terminology and structure. Furthermore, they do not allow
error messages to be linked with additional entities other than the textual infor-
mation, meaning that messages cannot be clustered along with auxiliary data.

Grigorieva and Grin (2021) present a pipeline consisting of several stages specif-
ically tailored for data processing workflows within WLCG. First, the error mes-
sages are tokenized3 and cleaned from digits, punctuation and special characters.
Then, a hashing algorithm replaces the parametric parts of the message with a
placeholder, and the resulting patterns are exploited for the following elabora-
tions. In this way, the total amount of data is reduced by 90-95%. After the
above pre-processing, the vectorization3 stage is based on word2vec (Mikolov et
al., 2013) that computes a numerical representation for each token. The overall
message representation is then retrieved by averaging over single word embeddings.
The resulting representation is then reduced in dimension by means of principal
components analysis (Wold, Esbensen, & Geladi, 1987), and a DBSCAN (Ester,
Kriegel, Sander, Xu, et al., 1996) algorithm is adopted for the clustering stage.
Finally, cluster descriptions are extracted by searching common textual patterns
and key phrases for all messages belonging to the same cluster.

Another interesting approach is presented in Q. Lin, Zhang, Lou, Zhang, and
Chen (2016), where the authors propose a convenient pipeline to group logs of
failed jobs and exploit the knowledge coming from previous failures. After substi-
tuting placeholders instead of parametric parts in the raw messages, each log is
summarized using the unordered set of the events (log lines) it contains. A vector-
ization stage is then performed based on Inverse-Document event Frequency (IDF)
and contrast-based weighting. The resulting numerical representation undergoes
an agglomerative hierarchical clustering algorithm that finds groups of similar logs.
The resulting cluster centroids are then taken as representative log sequences of

3for more details see Section 9.1.2
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their respective groups, and they are compared to a knowledge base of previous
failures and corresponding solutions. If the sequence similarity to one of the known
issues is above a given threshold, the corresponding actions are applied to solve
the problem. Otherwise, the log sequence is passed to system experts for manual
inspection and the reference dataset is successively updated. In this way, human
resources are involved only in handling new issues, while previous knowledge is
exploited for recurrent ones.

Another way to look at this problem is through the lenses of Natural Language
Processing (NLP), where related tasks have been addressed by adopting various
strategies. A direct approach would be to regard error categorization as a specific
example of topic modeling (Hofmann, 1999; Papadimitriou, Raghavan, Tamaki,
& Vempala, 2000). In brief, topic modeling resorts to a low-dimensional latent
representation of textual data where each latent dimension may be interpreted as
a separate topic. In the context of error categorization, the different topics can be
seen as high-level descriptions of different failures, and the messages as particular
instances of the related problems. Alternatively, popular language models can also
be leveraged (Devlin, Chang, Lee, & Toutanova, 2018; Peters et al., 2018; Brown
et al., 2020). They consist of numeric representations for textual information –
also known as embeddings – that preserve syntactic, grammatical and semantic
relations of the original data, but in a lower dimension. This means that words
similar in terms of meaning and usage are projected near to each other. Therefore,
these techniques can be adopted to get convenient error embeddings where related
failures are close in the sense of some distance or similarity measure, and clustering
algorithms can be exploited to retrieve error categories.

8.3 Contribution

The goal of this work is to discuss a complementary approach to current oper-
ations for grid monitoring based on a computer-aided strategy independent of
experiment-specific settings. In particular, we propose an unsupervised machine
learning pipeline to identify clusters of similar failures which is centered on error
messages rather than site performances (Clissa et al., submitted). The underpin-
ning idea is to retrieve groups of related errors and expose the results to on-duty
shifters as suggestions of potential issues to investigate further.

Alongside the conceptual formulation, we provide both qualitative and quanti-
tative evaluation of the proposed approach. In particular, the pipeline is tested on
one full day of operations and the results are thoroughly inspected to assess the
quality of the discovered groups and highlight the major pros and limitations of
the adopted methods (see Section 10.1). Furthermore, a quantitative assessment
is performed by comparing the previous results with the GGUS reported incidents
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(see Section 10.2).
Finally, we provide a full, scalable implementation of described approach4 de-

veloped in compliance with the Operational Intelligence software framework5 to
allow fast integration and testing by the whole LHC community.

4https://l.infn.it/opint-pyspark
5https://l.infn.it/opint-framework
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Chapter 9

Methods

This section presents a detailed description of an approach for dealing with File
Transfer Service failures. The main goal is to analyze FTS failed transfers and
identify error categories as suggestions of potential issues to investigate further
by human experts. In terms of desiderata, the objective is to develop a tool
independent of experiment-specific configurations and workflows. Hence, we focus
on errors produced by FTS rather than other services which are adopted only by
some collaborations, e.g. Rucio for ATLAS. Likewise, a minimal experts’ effort is
required. For this reason, we embrace an unsupervised learning approach to force
the model to learn autonomously from data without needing a costly labeling
phase of previous failures. As a byproduct, this strategy also avoids incurring
expectation bias from prior (perhaps suboptimal) operative categorizations, and
it enables discovering new failure patterns.

The proposed approach (Di Girolamo et al., 2022, Section 2.19) is inspired by
the pipeline described in Q. Lin et al. (2016). In particular, we adopt a 3-step
workflow consisting of i) vectorization, ii) clustering and iii) description stages.
The last step of the original pipeline, i.e. checking recurrence, is excluded since no
knowledge base is available for FTS failures. Also, our work is conceptually similar
to the strategy described in Grigorieva and Grin (2021). However, some major
differences are present in the pre-processing, clustering and description stages,
and they are discussed in detail in Section 9.1.

In practice, our pipeline is developed inside the Operational Intelligence soft-
ware framework1, and it is implemented trying to cope with the runtime restric-
tions for online processing despite not renouncing model performance. To achieve
that, the Spark (Zaharia et al., 2010) processing framework is used through the
pyspark language to leverage the advantages of distributed computations for large

1https://l.infn.it/opint-pyspark
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data. In particular, the whole pipeline is executed through the SWAN service
(Piparo et al., 2018) that allows CERN users to run Jupyter Notebooks con-
nected to Spark clusters on the WLCG infrastructure. Also, a careful pipeline
design is adopted to alternate online and offline elaborations. Specifically, the
learning phase of the vectorization stage is performed once on a big set of data
(see Section 9.1.2 for more details) and it is freezed and re-used as is – possibly up-
dating it once in a while. The clustering stage, instead, is performed online every
day so to always expose the latest results to the shifters on-duty (see Sections 9.1.3
and 9.1.4 and Chapter 10 for more details).

9.1 FTS errors categorization

The pipeline illustrated in this work comprises an initial pre-processing step fol-
lowed by the vectorization, clustering and description stages. Although conceptu-
ally similar to the workflow described in Grigorieva and Grin (2021), our approach
considers some substantial modifications concerning mainly the pre-processing and
the clustering stages. Indeed, we apply minimal pre-processing to limit hard-coded
feature engineering and let the vectorization stage figure out linguistic features of
the error messages – e.g. grammar, syntax, lexicon and semantic – on its own.
The rationale behind this choice is that the resulting representation should be
more expressive, thus better modeling the semantic of the messages and easing
the successive clustering phase.

Figure 9.1 reports a diagram that summarizes our workflow from the initial
error message to the final outputs, and the next subsections provide a thorough
description of each of the stages.

9.1.1 Pre-processing

The pre-processing phase is crucial to any data analysis workflow. Various best
practices are suggested for data cleaning, and custom feature engineering is often
adopted to feed models with the most relevant information in the most suitable
format. Our approach tries to limit these elaborations to the bare minimum to
avoid injecting too much prior knowledge into the system and probe the model’s
ability to learn by itself. The resulting pipeline is described below and summarized
in Table 9.1.

As a first step, the raw error strings are transformed to lowercase and enriched
by appending the source and destination hostnames. In particular, both host-
names are inserted at the end of each message with prepended src or dst

prefixes to distinguish whether they were involved as source or destination, re-
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Summary 
table

Time plot

Vectorization

Clustering

Post-processing

Impossible to connect to 

$URL /srm/managerv2 : 

server responded with an 

error [3010] login failed

[“impossible”, “connect”, 

“hostname01:8443”, 

“/srm/managerv2”, “server”, 

“error”, “[3010]”, “login”, 

“failed”]

Pre-processing

Impossible to connect to 

hostname01:8443/srm/managerv2 

: server responded with an error 

[3010] login failed

Error message

Figure 9.1: Pipeline diagram. The error message is first pre-processed and split
into tokens (1). Then, the vectorization stage transforms the textual information
into numeric data (2). The next step is clustering, where similar error messages are
grouped (3). Finally, the messages are post-processed to get common patterns (4)
and the resulting clusters are presented to the shifters in the form of a summary
table and time evolution plots.
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spectively. The resulting text then undergoes a process of quantization whereby
the raw strings are decomposed into unitary pieces of information. This process
is commonly referred to as tokenization and the resulting atomic units are called
tokens. Various approaches have been proposed in the literature ranging from
simply using words (Bengio, Ducharme, Vincent, & Jauvin, 2003; McCann, Brad-
bury, Xiong, & Socher, 2017) or characters (Ling et al., 2015; Dhingra, Zhou,
Fitzpatrick, Muehl, & Cohen, 2016), to more complex strategies involving sub-
words (Gage, 1994; Sennrich, Haddow, & Birch, 2016), sentences (Kiros et al.,
2015), documents (Le & Mikolov, 2014) and topics (Niu, Dai, Zhang, & Chen,
2015). In our case, we resort to whitespace tokenization for the sake of sim-
plicity, which means individual words are used as tokens. Once tokens are ob-
tained, they are stripped of leading and trailing punctuation ( ":;,.-" ). Af-
ter that, tokens corresponding to common English stopwords2 or unuseful punc-
tuation ( ":-+" ) are discarded. Finally, the URL addresses are split into two
components: the net location and the relative path of the requested resources.
For instance, httpg://<hostname>:<port>:/srm/managerv2 is decomposed as

httpg://<hostname>:<port> and srm/managerv2 . In this way, it is possible to
exploit the compositional structure of the URL addresses to reduce the vocabulary
of unique tokens. Also, this allows the model to disentangle the contribution of
the single parts in different messages.

9.1.2 Vectorization

In the vectorization stage we leverage the word2vec language model (Mikolov et
al., 2013) to compute message embeddings starting from pre-processed tokens. Al-
though more recent and powerful alternatives as the ones described in Section 8.2.1
are available, they do not work well with short-text data (Albalawi, Yeap, & Beny-
oucef, 2020). Thus, the simpler yet effective word2vec model is used here.

The idea behind word2vec is to find a convenient mapping between tokens
(words) and a vectorial space where token linguistic relations are preserved, thus
producing a distributed representation of words. In this way, we obtain a numeri-
cal representation of textual data that quantitative algorithms can further process.
In particular, two alternative implementations of the word2vec model are available
(see Fig. 9.2). Both alternatives are based on a shallow (2-layer) neural network
architecture and use a sliding window (context) of fixed size, w, around the current
word, wt. The continuous bag-of-words (CBOW) model sets the learning objec-
tive to predict the current word from the surrounding context. Conversely, the
skip-gram model tries to guess the terms present in the context window starting
from the current word. To achieve that, the input words are first represented as

2refer to pyspark.ml.feature.StopWordsRemover documentation for a full list
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raw message “DESTINATION OVERWRITE srm-ifce err: Communication error on send, err:
[SE][srmRm][] httpg://hostname01.Site-4.ch:8443/srm/managerv2: CGSI-gSOAP running
on fts-address-004.cern.ch reports Error initializing context GSS Major Status: Authenti-
cation Failed GSS Minor Status Error Chain: globus gsi gssapi: SSL handshake problems
globus gsi callback module: Could not verify credential globus gsi callback module: Could
not verify credential globus gsi callback module: The certificate has been revoked: Serial
number = -1 (0xFFFFFFFFFFF”

append
hostnames

“DESTINATION OVERWRITE srm-ifce err: Communication error on send, err:
[SE][srmRm][] httpg://hostname01.Site-4.ch:8443/srm/managerv2: CGSI-gSOAP running
on fts-address-004.cern.ch reports Error initializing context GSS Major Status: Authenti-
cation Failed GSS Minor Status Error Chain: globus gsi gssapi: SSL handshake problems
globus gsi callback module: Could not verify credential globus gsi callback module: Could
not verify credential globus gsi callback module: The certificate has been revoked: Serial
number = -1 (0xFFFFFFFFFFF src srmatlas.pic.es dst hostname01.Site-4.ch”

tokenization [“destination”, “overwrite”, “srm-ifce”, “err:”, “communication”, “error”, “on”, “send,”,
“err:”, “[se][srmrm][]”, “httpg://hostname01.Site-4.ch:8443:/srm/managerv2:”, “gsi-gsoap”,
“running”, “on”, “fts-atlas-005.cern.ch”, “reports”, “error”, “initializing”, “context”, “gss”,
“major”, “status:”, “authentication”, “failed”, “gss”, “minor”, “status”, “error”, “chain:”,
“globus gsi gssapi:”, “ssl”, “handshake”, “problems”, “globus gsi callback module:”,
“could”, “not”, “verify”, “credential”, “globus gsi callback module:”, “could”, “not”,
“verify”, “credential”, “globus gsi callback module:”, “the”, “certificate”, “has”,
“been”, “revoked:”, “serial”, “number”, “=”, “-1”, “(0xfffffffffff”, “src srmatlas.pic.es”,
“dst hostname01.Site-4.ch”]

remove
punctuation

[“destination”, “overwrite”, “srm-ifce”, “err”, “communication”, “error”, “on”, “send”,
“err”, “[se][srmrm][]”, “httpg://hostname01.Site-4.ch:8443:/srm/managerv2”, “cgsi-gsoap”,
“running”, “on”, “fts-atlas-005.cern.ch”, “reports”, “error”, “initializing”, “context”, “gss”,
“major”, “status”, “authentication”, “failed”, “gss”, “minor”, “status”, “error”, “chain”,
“globus gsi gssapi”, “ssl”, “handshake”, “problems”, “globus gsi callback module”, “could”,
“not”, “verify”, “credential”, “globus gsi callback module”, “could”, “not”, “verify”, “cre-
dential”, “globus gsi callback module”, “the”, “certificate”, “has”, “been”, “revoked”, “se-
rial”, “number”, “=”, “1”, “(0xfffffffffff”, “src srmatlas.pic.es”, “dst hostname01.Site-4.ch”]

remove
stopwords

[“destination”, “overwrite”, “srm-ifce”, “err”, “communication”, “error”, “send”,
“err”, “[se][srmrm][]”, “httpg://hostname01.Site-4.ch:8443:/srm/managerv2,cgsi-
gsoap”, “running”, “fts-atlas-005.cern.ch”, “reports”, “error”, “initializing”, “con-
text”, “gss”, “major”, “status”, “authentication”, “failed”, “gss”, “minor”,
“status”, “error”, “chain”, “globus gsi gssapi”, “ssl”, “handshake”, “problems”,
“globus gsi callback module”, “verify”, “credential”, “globus gsi callback module”, “verify”,
“credential”, “globus gsi callback module”, “certificate”, “revoked”, “serial”, “number”,
“=”, “1”, “(0xfffffffffff”, “src srmatlas.pic.es”, “dst hostname01.Site-4.ch”]

url split [“destination”, “overwrite”, “srm-ifce”, “err”, “communication”, “error”, “send”,
“err”, “[se][srmrm][]”, “httpg://hostname01.Site-4.ch:8443”, “/srm/managerv2”,
“cgsi-gsoap”, “running”, “fts-atlas-005.cern.ch”, “reports”, “error”, “initializing”,
“context”, “gss”, “major”, “status”, “authentication”, “failed”, “gss”, “minor”,
“status”, “error”, “chain”, “globus gsi gssapi”, “ssl”, “handshake”, “problems”,
“globus gsi callback module”, “verify”, “credential”, “globus gsi callback module”, “verify”,
“credential”, “globus gsi callback module”, “certificate”, “revoked”, “serial”, “number”,
“=”, “1”, “(0xfffffffffff”, “src srmatlas.pic.es”, “dst hostname01.Site-4.ch”]

Table 9.1: Message pre-processing pipeline. The table illustrates the
pre-processing steps (left) and the resulting data (right) for a sample error mes-
sage. The raw error string is reported at the top, and the resulting pre-processed
data at the bottom.
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Figure 9.2: Word2vec model architectures. The CBOW architecture predicts
the current word based on the context, and the Skip-gram predicts surrounding
words given the current word. The figure is borrowed from the original paper
(Mikolov et al., 2013).

1-hot vectors of size V , where V is the number of terms present in the corpus
(vocabulary size). During this encoding step, a minimum allowed token frequency,
min count is set to discard terms appearing less than such threshold. This trick
limits the vocabulary size by excluding rare tokens, thus lowering the computa-
tional requirements. These input vectors pass through the first layer that projects
them to a hidden space of customizable dimension, h. This mapping (embedding)
is learned during the training phase such that terms often used together or in
similar contexts should be projected nearby. Finally, the resulting representations
are put through the next network layer to get the predicted context (in the case
of CBOW) or current words (skip-gram).

This work adopts the word2vec version exploiting the skip-gram architecture
and uses its pyspark implementation. Specifically, the model is trained on one
month of data from 2020-10-01 to 2020-10-31. In total, nearly 28.6 M error mes-
sages are analyzed, corresponding to a vocabulary of 970 unique tokens. Once
the model is trained, the resulting word embeddings are used to transform single
tokens into numerical vectors, and they are then averaged to get the correspond-
ing message representations. Regarding hyper-parameters, the window size, the

102 CHAPTER 9. METHODS



9.1. FTS ERRORS CATEGORIZATION

embedding size and the minimum count were the ones affecting the final represen-
tation the most. For this reason, a grid-search is conducted to compare alternative
parametrizations. The optimal configuration is then chosen based on the compact-
ness of the resulting groups in the following clustering stage. Specifically, the values
of w = 12, h = 300 and min count = 50 seem to work best in our use case.

9.1.3 Clustering

The next step of the pipeline is the clustering stage. Cluster analysis examines the
task of grouping a set of objects based on a given measure of distance or similarity.
This is a well-studied topic typically conducted to discover underlying structures
in data during exploratory analysis or pattern recognition.

One of the most intuitive and widely adopted strategies to tackle this problem
is the so-called k-means algorithm (Lloyd, 1982). This technique is an iterative
local search solution, and it refers to a particular formulation of the problem where
the number of output groups, k, is supposedly known. The algorithm evolves in
four simple steps, starting from this prior information and after establishing a suit-
able distance measure to express the similarity between data points. Figure 9.3
summarizes the k-means pipeline from raw data to the final clusters discovered ap-
plied to some toy data points. In the initialization phase, k arbitrary centers (also
named centroids) are chosen uniformly at random from the data points (Fig. 9.3a).
In the next step, the data are split into clusters by mapping each data point to
the nearest center (Fig. 9.3b). Once the groups are formed, the centroids are re-
computed as the center of mass of all points assigned to the corresponding cluster
(Fig. 9.3c). Finally, the last two steps are repeated until a convergence criterion
is met (Fig. 9.3d).

In this study, we resort to clustering for grouping messages including simi-
lar content. The resulting clusters are therefore interpreted as error categories.
In particular, we adopt a slight variation of the above algorithm referred to as
k-means++ (Arthur & Vassilvitskii, 2007). The two techniques share the same
workflow except for how the starting centroids are initialized. Specifically, the
k-means algorithm assigns equal probability to all the data points and then sam-
ples k centers. For k-means++ instead, only the first centroid is chosen uniformly
at random. The following k − 1 centers are sampled from data points with prob-
ability inversely proportional to the distance between each point and the closest
predefined centroid. This careful seeding strategy ensures the initial centers are
more spread across the data points, thus favoring better clustering results and a
faster convergence. Despite more advanced clustering algorithms are available and
may be applied to our use case, e.g. DBSCAN (Ester et al., 1996), HDBSCAN
(McInnes, Healy, & Astels, 2017), BIRCH (T. Zhang, Ramakrishnan, & Livny,
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Figure 9.3: K-Means clustering. The algorithm performs an iterative search by
alternately grouping observations around the current centroids (b) and updating
the centers of the clusters (c).
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1996), OPTICS (Ankerst, Breunig, Kriegel, & Sander, 1999), spectral clustering
(Ng, Jordan, & Weiss, 2002) and so on, the choice of the a k-means algorithm
is justified by its intuitive approach and good performance in practice in a wide
range of applications (Von Luxburg et al., 2012). Also, a perhaps more profound
and substantial motive is that the clustering strategy may be seen as a functional
but not primary pipeline stage. Indeed, the learned language model determines
the geometry of the embedded space, thus influencing the point cloud shapes of
different error categories. For this reason, we embrace the idea that a simple clus-
tering algorithm is preferable, and particular attention must be devoted to tuning
the vectorization stage for easing the subsequent clustering, possibly even fostering
the learning of an optimal representation for a specific clustering algorithm (Yang,
Fu, Sidiropoulos, & Hong, 2017).

In order to demonstrate the approach, we report the analysis of FTS data from
one full day of operation (2021-01-15), corresponding to roughly 1 M errors and
1.5 GB of data. To help the successive evaluation phase, only transfers between
Tier-0, Tier-1s and Tier-2s are considered in the analysis. In practice, more hyper-
parameter configurations are explored to test the effect of different choices. The
first set of investigations regards the measure of similarity adopted to form the
clusters. In this respect, we tested two alternatives, cosine similarity and the
euclidean distance. The former consistently outperformed euclidean distance in
all attempted experiments, both in terms of cluster geometrical properties and
interpretability of the results. For this reason, only the the analysis involving
cosine similarity is reported in the following.

Another crucial hyper-parameter is given by the assumed number of clusters,
k. This represents the number of error categories in our case, which is not known
in advance. Therefore a grid search for k ∈ [12, 15, 20, 30] is exploited to retrieve a
reasonable estimate from the data. For this purpose, two geometrical criteria are
considered to compare results of different settings, namely the Within cluster Sum
of Squared Errors (WSSE) and the Average Silhouette Width (ASW) (Rousseeuw,
1987). The WSSE measures the internal cluster variability, so the lower its value,
the better the performance. In terms of its definition, the WSSE is based on
the total sum of squared distances between the points of each group and the
correspondent centroid:

WSSE (dist, k) =
k∑

j=1

∑
xi∈Cj

dist (xi − x̄j) (9.1)

where xi is a generic data point, dist is a desired distance measure, and Cj and x̄j

indicate a generic cluster and its centroid, respectively. Although compactness is
certainly a desirable property for the output groups, this metric is strongly affected
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by the scale of the variables and the number of observations. Indeed, the clusters
exhibit a greater variability as their points present higher values and/or the cluster
size increases, thus causing the WSSE to explode. Also, being unbounded by its
nature, i.e. WSSE ∈ [0,+ inf], the WSSE is of difficult interpretation on its own
and it only makes sense when compared to other values.
A better metric is the so-called average silhouette width. In brief, the ASW is
a measure of clustering performance that accounts for both internal homogeneity
and external separation of the clusters. In particular, let āi be the average distance
of xi from all the other points belonging to the same cluster CI . Also, let bi be
the minimum average distance of xi from the observations in all the other clusters
Cj,∀j ̸= I. Then, the ASW is defined as:

ASW(dist, k) =
1

n

n∑
i=1

bi − āi
max (āi, bi)

(9.2)

where n is the total number of observations, i.e. error messages in our case. The
average silhouette is much more intuitive to interpret than the WSSE as its value
is bounded in the interval [−1,+1]. In practice, negative values of the ASW mean
that points of one cluster are on average more similar to observations of other
groups than the ones of their own cluster. A value of 0, instead, suggest that
the groups are not really distinguishable, thus making the assignation of single
observations to any of the clusters arbitrary. Finally, positive values close to 1
testify that the clustering produces nicely homogeneous groups that are also well
separated. Given the more intuitive reading of ASW values, the latter is used in
the following as the main figure of merit.

The results of the comparison between WSSE and ASW for different values
of k are reported in Fig. 9.4. Both indicators tend to improve as the number of
clusters increases. In particular, a value of k = 30 clusters seems to be optimal
according to both criteria. Notably, however, the ASW indicator reaches very
high values (around 0.9) even for lower k values. For this reason, the configuration
having k = 15 is preferred to limit the number of suggested issues and minimize
the shifters effort.

9.1.4 Cluster description

The last stage of the pipeline is cluster description. This step is fundamental to
present the results in the most intelligible and immediate format for end-users.
Indeed, given the unsupervised learning approach adopted, the interpretation of
the clustering output resorts to the manual inspection of each group’s content.
This, in turn, potentially mean reading hundreds of error strings, comparing the
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Figure 9.4: Optimization of k. The plot shows the value of the WSSE and ASW
metrics as a function of the number of clusters, k. The hexagonal markers indicate
the optimal values, which correspond to k = 30 for both indicators.

source and destination information, and spotting suspect time patterns. Therefore,
producing a nice and compact visualization of the results is paramount to make
the approach effective and avoid excessive manual checks by the operators. For
this reason, the clustering results are summarized into two complementary outputs
that are presented to the shifters.

First, the summary table represents the most important and informative vi-
sualization. This output is obtained by a first pre-aggregation of the clusters
and is organized in a tabular format. The first three columns provide numeric
summaries concerning the cluster size, the number of unique strings within each
group, and the corresponding number of unique patterns. The latter is obtained
from the raw strings by means of an abstraction mechanism3 that removes the
parametric parts – like file paths, IP addresses, URLs, checksum values, and so
on – and replaces them by parameter-specific placeholders – e.g. $FILE PATH ,

$ADDRESS , $URL and $CHECKSUM , respectively. The core part of this visual-
ization is then represented by the Top 3 section. Here, the three most frequent
triplets of <pattern>-<source>-<destination> are reported in descending or-
der for each cluster, alongside their cardinality and the percentage over the cluster
size. Such information provides several precious insights for spotting the source
of potential problems, e.g. whether a pattern is responsible for a large number of

3refer to the full implementation for more details: https://l.infn.it/opint-abstraction
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(a) growing (b) transient

(c) resolved (d) cyclical

Figure 9.5: Time evolution charts. The figure illustrates several time patterns
for the generated failures in 4 different clusters. Each plot reports the count of
errors in bins of 10 minutes.

failures or if it accounts for a conspicuous fraction of the cluster. In addition, this
representation allows us to investigate the contribution of source/destination pairs
to each cluster. In this way, it is possible to discriminate failures based on both
the nature of the problem and the location where they occurred. An example of
summary table is reported in Figs. 10.1 and 10.2.

The second output of the pipeline consists of a time-series chart depicting the
temporal evolution of the number of errors generated by each cluster (Fig. 9.5).
This piece of information is crucial to discriminate between serious issues that
require immediate actions (Figs. 9.5a and 9.5d) and transient (Fig. 9.5b) problems.

Overall, the idea behind our pipeline is to exploit the summary tables and the
time plots for each cluster as suggestions of potential issues to investigate further.
In this way, the shifters can have a first grasp of what kind of failures are observed
and their corresponding amounts (Top-3 section), also having an indication of
where they are happening (source/destination sites). Moreover, by looking at the
time charts it is possible to immediately discard transient (Fig. 9.5b) or resolved
(Fig. 9.5c) problems based on the evolution of the number of generated failures
over time.
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Results

This section reports the results of the cluster analysis described in Section 9.1.3.
The performance assessment is one of the trickiest parts when coming to unsu-
pervised methods – and clustering in particular –, and it has long been debated
(Von Luxburg et al., 2012; Guyon, Von Luxburg, & Williamson, 2009). The most
straightforward approach is to resort to the within sum of squared errors and aver-
age silhouette width similarity measures leveraged during the training phase (see
WSSE and ASW in Section 9.1.3). However, these metrics treat the data as points
in the space and measure the resulting shape of the formed clusters. Hence, they
rely on the assumptions that i) the “correct” output shape is known, ii) the simi-
larity measure is informative about the desired morphology, and iii) the numeric
representation of the data points is consistent with the avowed geometry. A gen-
eral target for i) is commonly established as producing compact agglomerations of
points, possibly well separated among each other. In the case of transfer errors, it
is unclear what a proper output shape should be, but the general approach seems
reasonable. Furthermore, the ASW indeed captures the desired morphology, which
provides a convenient tool for ii). Nevertheless, the previous building blocks can
be leveraged only as long as the numeric representation of error strings complies
with the above schema. This, in turn, presupposes that we know what a correct
representation should be and that the adopted language model can reproduce an
accurate mapping of the raw data into such embedding. Unfortunately, this ele-
ment is unknown in advance and hardly explorable a posteriori unless recurring to
human review and interpretation. Furthermore, the above construction is solely
based on geometric arguments, and the actual meaning of the data points, i.e.
whether the clustered messages share the same content, is not taken into account.

In light of the above concerns, our work splits the evaluation of performances
into two complementary phases. First, a qualitative assessment explores the cluster
contents and expresses the goodness of fit based on their interpretability, i.e. how
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messages of the same cluster resemble each other’s meaning. Second, a quantitative
evaluation is addressed by cross-checking the clustering result against the GGUS
reported incidents. In this way, a more direct measure of impact is given by
reckoning the ability of our approach to mimic current operations.

10.1 Qualitative assessment: interpretability

This section presents a qualitative assessment of the clustering performances based
on the interpretability of the discovered groups of messages. In particular, the dis-
cussion is articulated by simulating the shifter’s perspective when reading the
pipeline outputs. In the following, we report five cherry-picked examples to show-
case our approach’s major successes and failures. Specifically, we first illustrate
a thorough examination of the biggest cluster discovered (see Fig. 10.1, cluster
with id = 0). Then we highlight some strengths and limitations of our approach,
bringing other exemplary cases as evidence. The same procedure and similar con-
clusions apply likewise to most groups. Thus, a complete dissertation is omitted
here for conciseness1.

The main output of our pipeline is the summary table illustrated in Figs. 10.1
and 10.2, which reports a succinct highlight of the cluster contents and represents
the most substantial source of information. A reasonable reading approach is
to start with the groups including more errors and gradually proceed with the
smaller ones. In this case, the biggest cluster is shown in Fig. 10.1 in the first
row with id = 0. Despite including almost 820k error strings ( # cluster size ),
the actual number of different messages is only 117( # strings ). This number

further reduces to simply 14 unique patterns ( # patterns ) after the abstraction
mechanism described in Section 9.1.4 is applied, which is way more manageable for
manual inspection than the initial cluster size. A second insight is then provided
by the Top-3 section. Including the auxiliary information about the source and
destination sites involved makes it evident as the failures are united by the same
error template and destination site. This suggests that Site-4may have a problem
and that its root cause is linked to the error pattern reported in the message

column. Finally, the last piece of information to consider is the time evolution
plot (see Fig. 9.5a). In this case, the cluster shows an increasing trend throughout
the whole day of analysis. Specifically, the number of generated failures grows
from less than 2000 errors at the beginning of the day to a value around five times
higher, with an incremented boost from 9 a.m. onwards. By and large, all these
factors clearly advise that a potential issue is happening at Site-4 as it always
appears as a destination. Also, the message information further suggests that the

1full results available at: https://l.infn.it/opint-results
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failure is linked to a revoked certificate that cannot be verified. Finally, the time
chart shows that the problem is escalating and need prompt intervention.

Despite providing only good proxies of the actual end goals – i.e. root causes
and solving actions –, this rapid analysis already points to actionable insights
regarding where and what faults occur and whether they represent a real concern.
Notice that one can draw similar conclusions by looking separately at the site
transfer efficiency and the most frequent unique strings or patterns. However,
observing high failure rates for Site-4 only answers to where the faults occur.
Likewise, the information contained in the errors only relates to the what part
of the question. Thus, both approaches would lead to partial conclusions and
require additional investigations to reach the same result. Conversely, our approach
addresses the two tasks together, thus letting the conclusion emerge rapidly and
naturally. Remarkably, a further advantage is that one can leverage both site
and pattern information for more precise indications. For instance, one could
hypothesize that not only the Site-4 is experiencing a problem, but the issue is
limited to incoming connections. Indeed, Site-4 is involved only as a destination,
and the error patterns point to something related to destination overwrite .
Therefore, the previous advantages show how shifting from the current site-centric
focus to a hybrid strategy based on error messages and auxiliary information is
beneficial.
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Top 3 

message n % source
rcsite

destination
rcsite

0 819465 117 14

destination overwrite srm-ifce err communication error on send err [se][srmrm][] 
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing 
context gss major status authentication failed gss minor status error chain 
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could 
not verify credential globus_gsi_callback_module could not verify credential 
globus_gsi_callback_module the certificate has been revoked serial number = 1 
(0xfffffffffff

85545 10.44% Site-1 Site-4

destination overwrite srm-ifce err communication error on send err [se][srmrm][] 
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing 
context gss major status authentication failed gss minor status error chain 
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could 
not verify credential globus_gsi_callback_module could not verify credential 
globus_gsi_callback_module the certificate has been revoked serial number = 1 
(0xfffffffffff

84453 10.31% Site-2 Site-4

destination overwrite srm-ifce err communication error on send err [se][srmrm][] 
$URL /srm/managerv2 cgsi-gsoap running on $ADDRESS reports error initializing 
context gss major status authentication failed gss minor status error chain 
globus_gsi_gssapi ssl handshake problems globus_gsi_callback_module could 
not verify credential globus_gsi_callback_module could not verify credential 
globus_gsi_callback_module the certificate has been revoked serial number = 1 
(0xfffffffffff

77410 9.45% Site-3 Site-4

6 9673 347 60

source srm_get_turl srm-ifce err connection timed out err [se][statusofgetrequest]
[etimedout] \$URL /srm/managerv2 user timeout over 1838 19.00% Site-22 Site-46

transfer globus_ftp_client the server responded with an error 421 service busy 
connection limit exceeded please try again later closing control connection 522 5.40% Site-33 Site-47

transfer globus_ftp_client the server responded with an error 421 service busy 
connection limit exceeded please try again later closing control connection 300 3.10% Site-29 Site-47

3 34183 1568 1537

error reported from srm_ifce  2 [se][ls][srm_invalid_path] no such file or directory 13118 38.38% Site-12 Site-35

error reported from srm_ifce  2 [se][ls][srm_invalid_path] no such file or directory 9333 27.30% Site-12 Site-17

error reported from srm_ifce  2 [se][ls][srm_invalid_path] no such file or directory 1707 4.99% Site-12 Site-22

Figure 10.1: Summary table: successes. The figure illustrates the main achievements of the pipeline. Cluster 3
provides immediate indication of the error type, i.e. message , and where it occurs (green). The others also suggest

the approach is actually learning to understand message parameters and message semantic (yellow, clusters 0 and 6).
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10.1. QUALITATIVE ASSESSMENT: INTERPRETABILITY

In addition to the practical usage of our pipeline, the results illustrated in
Figs. 10.1 and 10.2 expose interesting insights about what the models are actually
learning. For instance, the substantial reduction observed passing from errors to
patterns suggests that the pipeline has learned something similar to an abstraction
mechanism. Indeed, the raw error strings of cluster 0 differ only by the $URL
and $ADDRESS parameters (see message column). Although one may argue that
the same could be obtained using a flexible parsing strategy, the superiority of
our approach is even more evident in cluster 6 (Fig. 10.1). In this case, the
clustering joins two patterns with a far less straightforward linkage. In fact, this
result appears to resemble the human association that connection timed out

(first pattern) may be linked to a service busy connection limit exceeded

(second and third) problem. Notably, this is a much higher level of abstraction
with respect to a smart parsing approach, and it goes way beyond what one could
achieve based on good abstraction heuristics. Clearly, this property is remarkable
and highly desirable in practice, as it testifies that the approach produces a good
embedded representation and recognizes the similarity of messages sharing similar
content. In particular, this holds not only up to some parametric parts but also
in terms of their actual meaning. In turn, this observation corroborates the initial
design choice of applying minimal pre-processing and letting the model learn by
itself.

Another clear example of success is provided by the cluster 3 (Fig. 10.1),
where the visualization makes it immediate for the shifter to understand that the
issue is related to a missing file ( no such file or directory ) at Site-12 .

However, our pipeline comes also with some limitations (Fig. 10.2). For in-
stance, the two patterns reported in cluster 4 show a more vague connection
that would require more in-depth investigation. As a matter of fact, they seem to
be linked due to a generic server responded with an error which is a very
generic incipit to several error strings. Apart from that, the error codes are dif-
ferent ( [3021] VS [3010] , which may imply the clustering is too coarse and a
more refined distinction is needed. Also, the messages point to seemingly extrane-
ous issues (storage VS authentication). Such observations expose two limitations.
On the one hand, tuning the pipeline to meet the desired level of granularity when
separating different groups is extremely complex. On the other hand, this behavior
may be due to the difficulty in comparing longer strings (first and second patterns)
with short-text (third).

Another drawback is related to how outliers are handled. The k-means algo-
rithm is bounded to the specified number of clusters, k, which sets the number of
output groups irrespective of the underlying structure of the data. As a result,
the outliers are often incorporated into the closer cluster. When the latter is big
enough, they probably pass undetected as they are dispersed into un heap of other
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messages. However, they may contaminate other clusters when the affected group
has a comparable size, as in the case of second and third patterns in cluster 2 .
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Top 3 

message n % source
rcsite

destination
rcsite

4 51370 10108 814

transfer globus_ftp_client the server responded with an error 500 command failed  
open/create  [error] server responded with an error [3021] unable to get quota 
space  quota not defined or exhausted $FILE_PATH disk quota exceeded

4912 9.56% Site-7 Site-31

transfer globus_ftp_client the server responded with an error 500 command failed  
open/create  [error] server responded with an error [3021] unable to get quota 
space  quota not defined or exhausted $FILE_PATH disk quota exceeded

3709 7.22% Site-8 Site-31

error on $IPv6 [error] server responded with an error [3010] login failed 2950 5.74% Site-9 Site-33

2 15132 11 9

transfer globus_ftp_control gss_init_sec_context failed 
globus_gsi_callback_module could not verify credential 
globus_gsi_callback_module could not verify credential 
globus_gsi_callback_module the certificate has been revoked serial number = 1 
(0xffffffffffffffff) subject=/c=bm/o=quovadis limited/cn=quovadis grid ica g2

2048 13.53% Site-27 Site-42

destination srm_put_turl error on the turl request  [se][statusofputrequest]
[srm_duplication_error] cannot srmput file because it already exists! 1431 9.46% Site-28 Site-12

destination srm_put_turl error on the turl request  [se][statusofputrequest]
[srm_duplication_error] cannot srmput file because it already exists! 914 6.04% Site-15 Site-12

Figure 10.2: Summary table: limitations. The two clusters show evidence of contamination (red) due to generic
partial matching (yellow, cluster 4) or outliers aggregation (cluster 2).
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10.2. QUANTITATIVE ASSESSMENT: GGUS TICKETS

N. Clusters ASW WSSE
Perfect
Match

Fuzzy
Match

Partial
Match

False
Positives

False
Negatives

15 0.89 17107 7 3 2 3 1

Table 10.1: GGUS pre-validation. Summary of the cross-check between clusters
and incidents reported in GGUS. Most of the groups discovered are linked to
reported issues, with only 3 false positives and 1 false negative.

10.2 Quantitative assessment: GGUS tickets

The drawback of unsupervised techniques lies in the inherent difficulty of the
evaluation phase, as no ground truth is available for comparison (Von Luxburg
et al., 2012). In order to overcome this limitation, we have conducted extensive
testing using incidents reported in GGUS as a benchmark. In this way, we attempt
to provide a quantitative assessment of the pipeline performances and a more
direct measure of its potential impact when applied in practice. In particular,
we explore the overlapping between discovered clusters and the reported issues in
two directions expressing alternative perspectives to the problem. On one side, we
evaluate the usefulness of our approach for the shifters, i.e. how clusters explain
failures/tickets (direct association). On the other, we study the overall capacity
of the pipeline to discover and highlight issues – i.e. how many failures/tickets are
reflected in the clusters (inverse association). In the first case, the objective is to
limit the effort of the operators by suggesting as few potential failures as possible,
meanwhile still highlighting the major concerns for the infrastructure. Thus, the
focus is on limiting false positives at the expense of neglecting minor issues. On
the contrary, the second point of view requires a more comprehensive search aimed
at isolating all the ongoing malfunctions, irrespectively of their current priority.
Hence, this time the focus is on maximizing true positives. Table 10.1 reports a
summary of the evaluation according to both perspectives..

Concerning the first angle, we consider GGUS issues reported in a skewed time
window of 17 days (01-01 to 01-18) around the day of the analysis for a total
of 20 tickets related to data transfer failures. Adopting this filtering strategy is
convenient since it considers both previously known issues and delayed detections.
The former is necessary because standard practice in current operations requests
not to open new incident reports when related investigations are already ongoing.
Hence, considering only tickets opened on the analysis day may lead to incorrect
conclusions. Instead, the latter is convenient to account for a “grace period” if
the operators do not promptly spot failures that are really happening during the
analysis. Overall, a good level of agreement is observed between the 15 discov-
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ered clusters and the 20 tickets. Specifically, the 7 perfect matches indicate cases
whereby the reported message and the affected site coincide with the ones high-
lighted by the clusters. The 3 fuzzy matches, instead, refer to occasions whereby
the agreement is less obvious, meaning that the cluster has evident connections
with more than one ticket. Similarly, the 2 partial matches describe cases whereby
either the message or the site coincide. The previous three statistics reveal that 12
out of the 15 suggested failures have led to fruitful investigations, thus implying a
precision between 0.46 and 0.8 depending on the degree of nuisance one is willing
to tolerate. Besides the above matches, 3 clusters highlight issues not reported on
GGUS in the considered time window. These false positives indeed entail a futile
effort for the operators and should be avoided, e.g. thwarting in-depth investiga-
tions if the temporal pattern is not escalating and/or the number of errors is not a
concern. Nevertheless, in our case, posterior checks on the 3 false positives showed
hints for real problems that went undetected or unreported by the operators, i.e.
the error pattern seemed similar to other incidents opened to different sites.

For the second assessment, we investigate the relationship between clusters and
tickets in the opposite direction, i.e. by looking at how many reported issues our
approach captures. In this case, we consider a different baseline that provides
a fairer detection performance evaluation. Indeed, it is reasonable to think that
the failures observed during the analysis may be correlated to earlier tickets, thus
justifying the adoption of a wide time window for the direct association. However,
the same rationale does not necessarily apply when we reverse our perspective. In
fact, there is no prior guarantee that a past ticket will generate new failures at
a given moment in the future. Hence, considering all tickets undergoing investi-
gations would potentially bias our measurement since specific past failures may
not produce new malfunctions during the day of the analysis, thus resulting in
untruthful false negatives. For this reason, in the case of the inverse association
we limit our baseline to consider solely the tickets for which failures were really
observed during the day of the analysis, thus reducing the initial 20 reports to
only 9. Given this reference framework, the clusters successfully identify 8 out of
9 tickets, thus overlooking only a single issue.

To summarize, the previous results show that the approach presents promising
perspectives given the complexity of the task and the completely unsupervised
approach embraced. Although conducting an indisputable quantitative assessment
is challenging – if not impossible with the available data –, the considerations
expressed above furnish a reasonable proxy of the potential of our approach. Of
course, a trade-off between the two perspectives is desirable in practice, for which
more tuning is necessary with the help of shifters and site experts.
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Chapter 11

Conclusions

The increasingly growing scale of modern computing infrastructures solicits more
ingenious and automatic solutions to their management. This is particularly true
concerning WLCG and the LHC experiments, whereby the upcoming upgrade will
deliver ten times the actual volumes at a flat budget for infrastructure manage-
ment.

Part II of this thesis discuss a data-driven pipeline to support DDM opera-
tions management for LHC experiments, with a particular focus on FTS transfer
failures. The proposed approach consists of a pipeline that takes care of all the
steps of a typical data science project, from the raw data to the final visualization.
Also, some pre-production integration and testing has been made. In particular,
the approach is already compatible – at least to some extent – with the produc-
tion systems as it natively interacts with the raw data streams, and it complies
with the timely execution requirements for online processing. In fact, the pipeline
takes around 2.5/3 hours for one day of data, which is compatible with one or two
applications per 8-hours shifts. This runtime is almost equally divided among the
clustering stage – with a grid search for the optimization of k as described in Sec-
tion 9.1.3 – and the post-processing/pre-aggregation needed for the visualization.
Furthermore, no specific effort to optimize such runtimes was attempted, which
suggests that some space for improvement is probably still available.

In terms of performance, our pipeline delivers promising results. The output
clusters show an evident ability to capture both structural and semantic similarity
between messages, as discussed in Section 10.1. Remarkably, this result is achieved
despite applying minimal hard-coded feature engineering and exploiting simple
baseline models for vectorization and clustering.

Interestingly, incorporating additional auxiliary information related to the source
and destination hostnames seems to help unravel higher-level interactions between
the nature of the issues and where they occur. This, in turn, provides a finer detail

CHAPTER 11. CONCLUSIONS 119



when spotting problems that may aid the human operators to restore the proper
functioning of the infrastructure faster.

The previous considerations are also corroborated by a quantitative assessment
of the pipeline’s potential impact when applied to daily workflows. This is done
by comparing the outputs of our approach to the incidents reported in GGUS in
a reasonable time window around the day of the analysis. In terms of the direct
association between clusters and tickets, the performance varies from average to
decent depending on how much nuisance one is willing to tolerate in the output.
Regarding the inverse relationship, instead, the approach is close to perfection
since it highlights 8 out of the 9 incidents observable on the day of the analysis.

Nonetheless, some adjustment and tuning would be helpful prior to full integra-
tion into production. First, the analyzed clusters show indications that additional
tuning may be needed in some cases to guarantee a more suitable level of granu-
larity. This task is highly application-specific and requires the direct involvement
of shifters and site experts.

A second concern is related to the limited number of errors shown. Ideally, the
perfect output for our use case would be one error pattern – or even a more human-
readable description directly pointing to the source of the problem – per cluster
for a small number of clusters (e.g. ≤ 6). In practice, however, the magnitude
of the problem still refers to the actual number of failures. Even reducing it to
the minimum, this is still bounded by the number of combinations between unique
strings/patterns and source/destination locations, which is clearly overwhelming to
handle for human operators. Therefore, the desired output is hardly deliverable as
there is a trade-off between the clusters’ internal homogeneity (number of patterns)
and their number. For this reason, we reach a compromise by setting a higher
value of k and displaying just a fixed portion of each cluster (3 patterns in the
current implementation). However, limiting the visualized patterns potentially
hinders serious faults of medium and small sizes. Moreover, the necessity to mask
message parameters to get more informative and abstract descriptions prevents
using their values for troubleshooting – e.g. when the failures are due to specific
parameter values. In order to comply with the above requirements, a possible
solution is a flexible and efficient implementation that allows the shifters to adjust
the number of displayed patterns and enables interactive drill-down to investigate
more closely the effect of parametric values. Nevertheless, guaranteeing a good
balance constitutes an intrinsic challenge of our use case, and its resolution again
requires a direct tuning by experts.

Furthermore, although it makes sense to cross-check clustering results with
GGUS tickets for a quantitative evaluation, this comparison has drawbacks. On
one side, GGUS incidents force to focus solely on reported failures, thus preventing
the study of undetected issues and masking some omission policies due to external
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factors – e.g. the site is in downtime or blacklisted, or the fault is known to be
transient and therefore not reported. On the other side, the procedure is sensitive
to the choice of the time window. Indeed the issues may have no match because
they are reported before the selected period or due to delays in their discovery
and reporting. All in all, the final assessment may result biased because of these
factors, thus limiting the reaches of the drawn conclusions.

All of the previous adjustments demand additional in-depth studies, each re-
quiring a lengthy manual review of the results due to the unsupervised approach.
Also, most of the above solicit direct participation of system experts to guarantee
the soundness of the results and proper tuning. Considering the several appointed
investigations and the conspicuous number of alternative combinations, it becomes
clear how the requested effort is not affordable and does not scale to the comparison
of adversarial approaches. A possible solution we envision for future developments
is represented by the collection of a reference dataset where to store labels for
error categories, root causes, incident priority and solving actions. In this way, the
evaluation of new experiments would become immediate and systematic. Also,
this would make the investigation of novel techniques sustainable, enlarging the
plethora of applicable approaches to supervised methods and enabling a coher-
ent comparison of alternative algorithms. Perhaps more importantly, the derived
measure of performance would be linked to the actual goal of the analysis, thus
allowing a direct optimization of the models for the specific task of interest.
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